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ABSTRACT:

Semantic segmentation of point clouds is one of the fundamental tasks of point cloud processing and is the basis for other down-
stream tasks. Deep learning has become the main method to solve point cloud processing. Most existing 3D deep learning models
require large amounts of point cloud data to drive them, but annotating the data requires significant time and economic costs.
To address the problem of semantic segmentation requiring large amounts of annotated data for training, this paper proposes a
Super-point-level and Point-level Dual-scale Contrast learning network (SPDC). To solve the problem that contrastive learning is
difficult to train and feature extraction is not sufficient, we introduce super-point maps to assist the network in feature extraction.
We use a pre-trained super-point generation network to convert the original point cloud into a super-point map. A dynamic data
augmentation(DDA) module is designed for the super-point maps for super-point-level contrastive learning. We map the extracted
super-point-level features back to the original point-level scale and conduct secondary contrastive learning with the original point
features. The whole feature extraction network is parameter sharing and to reduce the number of parameters we used the light-
weight network DGCNN (encoder)+Self-attention as the backbone network. And we did a few-shot pre-training of the backbone
network to make the network converge easily. Analogous to CutMix, we designed a new method for point cloud data augmentation
called PointObjectMix (POM). This method solves the sample imbalance problem while preserving the overall characteristics of
the objects in the scene. We conducted experiments on the S3DIS dataset and obtained 63.3% mloU. We have also done a large
number of ablation experiments to verify the effectiveness of the modules in our method. Experimental results show that our method
outperforms the best-unsupervised network available.

1. INTRODUCTION increasing attention. For instance, it is an effective approach to
build a contrastive learning framework to learn point features
With the development of technology, two-dimensional com-  while only using the original data itself.
puter vision data processing has gradually become unsatisfact-
ory for real-world applications. As a fine-grained represent-
ation of 3D data, the point cloud has received increasing at-
tention from researchers and several tasks about 3D perception
have been widely studied, among which point cloud semantic
segmentation has been a hot topic. Semantic segmentation
of 3D point clouds aims to classify each individual point into
a semantic label. While deep learning techniques have been
applied in point cloud data, deep networks have become the
main solution for point cloud semantic segmentation. Deep net-
works have been widely applied for this task and have achieved
fine performance. Major approaches can be divided into point-
based, voxel-based, and projection-based networks.

Another approach to process large-scale point data is to per-
form over-segmentation, which segments the points into super
points with a less total number. During this process, points
with similar geometric and semantic characteristics are divided
into a cluster named super point, which is called the over-
segmentation of point clouds. Traditional over-segmentation
algorithms can be divided into cluster-based and graph-based
methods. Most of the cluster-based methods are based on the
ideas of K-Means. Graph-based methods consider each point
as a node and construct edges using similarity and connectivity
between points. These methods all try to over-segment point
clouds according to certain criteria but rely on manual initial-
ization and features. And performing over-segmentation using

In the past few years, 3D feature and representation learning
based on deep networks have made great progress. However,
supervised 3D deep learning models require large amounts of
annotated point cloud data to drive them, but annotating the
data requires significant time and economic costs. As the self-
supervised approach has been shown effective in 2D domains,
3D self-supervised methods that strip annotated data has gained
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deep networks also starts attracting interest. The current ma-
jor idea of using deep learning techniques to help over-segment
points is to combine deep features with clustering or graph-
cutting ideas, which is divided into two steps: first, we learn
deep features through feature learning modules, and then we
use clustering or graph cut methods to obtain the final super
points.

In this paper, we propose a Super-point-level and Point-level
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Figure 1. The Overall Architecture of The Proposed Method (SPDC)

Dual-scale Contrast learning network (SPDC) to solve point
cloud segmentation problem. Our main contribution can be
summarized as follows:

1) We proposed a dual-scale contrastive learning network
called SPDC, based on both a pretraining channel and
a self-supervised model. The model trained by a fully
supervised approach is transferred to unannotated data.
Weight sharing is used to extract unannotated data fea-
tures. Annotation-free generation of super point maps for
multi-scale feature extraction and dual-scale comparative
learning to correct the inhibitory nature of network trans-
fer.

2) In the pre-training channel, to alleviate the gap between
samples of different categories, we designed PointObject-
Mix model for data augmentation in analogy to CutMix
and PointCutMix.

3) In the self-supervised channel, we used a lightweight net-
work model to generate super-point clusters and designed
a dynamic data augmentation module for the super-point
map to facilitate contrastive learning among super-point
map features.

4) Our proposed method was experimented on the S3DIS
dataset extensively and obtained the equivalent experi-
mental accuracy as the fully supervised method. The
SPDC optioned the 63.3% mloU on S3DIS dataset, which
is a state-of-art performance in the self-supervised point
cloud semantic segmentation task.

2. RELATED WORKED

2.1 Fully Supervised 3D Semantic Segmentation Net-
works

Inspired by PointNet (Qi et al., 2017a) and PointNet++ (Qi
et al., 2017b), MLP and max pooling layer can be directly
used on irregular point data. RandLA-Net (Hu et al., 2020)
utilizes random point sampling to efficiently learn features of

large-scale datasets. SCF-Net (Fan et al., 2021) proposed Dual-
Distance Attentive Pooling to learn spatial contextual features.
Some other methods rely on the voxel data structure. VV-
Net (Meng et al., 2019) takes each voxel grid as a unit and
proposes a kernel-based interpolated variational autoencoder
framework to extract local information. There are also meth-
ods combining point and voxel structures. For instance, point-
voxel CNN framework (Liu et al., 2019) predicts the affinity of
each voxel grid. Projection-based methods project point cloud
data into 2D multi-view or spherical images and then employ
well-established 2D CNN structures. MVCNN (Su et al., 2015)
and RangeNet++ (Milioto et al., 2019) are two representative
works.

2.2 Point Cloud Oversegmentation

VCCS (Papon et al., 2013) constructs voxel data structure for
the point cloud and performs super-voxel division based on the
adjacency of voxels. And it is the pioneering over-segmentation
method based on clustering. VCCS-knn method (Sha et al.,
2020) improves the neighboring searching methods on the basis
of VCCS, which better ensured that the super points obtained
by segmentation would not destroy the boundaries between real
objects. PCLV method (Ben-Shabat et al., 2018) extends the
graph cut problem in 2D images to point cloud data, and real-
izes the over-segmentation of point clouds. In the SPG network
(Landrieu and Simonovsky, 2018), manually extracted point
features are used, and the nearest neighbors of points are used
to construct edges. The problem is turned into the minimum cut
problem of the graph.

Two representative deep learning-based works are SSP
(Landrieu and Boussaha, 2019) and SPNet (Hui et al., 2021).
SSP network implements an end-to-end graph-based super
voxel segmentation method. SPNet implements a differenti-
able version of SLIC for super voxel segmentation. These two
networks are able to generate super points with self-adaptive
numbers and size and have better edge-preserving properties.

2.3 Self-supervised Networks on Point Cloud

Self-supervised methods provide a new way to avoid the lar-
ger amount of annotated data and can improve the efficiency of
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Figure 2. PointObjectMix Data Augmentation

models. Some works apply generative approaches to learn high-
level representation from 3D point clouds. For instance, OcCo
(Wang et al., 2021) selects completion as a pre-text task. Point-
Bert (Yu et al., 2022) also learns by completing of masked area,
while using a Transformer structure. Other work learns con-
text information rather than trying to generate complete data.
PointContrast (Xie et al., 2020) proposes a contrastive learn-
ing framework to learn representation from two views of the
same scene. Spatio-temporal Representation Learning Network
(Huang et al., 2021) learns spatial and temporal structures from
two neighboring point cloud frames while trying to minim-
ize the MSE between the learned features of the pair. Self-
Correction (Chen et al., 2021) is a hybrid method that learns
shape features by distinguishing and restoring destroyed ob-
jects. Motivated by PointContrast, we employ a contrastive
learning framework for unsupervised representation learning.

3. PROPOSED METHOD

In this work, we introduce super-point-level point cloud over-
segmentation and then construct a dual-scale contrastive learn-
ing network based on a mixture of points and super-points. We
also designed a pre-training channel with few-shot learning to
provide the network with initial values for a specific semantic
segmentation downstream task. In order to adapt to the con-
trastive learning network, we designed two types of data aug-
mentation modules corresponding to the characteristics of point
and super-point maps, which were the PointObjectMix (POM)
module and the Dynamic Data Augmentation(DDA) module.
In this section, we will introduce our network in two main
parts: pre-trained channels(Sec. 3.1) and self-supervised chan-
nels(Sec. 3.2). The overview of the proposed method is shown
in Figure 1.

3.1 Pretraining Channel

3.1.1 Point Object Mix: In the pre-training channel, sim-
ilar to other networks, we use Ground Truth to train the back-
bone network. But initially, in order to increase the sample size
and balance the number of samples in different categories, we
usually use some data augmentation methods, such as random
panning, rotation, etc. However, for point cloud data with ro-
tational invariance, the traditional rigid transformation to data
augmentation will not work well. For advanced means of data
enhancement, mixed sample data augmentation(MSDA) has re-
ceived more attention in 2D image processing. Among the
most widely utilized methods are MixUp(Zhang et al., 2017)
and CutMix(Yun et al., 2019). MixUp interpolates between
sample pixels to create more training samples. And Cutmix

is used to create more training data by inserting parts of other
scenes into the sample to be processed. Meanwhile, based on
these two ideas, PointMixUp(Chen et al., 2020b) and PointCut-
Mix(Zhang et al., 2022) also appear in point clouds. How-
ever, for point cloud data with semantic information, random
cutting and stitching will destroy the inherent structural se-
mantic information of the point cloud. Therefore, we designed
a sample mixture data augmentation for objects, called PointO-
bjectMix(POM). For datasets with instance labels, we are mix-
ing objects from different scenes into new scenes in order to in-
crease the learning capability of the network while solving the
sample balancing problem. The diagram of PointObjectMix is
shown in Figure 2.

3.1.2 Feature Extraction Backbone: After PointObject-
Mix data augmentation, we use Ground Truth supervision for
the initial value extraction of the feature extraction network.
We use only a very small number of samples to train the initial
feature extraction network, and the samples used are not du-
plicated with the subsequent unsupervised samples to avoid the
influence of labels on the unsupervised network. Point cloud
feature extraction networks are developing rapidly, and there
are many complex networks proposed and used. However, we
use the lightweight network DGCNN(Wang et al., 2019) con-
sidering the complexity of the method and the subsequent de-
ployment and other related issues. The network extracts fea-
tures of the local shape of the point cloud by EdgeConv, while
still being able to maintain alignment invariance. Also, we add
self-attention after EdgeConv to rearrange the features in order
to extract global features.

3.2 Self-supervised Channel

In order to reduce the reliance of deep learning networks on data
annotation, we designed self-supervised learning channels. In
this channel, we introduce super-point-level features to expand
the network receptive field and enable the network to learn fea-
tures at multiple scales. And we use dual scales of point-level
and super-point-level contrastive learning strategies to further
enhance the accuracy of the feature extraction network. We also
designed a corresponding dynamic data augmentation(DDA)
module for super-point-level data contrastive learning. The fol-
lowing will describe the components and roles of each module
separately in the order of the self-supervised channel.

3.2.1 Super-point Map Generation: Super points are an
over-segmentation of point clouds, which can semantically
group points of similar geometric features. The super point
map can reduce the redundant information of the point cloud,
and reduce the cost of subsequent point cloud processing while
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Figure 3. The Overall Architecture of Super Point Generation

aggregating the neighborhood information and expanding the
receptive field. Because of its efficient computation and repres-
entation, there are already many tasks that use super point maps
to represent point clouds, such as 3D detection and semantic
segmentation. Also due to the complexity of point cloud data,
the generation method of super point map has been investigated.
In this work, we follow the super point generation network used
in SPNet for super point map generation.

Given the point cloud P = {p; € R®*i = 1,...,n} with
n points, a point-super point association map H € Z, x m
between the points and super point centers. We also built a
lightweight super point center generation network based on
PointNet. We combine the dual-scale features by mapping the
point cloud sampled through the farthest point sampling point
cloud and the original point cloud to the feature dimension
through a weight-sharing PointNet network. We obtain the ini-
tial super point centers by feature aggregation. Also for each
point in the original point cloud, the association of that point
with its closest point is calculated. The association for the i-th
point with the j-th super point is calculated as follows:

Gy = 9" (pi,z;)g(pi) @ 0" (fi, 5;)h(f:) )
0(pi, x;) = RELU(Wy (p; — z;)) 2)
¢(firs5) = RELU(W, (fi — 55)) 3)

where 2; € R? is the spatial coordinate of the super point center
and s; € R° is the feature of the super point center.

The softmax function is also used to calculate the probability
that the point belongs to this super point region, so as to obtain
the mapping relationship between the point and the super point.
The ¢(-) and h(-) functions are implemented via MLP. Wy and
W, are the weights to be learned, and ReLU is the activation
function. And we use the difference between the point feature
and the center of the super point feature for encoding. The map-
ping relationship G between the 7 points of the planning neigh-
borhood and the super points is calculated as follows:

exp(GiTj)

4
SF o @

e
G, =

And figure 3 shows the overall architecture of super point gen-
eration.

3.2.2 Dynamic Data Augmentation: Positive and negative
samples are at the core of what makes comparison learning
work. Data augmentation is a common method for generat-
ing sample pairs in contrastive learning. Inspired by (Li et al.,
2020, Li et al., 2022), we propose a dynamic data augmentation
module(DDA) for the data organization of super point maps.
The method achieves learnable dynamic point cloud data aug-
mentation by MLP and noise signals. We first use PointNet, a
lightweight network, for original point cloud P feature extrac-
tion. Then Gaussian noise H, G of comparable dimensionality
is generated using independent mappings different from the fea-
ture extraction. Meanwhile, we plan to use the network simula-
tion affine transformation to map the Gaussian noise G and G2
to the ordered feature aggregation dimension by MLP to obtain
G and G,,. Finally, the augmented sample S*? is generated us-
ing G and G, S“? = G - S* 4+ G4. The augmented samples
enrich the data diversity in contextual displacement and gener-
ate different transformations in the same scene. Figure 4 shows
the structure of the dynamic data augmentation module.

3.2.3 Dual-scale Contrastive Learning: We constructed a
consistent contrastive strategy learning for both point-level and
super-point-level scales. We assume that for two different
views of the same object, the features obtained by a robust
feature extraction network should be the same. This consist-
ent training allows the network to be robust to low-level fea-
ture input perturbations. Also, a stable high-dimensional fea-
ture is extracted for the target. Formally, given a point cloud
P* € RV*P The super point map S* is first obtained by the
super point generation module. Then our network applies two
different groups of data augmentations to create its two views
Sul ¢ RNXP gu2 ¢ RN*D respectively. To better convey the
point cloud context information as well as to reduce the data
processing effort, we use the dynamic data augmentation mod-
ule described above to complete the data augmentation. Then,
the two obtained augmented samples are fed into a weighted
backbone network to obtain two high-dimensional features U*
and U? at the super point level. Also, we obtain the recombina-
tion feature U4 for one of the high-dimensional features after
the self-attention layer in order to increase the effectiveness of
the network feature extraction. And then we perform the first
stage of contrastive learning for two features U4 and U? at the
super point level. We back-project the super-point features back
to the original point cloud scale U“” by the mapping relation-
ship between points and super-points. The feature is compared
with the high-dimensional feature U” obtained directly from the
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original point cloud by backbone for point-level scale learning.

3.3 Loss Function

We first obtained the super-point level features U and U?
by the feature extraction backbone. We project U'# and U?
onto an invariant space R where the contrastive loss is applied.
The goal is to maximize the similarity of U'# and U? while
minimizing the similarity with all the other projected vectors
in the mini-batch of point clouds. We used the NT-Xent loss
function in contrastive learning SimCLR(Chen et al., 2020a).
NT-Xent loss function is calculated as follows:

Ik, U, U?) =
exp (s (UlA,UlA) /7')

Sk cap(s(UIA,U?) /1) + 3200 exp(s(U14, U?) /7)
&)

)

where N is the mini-batch size, 7 is the temperature co-efficient
and s(-) denotes the cosine similarity function. Our super point
level instance discrimination loss function L), for a mini-batch
with super point level can be described as:

N
1 . 1A 742 .12 pr1A
LSF—TN?ZI[Z(Z,U JUD) +16,U0 )] (6)

At the same time, we project the super point level features to the
point level and make the contrastive learning with the features
obtained through the original point cloud at the point level. The
same NT-Xent loss function is used to train the feature extrac-
tion network. In the invariance space, we aim to maximize the
similarity of UF with U*A¥ since they both correspond to the
same objects. Specifically, the point-level loss function is cal-
culated as follows:

l(k}, UP, UlAP) _

exp (s (UP, UIAP) /‘r)
SR ki exp(s(UP, UAP) /1) + 3010 | exp(s(UP, UAP) /1)
(@)

—log( )

Our point level instance discrimination loss function L,, for a
mini-batch can be described as:

N
_ %Z[l(z} UP, UMPY 416, UM U]

i=1

@®)

Finally, we obtain the resultant loss function during training as
the combination of L, and Lp, where L, represents the super

point level feature consistency and L, represents the point level
feature consistency.

4. RESULT AND DISCUSSION

4.1 Pretraining Channel

4.1.1 Dataset: We pre-trained the SPDC using less than
10% of the ScannetV2 dataset. The ScannetV2 dataset has a
total of 1513 acquisition scenes with 21 categories. There are
1201 scenes in the dataset for training and 312 scenes for test-
ing. We selected 100 scenes point cloud for data network pre-
training. During the pre-training process, we sampled the data
from each scene in order to train the network end-to-end, so
that the number of points in each scene was the same. We use
20438 points for each point cloud. Also in the training phase, we
performed POM data augmentation for the dataset.

4.1.2 Implementation Details: To reduce the parameter
size of the network and to facilitate comparison with existing
methods, we used DGCNN as the feature extractor for the entire
network. Also, in order to augment the network’s access to the
global information of the input scene, we add the self-attention
layer after the DGCNN. The dual-scale feature extractor of the
entire network is composed of DGCNN + self-attention layer.
The Adam optimizer is also used with an initial learning rate of
0.001 and a weight decay of 1 x 10~*. Cosine annealing is also
used to achieve learning rate reduction.

4.2 Segmentation Performance

We evaluate the performance of the SPDC network for the point
cloud semantic segmentation task. We use the full S3DIS data-
set to test the effectiveness of the network. S3DIS is a large
dataset of indoor scenes, containing 271 rooms in a total of 13
categories. This dataset has become a common data benchmark
and evaluation metric for point cloud semantic segmentation
and instance segmentation. Again, we chose the same para-
meter settings as in the pre-training phase. The learning rate is
0.001 and a weight decay is 1 x 10~*. We trained a total of
200 epochs on the complete dataset. Our network mainly trains
a feature extractor and uses SVM to act as classifiers in down-
stream tasks. We achieved 63.3% mloU in the S3DIS dataset
semantic segmentation task through extensive experiments as
well as parameter tuning. A comparison of the segmentation
results of other methods in the S3DIS dataset is shown in Table
1. The SPDC feature extractor outperforms the state-of-the-art
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Figure 5. The Visualization Results of Segmentation on S3DIS Dataset.

self-supervised methods available today. In particular, we fo-
cus on comparing the more classical point cloud self-supervised
method CrossPoint. The method also employs a contrastive
learning strategy and also uses DGCNN as a feature extractor.
Our method outperforms CrossPoint results by 4.4% in terms
of results. However, because of the different training meth-
ods and backbone network choices, some methods cannot be
fairly compared. Figure 5 shows the segmentation results of
our SPDC network.

4.3 Ablation Experiments and Analysis

Our network consists of three main parts, pre-training channels,
super-point-assisted feature extraction, and Backbone selection.
We performed corresponding ablation experiments in order to
verify the usefulness of each module.

4.3.1 Pretraining Channel: To verify the effectiveness of
the pre-training channels, we removed the pre-training channels
from the framework and kept only the network structure of the
dual-scale contrastive learning below. This version is a true de-
parture from the point cloud annotation of the network. The net-
work performs feature extraction entirely through DGCNN, and
then dual-scale contrast learning is used as pseudo-supervision
of the network. As shown in Table 2, a segmentation accuracy
of 51.3% was obtained, indicating that the network is generally
effective, but the overall network accuracy is low because it has
not been fine-tuned for specific downstream tasks. This also
demonstrates the effectiveness of the pre-training channel as a
side effect.

Table 1. Comparison of the mean IoU of semantic segmentation
results with self-supervised methods on S3DIS.

Method Supervision | MIoU
PointNet(Qi et al., 2017a) 100% 41.1
PointConv(Wu et al., 2019) 100% 57.3
SPGraph(Landrieu and Simonovsky, 2018) 100% 58.0
MinkowskiNet(Choy et al., 2019) 100% 65.4
KPConv(Thomas et al., 2019) 100% 67.1
DGCNN(Wang et al., 2019) 100% 56.1%*
DGCNN+CRF(Xu and Lee, 2020) 0.2% 44.5
MT(Tarvainen and Valpola, 2017) 10% 47.9
DGCNN+CRF(Xu and Lee, 2020) 10% 48.0
MulPro(Su et al., 2022) 10% 49.0
OTOC(Liu et al., 2021) 0.02% 50.1
MIL transformer(Yang et al., 2022) 0.02% 514
HybridCR(Li et al., 2022) 0.03% 51.5
GalA(Lee et al., 2023) 0.02% 53.7
DAT(Wu et al., 2022b) 0.02% 54.6
OTOC++(Liu et al., 2023) 0.02% 56.6
CrossPoint(Afham et al., 2022) 0% 58.4
PointSmile(Li et al., 2023) 0% 58.9
PointMatch(Wu et al., 2022a) 0.1% 634
SPDC(No pre-training) 0% 51.3
SPDC(No super-point) 0% 56.7
SPDC(No self-attention) 0% 59.6
SPDC(Completed) 0% 63.3
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Table 2. Ablation Study of Modules in SPDC.

Pre-training | Super-point | Self-attention | mIoU(%)
X X X 51.3
v X X 56.7
v v X 59.6
v v v 63.3

4.3.2 Super-point Level Feature: The main innovation of
this paper is the introduction of super point level features to
assist the semantic segmentation task of point clouds and the
design of a corresponding data augmentation module for super
point maps. The introduction of the super point map helps the
network to better learn the information within the point cloud
neighborhood. Also, the over-segmentation of the point cloud
indirectly increases the receptive field of the network and makes
the network feature extraction more accurate. Meanwhile, in or-
der to verify the effectiveness of the super point module, we did
the corresponding ablation experiments. We remove the super
point module from the network and just use point-level single-
scale features for contrastive learning. As shown in Table 2, the
network without super points is able to achieve a segmentation
mloU of 56.7%.

4.3.3 Self-attention Layer: With the widespread use of
transformer in computer vision, the attention mechanism has
started to be noticed by everyone. Attentional mechanisms are
widely used in natural language processing and 2D image pro-
cessing work for their powerful sequence modeling capabilities.
Due to the complexity and disorder of point cloud data, more
Transformer-based point cloud processing networks have also
been proposed recently. In our network, we use self-attention
to complement the lack of global modeling of the scene by the
DGCNN feature extractor. To verify the validity of the mod-
ule, we still chose to remove it for the corresponding abla-
tion experiments. As shown in Table 2, the network without
a self-attention layer is able to achieve a segmentation mloU of
59.6%.

5. CONCLUSION

We propose a dual-scale contrastive learning method called
SPDC based on the fusion of super-point and point. The net-
work utilizes point cloud over-segmentation, which is in the
form of a super point map to complement the original point
cloud feature information. And the network feature extraction
capability is trained by contrastive learning on both point-level
and super-point-level scales while getting rid of the reliance
on data annotation for deep learning networks. Meanwhile, in
the contrastive learning process, we designed POM data aug-
mentation patterns for different data structures of the original
point cloud and super points, and a learnable dynamic data aug-
mentation module, respectively. Impressively, SPDC achieves
SOTA performance among unsupervised networks on the se-
mantic segmentation task of S3DIS datasets. And it shows high
robustness after very little fine-tuning.
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