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ABSTRACT: 
 
The image-based reconstruction method can preserve geometric and textural information with relatively high accuracy, making it a 
suitable method for digitally documenting cultural heritage. However, the quality of the reconstructed model largely depends on the 
quality of the captured images. Unmanned aerial vehicles (UAVs) equipped with a camera and gimbal offer great convenience for 
image acquisition in 3D reconstruction. However, ensuring safety, high efficiency, and full coverage is a challenge. To address this, 
we propose a UAV photographic path planning method for efficient and automatic image acquisition of heritage scenes, based on 
which high-quality reconstruction is realized. A priori proxy of the scene is obtained in advance and utilized to (1) generate initial 
viewpoints for subsequent optimization; (2) generate the SDSM for obstacle avoidance, signal analysis, and sight occlusion judgment; 
and (3) segment to obtain planar regions to sample representative points for measuring the reconstructability of heritage scene and 
optimizing the viewpoints. Our method enables the planning of regular and safe final paths for the high-quality reconstruction of 
cultural heritage, outperforming both commercial software and state-of-the-art methods in both real and virtual scenes. 
 
 

1. INTRODUCTION 

In recent years, the demand for documentation of cultural 
heritage is constantly increasing (Aicardi et al., 2018; Gomes et 
al., 2014; Murtiyoso and Grussenmeyer, 2017). The image-based 
reconstruction method can better preserve the geometric and 
textural information at a low cost and has become an important 
tool for heritage documentation (El-Hakim et al., 2004; Liu et al., 
2022). Now that the image 3D reconstruction algorithms are 
more mature, the image quality becomes the main factor affecting 
the reconstruction quality. Inadequate and insufficient coverage 
can result in mismatches between images and holes in 
reconstructed models (Furukawa and Hernández, 2015; 
Schönberger et al., 2016), while excessively redundant images 
would increase the time and calculation cost during image 
acquisition and reconstruction processes, and even lead to poor 
reconstruction quality (Zhang et al., 2021). Considering the 
complexity of the cultural heritage scene, how to capture images 
is an essential issue in its reconstruction.  
 
Currently, commonly used image acquisition methods for large 
scenes include conventional vertical aerial photography and 
oblique photography (Dahlke et al., 2015; Nesbit and Hugenholtz, 
2019). For flight safety, these two methods usually carry out a 
regular path in a grid, zigzag or circle path beyond a certain 
distance above the scene. They are mostly carried out with a 2D 
horizontal flight or 2.5D terrain-following flight (Liu et al., 2022; 
Pepe et al., 2018). Although oblique photography is performed 
through a tilt camera module with a multi-directional lens, the 
closer it gets to the bottom, the more texture is missing and 
distorted in the tilted image. In addition, the occlusion and loss 
of details caused by remote photography are not addressed 
(Toschi et al., 2017). High-quality 3D reconstruction requires 
complete coverage of all details of the heritage scene. 3D close-
up photography methods that can completely obtain information 
from multiple angles are undoubtedly superior (Schönberger et 
al., 2016; Seitz et al., 2006). Currently, the multi-rotor UAV 
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equipped with RTK (Real Time Kinematic) module and gimbal 
provides the hardware implementation basis for close-up 
photography and automatic image collection (Koch et al., 2019; 
Li et al., 2017; Nex and Remondino, 2014). 
 
However, most of the 3D flight paths of UAVs are performed 
under manual control or some predefined flight modes in 
practical operations. Manual control requires UAV operators to 
capture images with full coverage and safety guaranteed, making 
it a complex and challenging task (Zhang et al., 2021). In this 
situation, a greater number of images is prone to be captured and 
so cause redundancy and long-time consumption. Thus, the path 
planning of UAV automatic photography in 3D space is vital for 
realizing high-quality 3D reconstruction (Hepp et al., 2019; 
Roberts et al., 2017). It is necessary to plan the photographic 
position and orientation according to the requirements of 3D 
reconstruction (Smith et al., 2018; Zhou et al., 2020). 
 
In this paper, we propose a UAV photographic path planning 
method that can efficiently and automatically complete the image 
acquisition with safety guaranteed, based on which high-quality 
and efficient reconstruction of cultural heritage is realized. To 
verify the effectiveness of our method, we compared it with the 
state-of-the-art in virtual scenes and commercial software in real 
scenes. Experiments demonstrate the remarkable performance of 
our method, which provides a reliable and efficient solution for 
the high-quality reconstruction of cultural heritage from the 
aspect of data acquisition. 
 

2. METHODS 

In contrast to real-time and online planning methods that do 
not require a proxy, the photographic planning method discussed 
in this paper requires a priori proxy of the heritage scene. The 
overall process from photographic planning, image acquisition to 
the final 3D reconstruction is complex. We summarize the 
processes as shown in Eq. (1). Firstly, according to the 
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requirement of model resolution, the appropriate image 
acquisition parameters 𝑝𝑎𝑟𝑎𝑠 need to be set, including camera 
parameters and the ground sample distance (GSD), which 
corresponds to photographic distance. Then, based on the proxy 
𝑃  of the heritage scene 𝑆 , the viewpoint set is planned and 
connected into a collision-free path for image acquisition, from 
which the model 𝑀 is reconstructed.  
 
We focus on path planning to improve image acquisition 
efficiency, ensuring flight safety and high-quality reconstruction. 
The workflow of our method is shown in Fig. 1. 
 

𝑀 𝑅𝑒𝑐𝑜𝑛 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑷𝒍𝒂𝒏 𝑃 𝑆 , 𝑝𝑎𝑟𝑎𝑠  (1) 

 
The priori proxy, that is the coarse mesh of the scene, is utilized 
to (1) generate initial viewpoints which are regularly arranged; 
(2) generate the SDSM for obstacle avoidance and signal analysis 
of the initial viewpoint set to delete unsafe viewpoints; and (3) 
segment planar regions to sample representative points for 
measuring the reconstructability of heritage scene. Based on the 
reconstructability and its distribution of sample points, the 
viewpoints with high contribution to the reconstruction are 
selected to the optimized set during iterations. 

 

 
Figure 1. The workflow of UAV path planning method for high-quality reconstruction.  

 
2.1 Viewpoint Generation for Flight Safety and Continuity 

Priori Geometric Proxy Similar to the method in (Smith et al., 
2018; Zhang et al., 2021; Zhou et al., 2020), our method requires 
an initial proxy that would serve as the data basis for the entire 
path planning process, including sample point and viewpoint 
generation, obstacle avoidance, and occlusion judgment. A 
relatively accurate absolute position is required for the initial 
proxy to ensure flight safety and one-to-one correspondence 
between the planned viewpoint and the actual photographic 
position. Common proxies include point cloud (Yan et al., 2021), 
DEM (Smith et al., 2018), 2.5D coarse model (Zhang et al., 2021; 
Zhou et al., 2020), BIM, 3D mesh obtained by oblique 
photography (Li et al., 2023), etc. The 3D coarse mesh is usually 
adopted as the initial proxy, as shown in Fig. 1, which can be 
reconstructed by capturing images over the scene following a 
regular path. 
 

 
Figure 2. The different orientations generated in every voxel. 

 
Initial Viewpoints Generation We generate regular voxels in 
the enclosing box of the proxy with the interval 𝑑 1/3 ∗ 𝑊, 
where 𝑊  is the length of the image width projection on the 
ground. The interval corresponds to the 66% side overlap ratio in 
aerial photogrammetry, which is considered a relatively high 
overlap ratio to recover the terrain information and obtain DEM 
and DOM. In each voxel, 17 viewpoints (a 1*5 vector 
representing the camera position and orientation when capturing 

an image) are generated for capturing images by taking the center 
of the voxel and 17 angles facing different directions to form the 
initial set of viewpoints, as shown in Fig. 2. Considering the 
complexity of subsequent optimization, certain fixed angles can 
be removed, and 9 or 13 orientations are used. 
 

 
Figure 3. The generation process of SDSM from the proxy. 

 
Shaped DSM Both the generated viewpoints and the final paths 
connecting the viewpoints need to take into account obstacle 
avoidance and occlusion. In addition, when judging the visibility 
of a viewpoint to a target point in the scene, the occlusion of the 
sight also needs to be considered. Based on the priori proxy of 
the scene, obstacle avoidance and occlusion can be determined 
with its geometric structure. The proxy represents the surface to 
be reconstructed, which is also considered the obstacle. 
Theoretically, to judge whether the sight and path are occluded 
or not, it is only necessary to determine if they intersect with the 
triangular faces of the proxy. However, although the priori model 
is relatively coarse, the number of faces is still large, especially 
in large scenes, and the repeated calculation of ray intersection 
with triangular faces can be computationally intensive. 
Subsequent signal analysis is also difficult to achieve through 
intersection judgments. Thus, we convert the proxy to SDSM 
(Shaped Digital Surface Model) by ray intersection with the 
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proxy for quick judgment, as shown in Fig. 3. The maximum 
elevation of every grid of 1 ∗ 1𝑚  on SDSM is retained. In 
addition, we filter the elevation of SDSM by the maximum value 
according to the ideal signal mechanism with the empirical value 
3:1. That is when the elevation of a certain grid of the SDSM is 
3𝐷 m, viewpoints within its 𝑛 m range should be higher than 
3𝐷 3 ∗ 𝑛 m. The elevation of SDSM represents the minimum 
flight height of the corresponding range. Based on the SDSM, 
obstacle avoidance and RTK signal analysis are considered to 
ensure flight safety and continuity.  
 
A viewpoint is outside the obstacles and in areas with good RTK 
signal if its elevation is higher than the elevation of SDSM with 
the same coordinates on the XOY plane, as shown in Fig. 4. For 
sight and path occlusion judgment, sampling is performed on 
them to generate points. If the elevation of every point is higher 
than SDSM, it’s believed there is no occlusion, as shown in Fig. 
4. 
 

  
Figure 4. Obstacle avoidance and occlusion judgment 

 
2.2 Viewpoint Optimization for Efficiency Image 
Acquisition and Reconstruction 

Reconstruction Heuristics For viewpoint optimization, the 
information gained from each viewpoint is required to be 
measured, as well as the reconstructability of the scene. The 
common solution is to evaluate the reconstructable value of dense 
sample points sampling on the proxy based on reconstruction 
heuristics to represent the reconstructability of the whole scene. 
The heuristics brought by (Smith et al., 2018) is widely used, in 
which shooting distance, observation angle, parallax angle and 
multi-view observation are all taken into account. 𝐻 𝑠,𝑉 , which 
is referred to as 𝐻 in after, represents the reconstructable value of 
sample point 𝑠 from the viewpoint set 𝑉. According to (Liu et al., 
2021; Smith et al., 2018; Zhou et al., 2020), when 𝐻  of the 

sample point exceeds the minimum threshold 𝐻 , which is set 
to 1.3, the sample point is considered to meet the 
reconstructability. And if 𝐻  exceeds the maximum threshold 
𝐻 , which is set to 5.0, redundancy exists in the viewpoints 
visible to it. 
 
Representative Sampling Many methods such as (Hepp et al., 
2019; Roberts et al., 2017; Smith et al., 2018) have attempted to 
propose more reliable reconstruction heuristics, establishing a 
strong correlation between the reconstructable value and 
reconstruction accuracy of sample points. However, we focus on 
generating typical sample points that are more representative of 
the scene reconstructability. 
 
Planar segmentation enables the clustering of triangular faces on 
the priori proxy that are adjacent and approximately oriented in 
the same direction, and the edges of triangular faces with large 
variations in normal vectors can also be extracted. Therefore, the 
proxy is first partitioned into planar regions by the segmentation 
method of (Bouzas et al., 2020), and geometric primitives 
including polygons (representing the planar regions) and lines 
(representing the edges between planar regions) are then 
extracted. Every triangular face on the proxy belongs to a 
particular primitive. Even when the heritage scene is complex, 
the extracted primitives can still reflect the geometry structure of 
the scene well. We then uniformly sample points on the 
geometric primitives. The normal vector of the sample point in 
polygon primitives is consistent with segmented planar regions, 
while the normal vector of the sample point in line primitives is 
the average of its two adjacent regions. 
 
Since the normal vectors within the primitives are consistent, the 
sample points are more representative of the reconstructability of 
a certain range of their surrounding neighborhood. Thus, a larger 
interval can be set to generate the sample points, achieving a 
smaller number of typical sample points to measure the 
reconstructability of the whole scene. Note that every triangular 
face on the proxy is clustered into specific planar regions, i.e., 
each triangular face has a corresponding sample point to measure 
its reconstructability, and edges with large variations in normal 
vectors are also sampled. The resulting sample points can cover 
all the details in the scene to be reconstructed, including edges, 
corners, fragmentary details, etc., without being particularly 
dense. 

 

   
(a) Random Sampling (8020pts) (b) Poisson Sampling (8308 pts) (c) Ours (7851pts) 

   
(d) Random Sampling (24000pts) (e) Poisson Sampling (23845pts) (c) Ours (9015pts) 

Figure 5. Sample points generated by different sampling methods in 3D proxy (top row) and 2.5D proxy (bottom row) 
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Fig. 5 shows the distribution of sample points generated by our 
representative sampling method and the other two methods. Our 
sample points are evenly distributed in the planar region, with 
points sampling on discontinuities, which is presented especially 
with a 2.5D coarse proxy. Compared with the other two sampling 
methods, a more representative evaluation which includes the 
reconstructability measurement of every fragment detail is 
realized with fewer sample points. The validity of our sampling 
method is verified experimentally subsequently. 
 
Visibility Judgement For fast optimization, we calculate and 
save the visibility between viewpoints and sample points in 
advance. First, it is considered that the sample point is not visible 
from the viewpoint if the distance between them exceeds two 
times the photographic distances corresponding to the preset 
GSD. Second, it is not visible if the shooting angle between the 
shooting sight and the normal vector of the sample point exceeds 
60° which leads to a narrow view. Third, a colinear function from 
photogrammetry is carried out to determine whether the sample 
point is photographed by the viewpoint. And the last is the sight 
occlusion judgment in Fig. 4. The visibility between viewpoints 

and sample points is determined after the above four conditions 
are calculated. 
 
Greedy Optimization To quickly optimize the viewpoints, we 
then construct an objective optimization function as shown in Eq. 
(2), and continuously iterate to select the viewpoint that obtains 
the maximum expected gain of reconstructability to join the final 
optimized set. 𝑆  is the sample point set which is visible from 
the viewpoint 𝑣 . 𝑉 is the existing optimized viewpoint set during 
the current iteration, and |𝑉|  equals the iteration times. 
𝐷 𝑣 ,𝑉  is the average distance from 𝑣  to the optimized 
viewpoint set. When 𝑉 ∅ , we set 𝐷 𝑣 ,∅
max 𝑣 ,𝑣 , 𝑣 ,𝑣 ∈ 𝑈, that is, the maximum distance between 
two safe viewpoints. 𝑈 is the safe viewpoint set. 𝐷 𝑣 , 𝑆  is 
the average distance from 𝑣  to its visible sample point set 𝑆 . 
|𝑆 ∩ 𝑆 | is the cardinality of the intersection set of the set 𝑆  
and 𝑆 . 𝑆  is the sample point set visible from the optimized 
viewpoint set. A large cardinality value means more intersections 
with 𝑉. 𝜃  is the average shooting angle of the viewpoint 𝑣  to 
𝑆 . 𝐷  is the shooting distance corresponding to the preset 
GSD. 

 

𝑣 arg max𝛥 𝑣 |𝑉 ,𝑉 ⊆ 𝑈 

𝛥 𝑣 |𝑉
𝑆 ∩ 𝑆 ∗ 𝑐𝑜𝑠 𝜃 ∗ 𝐷 𝑣 ,𝑉

𝐷 𝑣 , 𝑆 ∗ 𝐷 𝑣 , 𝑆 𝐷
∗ 𝐻 𝐻 𝑠,𝑉

∈

 
(2) 

 
The practical implication of Eq. (2) is to find the best viewpoint 
𝑣 arg max𝛥 𝑣 |𝑉 , whose sum reconstructable value of 
the unreconstructed sampling point set 𝑢𝑟 𝑆 is the lowest, i.e. 
∑ 𝐻 𝐻 𝑠,𝑉∈  is the largest. However, the lowest 

sum reconstructable value form does not take into account the 
effects of the photographic distance of the viewpoint, the 
observation angle and the intersection angle with the existing 
optimized viewpoints. Therefore, it is guaranteed to have more 
intersections with the existing optimized viewpoint set by 
𝑆 ∩ 𝑆 ; to have the maximum average distance from the 

existing set of optimized viewpoints by 𝐷 𝑣 ,𝑉 , i.e. to have 
a larger intersection  angle with the existing viewpoints; to have 
the viewpoint pose facing fronto with the sample point by 
𝑐𝑜𝑠 𝜃 . In addition, the average distance between the chosen 
viewpoint and its visible sample point set is as close as possible 
to the preset photographic distance by 𝐷 𝑣 , 𝑆 𝐷 . 
The viewpoint is brought closer to the visible sample point by 
𝐷 𝑣 , 𝑆 . 
 
The optimal viewpoints are selected by iteration according to Eq. 
(2), and the final set of optimized viewpoints is obtained when 
the number of sample points satisfying reconstructability exceeds 
a certain proportion. The proportion of iteration termination is 
usually set at 85%-95%, mainly considering that there may be 
some obvious occluded areas in the scenes and corresponding 
proxies such as slits that are always unable to satisfy the 
reconstructability. Although Eq. (2) is formally complex, many 
of its terms are fixed values. And the time complexity of one 
iteration can be converted from 𝑂 𝑚𝑛  to 𝑂 𝑚𝑛  with a simple 
algorithmic process, making iteration extremely fast. 𝑚  is the 
average number of viewpoints visible to a sample point, 𝑛 is the 
opposite, and 𝑚 is the number of safe viewpoint points, that is, 
the cardinality of 𝑈 . In this way, the viewpoint optimization 
process is very fast and the number of viewpoints can be 
determined as required, ensuring coverage of detail without 
adding too many viewpoints. 

Through greedy optimization, the final viewpoint set can be 
obtained quickly. Then we connect these viewpoints to a flight 
path based on ACO (Ant Colony Optimization) algorithm with 
path occlusion considered. Note that we set the cost between two 
viewpoints based on ideal energy consumption calculated with 
the constructed mathematical model from UAV flight dynamics. 
 

3. EXPERIMENTS AND DISCUSSION 

3.1 Evaluation Metrics 

We evaluate our photographic planning method from three 
aspects, including the scene reconstructability based on 
reconstruction heuristics, the path quality, and the reconstruction 
quality of the model. The scene reconstructability represents the 
reconstructability and corresponding distribution of the sample 
points. However, it is not the actual quality of the reconstructed 
model. The path is evaluated with path length, ideal flight time 
and energy. For model quality, the accuracy and completeness 
are measured based on ground truth with sampling point clouds 
on reconstructed models and GT models (Smith et al., 2018; 
Zhou et al., 2020). 
 
To further verify the effectiveness and advancement of our 
method proposed, self-evaluation experiments are conducted 
firstly to verify the effectiveness of our representative sampling 
and greedy optimization method based on scene 
reconstructability. Then, in both virtual and real scenes, our 
method is compared with SOTAs and the method from 
commercial software.  
 
3.2 Self Evaluation 

Effectiveness of Representative Sampling To validate that the 
sample points generated by our method are more representative 
to measure the scene reconstructability, multiple sets of 
controlled experiments are set up. For two types of proxies, 
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sample points are generated by random, Poisson and our 
sampling method. The number of sample points of different 
methods is close to each other. The three optimized viewpoint 
sets corresponding to three types of sample points are generated 
using the greedy optimization method described in section 2.2. 
For the viewpoint set optimized from the sample points of our 
method, the proportion of sample points of random and Poisson 
that meet the reconstructability is calculated. Similarly, for the 
set of optimized viewpoints generated from the other two types 
of sample points, the proportion of our sample points that meet 
the reconstructability is calculated. The results are shown in 
Table 1. The viewpoints (Poisson) represent the viewpoints 
obtained by optimizing the sample points generated from Poisson 
sampling, and the same with the other two sampling methods. 
The optimization iteration terminates when 95% or 90% of the 
sample points satisfy the reconstructability. 

From Table 1, for the viewpoint sets generated from our sample 
points, the proportion of the other two types of sample points 
satisfying the reconstructability exceeds the proportion of our 
sample points, while the proportion of viewpoint sets generated 
from other types satisfying the reconstructability of our sampling 
points are all lower than their own proportion. Fig. 6 shows the 
reconstructability distribution of the sample points obtained by 
different optimized viewpoints. From Fig. 6 (c) and (f), the 
reconstructability of the planar regions is similar for different 
viewpoint sets optimized from different sets of sample points, 
while it varies more in the edge region. As can be seen from Table 
1 and Fig. 6, our sampling method is more representative to 
measure the reconstructability of the scene, especially in areas 
such as the edges of the scene. 

 
Proxy and Scene  Random Samples Poisson Samples Ours Samples 

School 
2.5D Proxy 

Viewpoints (Random) 95.0%  93.3% 
Viewpoints (Poisson)  95.0% 94.1% 

Viewpoints (Ours) 96.3% 95.9% 95.0% 

Humanities Museum 
3D Proxy 

Viewpoints (Random) 90.0%  88.2% 
Viewpoints (Poisson)  90.0% 89.1% 

Viewpoints (Ours) 90.3% 89.9% 90.0% 

Table 1. The proportion of sample points that satisfy the reconstructability with different sets of optimized viewpoints. 

 

  

(a) Random to Random (b) Random to Ours (Local) (c) Random to Ours (Global) 

   
(d) Ours to Random (e) Our to Ours (Local) (f) Our to Ours (Global) 

Figure 6. The reconstructability distribution of the sample points obtained by different optimized viewpoints. A to B corresponds to 
the reconstructability distribution of sample points of B from viewpoints generated by A. The bluer the color of the sample point, the 

more redundancy exists; the redder it is, the less the reconstructability is likely to be satisfied. When the reconstructable value of a 
sample point is close to 𝐻 =5.0, it shows a white color. 

 
 
Effectiveness of Greedy Optimization To demonstrate the 
effectiveness of greedy optimization, we generate optimized 
viewpoint sets that satisfy the reconstructability with 95% and 98% 
of the sample points on the 2.5D and 3D proxy of the School 
scene. Then we import the viewpoint sets generated by (Zhou et 
al., 2020) for comparison, and calculate the proportion of the 
reconstructed sample points and their distribution, as shown in 
Fig. 7 and Fig. 8. When using a 2.5D proxy, the sample points 
and the scene can be basically reconstructed with 270 images 
based on our method, and the distribution is also uniform. And 
when 320 images are obtained, the difference with the (Zhou et 
al., 2020) is small. Similar results are obtained with a 3D proxy. 
Note that the 330 viewpoints of (Zhou et al., 2020) only satisfy 
the reconstructability of 96.7% and 96.3% of the sample points, 
which does not reach the 98% set by our method, proving the 
effectiveness and efficiency of our greedy method.  

 

 

 

 

 

 

 
Zhou-330-96.7% Ours-270-95% Ours-320-98% 

Figure 7. Comparison of different optimized viewpoint sets and 
the corresponding distribution of sample points (2.5D proxy) 
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Zhou-330-96.3% Ours-272-95% Ours-321-98% 

Figure 8. Comparison of different optimized viewpoint sets and 
the corresponding distribution of sample points (3D proxy) 

 
3.3 Comparison with SOTAs in Virtual Scenes 

The UrbanScene3D (Lin et al., 2022) virtual dataset provides 
proxies and generated photographic paths for methods of (Zhang 
et al., 2021; Zhou et al., 2020), so we compare our method with 
them. Two virtual scenes are adopted. The school scene is a 
sophisticated modern building, while the town scene leans 
towards a classical style which is considered to be close to 
cultural heritage. We import the proxies and generate 
corresponding paths. For image acquisition, we develop a script 

based on Unreal Engine 4, which can realize the set of camera 
parameters, and read the path file to capture high-resolution 
images automatically. For the model reconstruction, we use 
Context Capture software to carry out aerial triangulation and 
dense reconstruction, where the local coordinates of image 
collection position are all imported to participate aerial 
triangulation process. 
 
In the processes of photographic planning and image acquisition, 
the camera parameters consistent with those of (Zhang et al., 
2021; Zhou et al., 2020) are set. Table 2 shows various 
comparisons between the two methods and ours on the School 
and Town scenes, where the path quality of (Zhou et al., 2020) is 
not compared due to the unusually longer lengths and times 
calculated. From Table 2, our method has the best or near-best 
reconstruction quality on both types of proxies for two scenes. 
Note that since our path captures multi-angle images in the same 
position, we get a much shorter length. However, the UAV must 
hover to change pose, so the energy is not much less but still 
relatively low since (Zhang et al., 2021) optimize the viewpoint 
and path simultaneously to get a path with very low energy 
consumption. Fig.9 shows the visual fidelity of the reconstructed 
model on the Town scene compared with (Zhou et al., 2020). In 
all, our method realizes higher quality reconstruction with fewer 
images and high efficiency of image acquisition. 

 

(a) Zhou-2.5D -217 (b) Ours-2.5D-221 

Figure 9. The visual fidelity of the reconstructed model compared with (Zhou et al., 2020) 

 

Proxy Method #Imgs 
Length Time Energy RMSE GSD 

Accuracy Completeness 
F-Score 

0.1m 90% 0.1m 90% 
↓m ↓s ↓J ↓mm ↓mm ↑% ↓m ↑% ↓m ↑% 

2.5D 
Coarse 

（School） 

Zhang 330 4294 1587 14013 5.97 11.98 82.96 0.325 46.64 1.893 59.71 
Zhou-high 570    4.18 9.16 83.97 0.304 51.20 1.602 63.61 
Zhou-low 330    4.24 8.68 86.85 0.179 48.46 1.963 62.21 

Ours 320 1367 1633 14532 3.92 8.26 86.93 0.182 50.10 1.704 63.57 

3D 
Inter 

（School） 

Zhang 330 4239 1560 13776 8.70 15.96 79.95 0.413 46.81 1.853 59.05 
Zhou-high 595    3.79 8.03 15.39 1.819 9.86 2.136 12.02 
Zhou-low 342    3.99 8.26 87.14 0.157 48.20 1.992 62.07 

Ours 321 1254 1540 13787 3.65 8.25 87.63 0.162 50.72 1.723 64.25 

2.5D 
Coarse 

（Town） 

Zhang 217 3457 1197 10608 6.08 12.76 90.09 0.098 68.50 0.841 77.83 
Zhou-high 511    4.02 8.77 92.01 0.061 72.02 0.721 80.80 
Zhou-low 217    4.36 8.61 92.74 0.059 70.77 0.763 80.28 

Ours 221 1098 1189 10562 3.81 8.65 93.21 0.052 71.56 0.723 80.96 

3D 
Inter 

（Town） 

Zhang 258 3115 1212 10683 6.04 12.87 89.75 0.106 68.85 0.800 77.92 
Zhou-high 428    2.78 4.48 95.29 0.050 72.02 0.727 82.04 
Zhou-low 259    2.46 4.11 84.32 2.070 66.75 0.926 74.51 

Ours 379 1623 1544 14062 2.32 4.67 95.26 0.046 72.81 0.711 82.54 

Table 2. Qualitative comparison with the state-of-the-art on virtual scenes 
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Figure 10. Comparison of the path and reconstructed model between our method (left) and MetaShape software (right) 

 
3.4 Comparison with MetaShape in Real Scene 

MetaShape is a reconstruction software that combines 3D 
reconstruction, path planning and some other functions. It can 
automatically plan a photographic path based on a delineated 2D 
plane range and can customize obstacles such as power lines to 
avoid collisions. And the path generated can be directly exported 
to DJI P4RTK for flight.  
 
In the real scene, we choose a historic building at Wuhan 
University to evaluate our method. The building is rather 
complex, with many intricate details such as ornate carvings on 
its surface. We compare our method with MetaShape on this 
scene. The priori proxy was reconstructed from images captured 
with the straight-down pose at a fixed height. Both methods are 
set to a ground resolution of 0.6cm, which corresponds to a 
photography distance of 20 m with DJI P4RTK. Fig.10 shows the 
comparison of the planned path and the reconstructed model, 
with the number of viewpoints generated by both methods being 
close to the same. It can be found that each viewpoint in the path 
generated by both methods is oriented towards the heritage scene 
to be reconstructed as far as possible. And both methods obtain a 
better reconstruction quality of the top of the scene. However, our 
method gets better visual fidelity of the model in the local detail 
area. 
 
3.5 Discussion 

Our method exploits the geometry structure of the scene and its 
proxy, which is its most important feature compared to SOATs 
and MetaShape. First, we generate a set of regularly arranged 
viewpoints for subsequent optimization. After optimization, 
these viewpoints remain relatively regularly arranged. Second, 
we generate SDSM for efficient obstacle avoidance and 
convenient RTK signal analysis. Third, we realize a more 
representative measurement of scene reconstructability with 
sample points generated after geometric planar segmentation. In 
addition, we adopt a greedy optimization strategy to obtain final 
optimized viewpoints. However, some improvements can be 
made to enhance our method, such as using more representative 
reconstruction heuristics from a learning-based method.  
 

4. CONCLUSIONS 

In this paper, we propose an efficient path planning method for 
digital documentation of cultural heritages, based on which flight 

safety and continuity are guaranteed as well as the 
reconstructability of the whole complex scene. Compared with 
existing methods, (1) the flight safety and continuity are analyzed 
and guaranteed based on SDSM; (2) a more representative 
evaluation of the reconstructability of heritage scene is realized 
with sampling points on extracted planar regions; (3) the 
viewpoints are optimized with a fast selection from safe 
viewpoint set; (4) a regular path is connected to capture images 
with a shorter length. Compared with the commercial method and 
the state-of-the-art in both real and virtual scenes, we realize 
high-quality reconstruction of cultural heritage with higher 
efficiency in image acquisition, providing a complete and 
efficient UAV photographic path planning solution for high-
quality reconstruction of cultural heritage. 
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