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ABSTRACT: 
Over the last few decades, mobile mapping systems (MMS) such as uncrewed aerial vehicles (UAVs) and terrestrial platforms have 
been demonstrated in collecting geospatial data for a wide range of applications. MMS continue to evolve due to the unprecedented 
developments in sensor technology and emerging application domains. Integration of image and LiDAR data acquired by these systems 
can provide a comprehensive 3D model of the area of interest. However, ensuring good alignment of derived products from single or 
multiple platforms is crucial. Although many studies have been conducted in this area, there is still a need for a comprehensive 
integration approach that minimizes discrepancies between imagery and LiDAR data due to inaccurate calibration parameters or 
trajectory artifacts. To address this issue, a tightly-coupled camera/LiDAR integration workflow denoted as Unified Multi-Sensor 
Advanced Triangulation (UMSAT) is proposed. UMSAT can handle point, linear, and areal features derived from imaging and ranging 
systems while utilizing the position and orientation information provided by the navigation unit. This paper explores the feasibility of 
the proposed framework in two applications – archaeological mapping and geometric documentation of transportation corridors – for 
improving the quality of derived data/products from imaging and ranging remote sensing systems. Experimental results demonstrate 
that the UMSAT framework successfully aligns multi-temporal, multi-sensor, and multi-platform geospatial data. 

1. INTRODUCTION
Remote sensing technologies are increasingly being utilized for 
a variety of applications. With the emergence of both passive and 
active remote sensing modalities, a diverse range of useful 
information can be derived. However, spaceborne and airborne 
remote sensing platforms do not provide reasonable 
spatial/temporal resolution at an affordable cost. Therefore, 
modern mobile mapping systems (MMS) have emerged as 
promising platforms due to developments in sensor technology 
and increasing application fields that could benefit from collected 
geospatial data. For example, the continuous developments in 
direct geo-referencing technology (i.e., integrated Global 
Navigation Satellite Systems and Inertial Navigation Systems – 
GNSS/INS) and remote sensing modalities (i.e., passive and 
active imaging sensors in the visible and infrared range) are 
providing the professional geospatial community with 
opportunities to generate accurate 3D information with a rich set 
of attributes. These advances are also coupled with 
improvements in the sensors’ performance, reduction in the 
associated cost, and miniaturization of such sensors. We are also 
enjoying the emergence of promising platforms such as uncrewed 
aerial vehicles (UAVs) and terrestrial MMS; providing near-
proximal and proximal, respectively, sensing capabilities. UAVs 
are becoming popular for small-area mapping due to their low 
cost, ease of deployment, high maneuverability, and 
advancements in georeferencing technologies and 
imaging/ranging sensors. Wheeled platforms also offer their 
unique benefits, such as long operation time, flexibility, small 
sensor-to-object distance, and reduced operational risk, making 
them a suitable alternative for certain applications. These 
advantages have facilitated the use of such platforms in various 
applications such as geometric documentation of transportation 
corridors, smart agriculture, coastal monitoring, digital forestry, 
transportation management, infrastructure monitoring, and non-
destructive archaeology. 

MMS usually carry imaging/ranging sensors like RGB, 
multispectral/hyperspectral cameras, and LiDAR units. RGB 
cameras, which are based on a frame imaging mechanism, 
capture images in three color channels and provide spectral 
information in a two-dimensional raster data structure. In 
contrast, multispectral/hyperspectral cameras might use push-
broom technology to capture 1D images with fine frequency 
bands across the spectrum. To derive 3D information, RGB 

cameras are often used in combination with Structure from 
Motion (SfM) (Westoby et al., 2012) and dense matching 
algorithms (Furukawa & Ponce, 2009) to generate dense point 
clouds. However, their performance is dependent on adequate 
overlap/side-lap among neighboring images and establishing 
sufficient matches. Multispectral/hyperspectral cameras, on the 
other hand, do not provide overlap between captured 1D images, 
making it difficult to derive 3D information. To address this 
limitation for imaging sensors, LiDAR sensors, which directly 
provide 3D points with high geometric accuracy but lack 
spectral/color information, are often integrated with RGB 
cameras to create a more complete 3D representation of the 
object space. Incorporating a digital camera and a LiDAR unit 
onboard UAVs and wheeled platforms provides more 
capabilities, which enhances the processes of feature extraction, 
scene understanding, and visualization of derived products. For 
instance, the fusion of camera and LiDAR data was adopted for 
archaeological mapping in several studies (Kadhim & Abed, 
2021; Vilbig et al., 2020). Camera/LiDAR integration was also 
used for transportation corridor documentation for road 
detection, traffic sign detection/recognition, and automated sign 
retro-reflectivity condition evaluation (Ai & Tsai, 2016; 
Caltagirone et al., 2019; L. Zhou & Deng, 2014). 

For successful integration of multi-temporal data/products from 
various sources, the positional quality be carefully addressed. 
This requires accurate calibration of the system, including the 
sensor's interior orientation parameters (IOP) and mounting 
parameters that relate the sensors to the INS' Inertial 
Measurement Unit (IMU) body frame, as well as trajectory 
information. For image/LiDAR integration, several studies have 
focused on system calibration techniques. These techniques can 
be classified into target-based and target-less approaches, 
depending on the utilized features. Target-based approaches 
utilize custom-built targets, such as planar checkerboards (Verma 
et al., 2019), while target-less approaches rely on identifying 
conjugate natural points and linear features in the scene 
(Moghadam et al., 2013). Fully-automated camera/LiDAR 
calibration frameworks have also been developed, such as 
motion-based approaches that utilize visual odometry (Schneider 
et al., 2013) or SfM (Glira et al., 2016; Zhou et al., 2021) to 
establish conjugate features between image and LiDAR data. 
These techniques might also refine trajectory information to 
achieve the best alignment between imagery and LiDAR data. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-587-2023 | © Author(s) 2023. CC BY 4.0 License. 587



 

Although considerable research has been conducted on 
integrating camera and LiDAR data, there is still a need for an in-
situ, comprehensive approach that can reduce the discrepancies 
caused by inaccurate system calibration parameters and 
trajectory artifacts. In response, this study proposes a tightly-
coupled camera/LiDAR integration workflow for GNSS/INS-
assisted UAV and wheeled remote sensing systems. The 
proposed approach – Unified Multi-Sensor Advanced 
Triangulation (UMSAT) – is designed to handle point, linear, and 
areal features from both imaging (such as frame cameras and 
push-broom scanners) and ranging modalities. By utilizing the 
position and orientation information provided by the GNSS/INS 
unit, UMSAT can accurately integrate multi-temporal 
data/products from different modalities. In this study, real 
datasets from two application domains – archaeological mapping 
and transportation corridor documentation – are utilized to 
validate the feasibility of the proposed strategy. 
 

2. ACQUISITION SYSTEMS AND DATASETS 
DESCRIPTION 

To evaluate the performance of UMSAT, a complex 
archaeological site was surveyed using camera and LiDAR units 
mounted on a UAV system. For the geometric documentation of 
transportation corridors, imagery/LiDAR data were acquired 
along a highway by UAV and wheeled systems. The following 
subsections provide details about the study sites, specifications 
of the used MMS, and acquired datasets. 
 
2.1 Dana Island Datasets 
Dana Island, which was part of ancient Rough Cilicia in southern 
Turkey, is characterized by steep slopes, dense vegetation, as 
well as the presence of numerous cisterns and burial rooms. The 
site is covered by ten flight missions (as shown in Figure 1a) for 
cistern detection purposes. An in-house developed UAV system 
was used for the data acquisition. The UAV, as shown in Figure 
1b, is equipped with a LiDAR scanner – Velodyne VLP-32C, and 
a digital camera – Sony 𝛼7R. The LiDAR unit is mounted on the 
UAV with its vertical axis parallel to the flight direction. The 
Sony 𝛼7R is a 36.4-megapixel (MP) camera. The camera, which 
is set up on the UAV while having its optical axis pointing in the 
nadir direction, is triggered at a frame period of 1.5 seconds. The 
LiDAR and camera units are directly georeferenced by an APX-
15 UAV V2 GNSS/INS unit. With an IMU data rate of 200 Hz, 
the unit provides a post-processing accuracy of 2-5 cm for 
position, 0.025° for roll/pitch angles, and 0.080° for heading 
angle under open sky conditions. Due to the isolated location of 
the island, a local Trimble base station was established for 
differential GNSS post-processing. However, obvious 
misalignment among different missions was observed when 
using the base station. Therefore, two sample datasets (hereafter 
denoted as Dana-M1 and Dana-M2), highlighted in orange in 
Figure 1a, will be used in this study to evaluate the performance 
of UMSAT. The flying height, flying speed, spatial coverage, and 
collected data of the two missions are listed in Table 1. 
 

 
(a) 

 
(b) 

Figure 1. Illustration of (a) the study site and acquired datasets 
and (b) the UAV-based MMS used for archaeological mapping. 

Dataset 
Flying 
height 

(m) 

Flying 
speed 
(m/s) 

Number of 
Collected LiDAR 

Points (in millions) 

Number of 
Captured 
Images 

Spatial 
coverage 

(ha) 
Dana-

M1 45-65 ~6.0 ~76 514 ~6.5 

Dana-
M2 30-50 ~5.8 ~87 518 ~7.8 

Table 1. Specifications of the two datasets acquired by the 
UAV system. 

 
2.2 I-65 Highway Datasets  
For the geometric documentation of transportation corridors, a 
0.5-mile segment along the I-65 highway close to Lebanon, IN, 
United States was selected as the study site, as shown in Figure 
2a. Two in-house developed wheeled MMS, Purdue wheel-based 
mobile mapping system-Ultra High Accuracy (PWMMS-UHA) 
and Purdue wheel-based mobile mapping system-High Accuracy 
(PWMMS-HA), were involved in this study. The PWMMS-
UHA, as displayed in Figure 2b, is equipped with two single-
beam LiDAR scanners: Riegl VUX 1HA and Z+F Profiler 9012. 
Two rear-facing FLIR Flea2 FireWire cameras are installed; they 
have a maximum image resolution of 5.0 MP and are 
synchronized to capture images at a frame rate of 0.75 seconds. 
All sensors are directly georeferenced by a NovAtel ProPak6 and 
ISA-100C GNSS/INS unit. The GNSS/INS post-processing 
positional accuracy is 1-2 cm with an attitude accuracy of 0.003° 
for pitch/roll and 0.004° for heading. The PWMMS-HA, as 
shown in Figure 2c, includes four multi-beam LiDAR scanners: 
three Velodyne HDL-32E and one Velodyne VLP-16 Hi-Res. 
Three FLIR Grasshopper3 9.1 MP cameras are also mounted on 
the PWMMS-HA: two forward-facing and one rear-facing. The 
cameras are synchronized to capture one frame per second per 
camera. The PWMMS-HA sensors are directly georeferenced by 
an Applanix POS LV 220 GNSS/INS unit. After post-processing, 
a positional accuracy of 2 cm with an attitude accuracy of 0.020° 
and 0.025° for the roll/pitch and heading can be achieved.  
 
In addition, an off-the-shelf UAV system – DJI M300 equipped 
with the Zenmuse L1 LiDAR sensor – is used (Figure 2d). The 
Zenmuse L1 integrates a Livox LiDAR module, a camera, and an 
IMU on a 3-axis stabilized gimbal. The UAV camera has a 1-inch 
CMOS with a 24 mm focal length and a maximum image 
resolution of 20.7 MP. The IMU unit has a measurement rate of 
200 Hz. After post-processing, the unit provides a position 
accuracy of 1.0-1.5 cm and attitude accuracy of 0.025° and 0.15° 
for pitch/roll and heading, respectively. Three datasets were 
acquired using these systems on different dates. Table 2 
summarizes the relevant information for the datasets acquired 
from the PWMMS-UHA, PWMMS-HA, and DJI UAV systems. 
 

(a) (b) 

 
(c) 
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(d) 

Figure 2. Illustrations of (a) the study site along the I-65 
highway, and used MMS including in-house developed wheeled 

systems (b) PWMMS-UHA and (c) PWMMS-HA, as well as 
(d) off-the-shelf DJI M300 UAV equipped with the Zenmuse 

L1 (adapted from DJI website). 
 

Platform Date 

Driving/
flight 
Speed 
(mph) 

Number of 
Collected 

LiDAR Points 
(in millions) 

Number of 
Captured 
Images 

PWMMS
-UHA 

2022/
12/02 ~50  ~23 52 

PWMMS
-HA 

2022/
07/10 ~50 ~63 158 

DJI 
UAV* 

2022/
08/02 ~8.5 ~85 88 

 * Above ground flying height is 70 meters. 
Table 2. Specifications of acquired datasets for the wheeled and 

UAV systems. 
 

3. METHODOLOGY 
Proper georeferencing of the involved sensors, together with 
comprehensive modeling of the point positioning equations 
relating their measurements to the respective ground coordinates, 
is the key to multi-modal geospatial data integration. The point 
positioning equations for LiDAR and imaging systems are 
established in two steps. First, the laser beam or imaging ray is 
defined relative to the sensor coordinate system based on the 
sensor measurements and IOP. For a LiDAR unit, the former 
include laser range/pointing direction while the latter denote the 
parameters describing its encoder mechanism. For a camera, 
sensor measurements refer to image coordinate measurements 
and IOP include principal point coordinates, principal distance, 
and distortion parameters. Second, the position and orientation of 
the laser beam/imaging ray relative to the mapping frame are 
established through the Exterior Orientation Parameters (EOP). 
When a GNSS/INS unit is used, the EOP are derived using the 
post-processed trajectory and mounting parameters relating these 
sensors to the corresponding IMU body frame.  
 
The point positioning models for LiDAR and frame camera units 
are illustrated in Figure 3. In this figure, 𝑟  denotes the 
position of the footprint of a laser beam, emitted at time 𝑡, relative 
to the laser unit frame; 𝑟  represents the imaging ray for point 𝑖 relative to the camera coordinate systems at time 𝑡; 𝑟  /𝑅  and 𝑟  /𝑅  represent the lever arm and boresight rotation matrix 
relating the laser unit/camera and IMU body frame coordinate 
systems, respectively; 𝑟  and 𝑅  are the position and 
orientation of the IMU body frame relative to the mapping frame 
at time 𝑡; and 𝑟  is the coordinates of object point 𝐼 in the 
mapping frame. The point positioning models are mathematically 
presented in Equations (1) and (2). The derivation of 𝑟  is 
based on the range/pointing direction measurements of the 
LiDAR unit as well as its IOP, while 𝑟  is derived from the 
image coordinates of point 𝑖 (𝑥   and 𝑦  ) and camera IOP, 
including the principal point coordinates of the used camera (𝑥   
and 𝑦  ), principal distance (𝑓), as well as distortions in the 𝑥 and 𝑦 coordinates for image point 𝑖 (𝑑𝑖𝑠𝑡  and 𝑑𝑖𝑠𝑡 ). Although the 

frame camera is used as an illustration example, the model is 
applicable to line camera, where the y coordinate is always 
constant – e.g., 𝑦   = 0 for systems with the scan line vertically 
below the camera perspective center. As mentioned in Section 1, 
while LiDAR can directly provide 3D information from a single 
beam, image-based 3D reconstruction involves an unknown scale 
factor 𝜆 𝑖, 𝑐, 𝑡 , which needs to be estimated using overlapping 
imagery. 𝑟 𝑟 𝑅 𝑟 𝑅 𝑅 𝑟  (1) 

𝑟 𝑟 𝑅 𝑟 𝜆 𝑖, 𝑐, 𝑡 𝑅 𝑅 𝑟 ,  𝑟  𝑥   𝑥  𝑑𝑖𝑠𝑡𝑦   𝑦  𝑑𝑖𝑠𝑡𝑓  
(2) 

 

 
Figure 3. Schematic diagram of point positioning principle for 
LiDAR and frame camera onboard a GNSS/INS-assisted MMS. 
 
The presented point positioning equations suggest that accurate 
system calibration parameters (including sensor IOP and 
mounting parameters) and trajectory information are critical for 
producing well-georeferenced data from LiDAR and imaging 
systems. To enhance the positional quality of collected data, a 
system-driven triangulation strategy – unified multi-sensor 
advanced triangulation (UMSAT) – is proposed. As illustrated in 
Figure 4, this framework aims to minimize discrepancies among 
conjugate features, including point, linear, and areal features, 
captured by different sensor modalities from either single or 
multiple GNSS/INS-assisted systems. The following subsections 
will first introduce the feature extraction and matching strategies 
used in the two sample applications involving imaging and 
LiDAR sensors onboard UAVs and wheeled vehicles. Then, the 
optimization framework for system calibration and trajectory 
enhancement will be presented. 
 

 
Figure 4. Schematic diagram of the functionality of the 

proposed UMSAT framework. 
 
3.1 Feature Extraction and Matching 
The success of camera/LiDAR integration is dependent on 
whether features are reliably extracted and matched among 
different modalities and systems. Since we rely on natural 
features in the study site, feature extraction and matching 
strategies vary depending on the environment in question. 
Typically, image-based object points can be established through 
SfM algorithms for cameras mounted on UAV systems with a 
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near-nadir view. As for LiDAR data, areal features are the most 
commonly used primitives. These features will be used for the 
Dana Island datasets. On the other hand, linear features might be 
available for some specific applications – e.g., lane markings and 
light poles in geospatial data covering transportation corridors. 
 
Feature extraction and matching for the Dana Island 
datasets: For each UAV dataset collected at Dana Island, the 
LiDAR point cloud is first derived using the GNSS/INS-derived 
trajectory. To extract reliable ground patches, which will be used 
as areal features, a terrain model generation strategy is used (Shin 
et al., 2023). The strategy can handle rugged terrain with sudden 
elevation change, dense vegetation cover, and/or the presence of 
underground structures while separating above-ground (AG) and 
bare-earth (BE) point clouds. Ground patches are then obtained 
from the BE point cloud through an iterative local plane fitting 
process. Given that multi-temporal LiDAR datasets have 
reasonable alignment in the planimetric direction, derived planar 
patches and corresponding inlier LiDAR observations from 
different datasets are considered conjugate features as long as 
their normal vectors have similar orientation. For imagery data, a 
GNSS/INS-assisted SfM algorithm is conducted (Hasheminasab 
et al., 2020) to derive image-based object points and 
corresponding image tie points for each dataset. To ensure the 
alignment between imagery and LiDAR data, correspondences 
between image-based object points and LiDAR areal features are 
established for each dataset. Considering that the site has dense 
vegetation cover, a point-areal feature pair is considered valid 
only if the planar patch corresponds to exposed BE points, which 
are identified based on the existence of AG points in a local 
neighborhood. The ratio of exposed/unexposed BE points in a 
local neighborhood is then used to determine exposed planar 
patches. Finally, for a given image-based object point, its closest 
planar patch is identified. A valid point-areal feature pair is 
established if the planar patch is exposed and the normal distance 
from the object point to the plane is smaller than a predefined 
threshold. The point-areal matching process is schematically 
illustrated in Figure 5. The extracted image-based object points, 
LiDAR planar patches, and correspondences between them from 
the two UAV datasets are used for the subsequent UMSAT 
processing.  
 

 
Figure 5. Illustration of identifying corresponding image-based 

object points and LiDAR planar patches. 
 
Feature extraction and matching for the I-65 highway 
datasets: For datasets acquired from UAV and wheel-based 
MMS over I-65 Highway, lane markings in the site are 
considered as linear features. Specifically, skip-lines are modeled 
as individual linear features. Edge lines, on the other hand, are 
divided into short straight-line segments, as shown in Figure 6. 
First, a geometry-based strategy (Cheng et al., 2020) is used to 
extract lane marking from the LiDAR data of each system. Then, 
considering that the initial alignment among different datasets is 
reasonable, lane markings derived from the PWMMS-UHA, 
PWMMS-HA, and DJI LiDAR data are matched according to 
their spatial proximity. For imagery data from wheeled systems, 
corresponding linear features are manually extracted through the 

back-projection of endpoints of LiDAR linear features onto the 
image space. Lane marking features mainly provide control 
information on the vertical and across driving directions as they 
are approximately parallel to each other. To have control along 
the driving direction, four light poles from LiDAR data are 
manually extracted and treated as linear features. For the imagery 
data from DJI UAV, in addition to the manually extracted linear 
features, image tie points are derived with the corresponding 
object points through an SfM strategy. 

 
Figure 6. Established lane markings (randomly colored by the 
feature ID) and four poles (colored in red) from the DJI LiDAR 
data, as well as the image-based object points (colored in gray) 

derived from the SfM processing of DJI imagery. 
 
3.2 UMSAT Optimization Framework 
This subsection starts by introducing the cost functions related to 
point, linear, and areal features. As mentioned before, imaging 
systems mainly utilize point features established from SfM 
algorithms. In UMSAT, the back-projection error serves as the 
cost function for an image-based object point 𝐼 and its 
corresponding conjugate image points. Back-projection error is 
derived from the point positioning equation by reformulating it 
into Equation (3), followed by eliminating the unknown scale 
factor, as presented in Equation (4). Based on this equation, the 
back-projection errors – i.e., the differences between the 
observed image coordinates and predicted ones using estimated 
unknowns – are minimized in the least squares adjustment (LSA) 
process. 𝑟 1𝜆 𝑖, 𝑐, 𝑡 𝑅 𝑅 𝑟 𝑟 𝑅 𝑟1𝜆 𝑖, 𝑐, 𝑡 𝑁𝑁𝐷  

(3) 

𝑥 𝑐 𝑁𝐷 𝑥 𝑑𝑖𝑠𝑡  𝑦 𝑐 𝑁𝐷 𝑦 𝑑𝑖𝑠𝑡  
(4) 

 
Linear features, which can be established from both imagery and 
LiDAR data, are represented by two endpoints 𝑃  and 𝑃 . Figure 
7 provides a schematic illustration of the optimization target 
functions related to conjugate LiDAR and image observations, 
along with the relevant quantities involved in these models. The 
first type of target function seeks to minimize the normal distance 
between the mapping coordinates of a LiDAR point 𝐼 and the 
respective linear parametric model defined by endpoints 𝑃  and 𝑃 . This constraint is mathematically described in Equation (5), 
with ‖𝑥‖ denoting the 𝐿 –norm of the vector 𝑥, 𝑟   and 𝑟   
representing the object coordinates of the two endpoints. On the 
other hand, the image target function describes the fact that the 
vector from the perspective center (PC) to an intermediate image 
point 𝑖 along the linear feature (𝑟 ) lies on the plane defined 
by the PC and endpoints of the object line (i.e., the plane defined 
by vectors 𝑟  and 𝑟 , as shown in Figure 7). This 
constraint is expressed mathematically in Equation (6), using the 
triple product of the above three vectors. In this equation, 𝑟  
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is defined by 𝑟 𝑟 , where 𝑟  represents the camera 
position relative to the mapping frame at time 𝑡 and is derived 
from trajectory information and camera mounting parameters; 
while 𝑟  is represented as 𝑅 𝑅 𝑟 . To evaluate the 
residual of this constraint following the LSA, the angle 𝛼 
between the vector 𝑟  and the plane defined by the PC and 
object line endpoints 𝑃 /𝑃  (as shown in Figure 7) is computed. 
 𝑟 𝑟 𝑟 𝑟𝑟 𝑟  0 (5) 

𝑟 𝑟 ∙ 𝑟 𝑟 𝑟 𝑅 𝑟𝑟 𝑟 𝑅 𝑟 ∙ 𝑅 𝑅 𝑟 0 
(6) 

𝐴𝑋 𝐵𝑌 𝐶𝑍 𝐷 0 (7) 

 

 
Figure 7. Schematic illustration of image/LiDAR points along 

the linear feature for the SMART system (points I and i 
represent the points along the linear feature observed by LiDAR 

and camera, respectively). 
 
Typically, areal features are solely used for LiDAR sensors as 
they do not provide redundant information for an imagery 
observation. In UMSAT, areal features are represented as planes, 
and the target function is designed to minimize the normal 
distance between the LiDAR point 𝐼 to the corresponding areal 
feature, as mathematically defined in Equation (7), with the plane 
parameters denoted as 𝐴,𝐵,𝐶,𝐷  and (𝑋 ,𝑌 ,𝑍 ) referring to the 
coordinates of LiDAR point 𝐼 in the mapping frame, 𝑟 .  

 
In addition to minimizing the residuals from the camera or 
LiDAR observation to its respective feature primitives, UMSAT 
has the capability to ensure the consistency of corresponding 
features in the object space. Specifically, taking the Dana Island 
datasets as an example, although no conjugate features could be 
derived from the two modalities, image-based object point 𝑃 and 
LiDAR-based planar patch correspondences were established. 
The alignment of imagery and LiDAR data can be guaranteed by 
minimizing the normal distance between the image-based object 
point 𝑃 and the respective parametric model of the areal feature. 
This constraint is also applicable to endpoints of a linear feature 
extracted from imagery data, assuming it rests on an areal feature 
defined by LiDAR points. 
 
The abovementioned optimization functions for camera and 
LiDAR observations involve the respective sensor's system 
calibration parameters, trajectory information at the time of 
observation, and parameters defining the object point/linear/areal 
feature. In the UMSAT, trajectory information is refined by 
estimating corrections (𝛿𝑟 /𝛿𝑅 ) to the original position and 
orientation parameters obtained from GNSS/INS post-
processing. However, it is not recommended to solve for 
trajectory corrections for every camera/LiDAR observation, as it 
may lead to over-parametrization in the LSA. Instead, since the 
platform has a relatively smooth trajectory with moderate 

dynamics, the original high-frequency trajectory is down-
sampled using a time interval 𝛥𝑇, resulting in trajectory reference 
points shown in Figure 8. The corrections to the trajectory 
parameters at a specific observation timestamp are then modeled 
as a 𝑝 -order polynomial function of the unknown corrections 
at its 𝑛 neighboring trajectory reference points, as expressed in 
Equation (8). Here, the trajectory corrections at a generic 
timestamp, 𝑇 , denoted as 𝛿𝜃 , are a function of the 
timestamps and trajectory corrections of its 𝑛 neighboring 
trajectory reference points. The down-sampling time interval, 
polynomial order, and number of neighboring trajectory 
reference points are selected based on the characteristics of the 
platform dynamics. 
 𝛿𝜃 𝑓 𝑇 ,𝑇 , … ,𝑇 , 𝛿𝜃 , … , 𝛿𝜃  (8) 

 

 
Figure 8. Down-sampled trajectory reference points (with a 

down-sampling time interval Δ𝑇) used for trajectory 
enhancement: 𝑇  to 𝑇  denote the 𝑛 neighboring trajectory 

reference points for a generic timestamp 𝑇 . 
 
To fully utilize the relative (mainly from the INS unit) and 
absolute (mainly from the GNSS unit) trajectory information 
provided by the onboard navigation units, additional constraints 
related to the trajectory reference points are adopted. The first 
constraint is the minimization of correction differences between 
successive trajectory reference points, which ensures the 
smoothness and continuity of the refined trajectory, ultimately 
the quality of intra-dataset products. Furthermore, to ensure the 
absolute accuracy of the integrated imagery and LiDAR data, the 
trajectory reference point corrections can be forced to be close to 
zero, according to the expected accuracy of the initial trajectory. 
This ensures that the refined trajectory information does not 
significantly deviate from the initial values. 
 

4. EXPERIMENTAL RESULTS 
In this section, the performance of the proposed UMSAT 
framework is qualitatively and quantitatively analyzed. Profiles 
are extracted from the LiDAR data as well as image-based object 
points from different systems and datasets for comparison. The 
accuracy of the camera geo-tagging information is further 
evaluated by back-projecting the features identified in LiDAR 
point cloud to imagery data. For quantitative evaluation, the root 
mean square (RMS) values of residuals for the camera/LiDAR 
observations to the respective object-space features are reported. 
Also, the normal distance between object-space feature pairs is 
reported if available. 
 
4.1 Dana Island Datasets 
For the in-house developed UAV system used for data 
acquisition at Dana Island, LiDAR system calibration parameters 
were derived from a rigorous system calibration and assumed to 
be errorless. In the integration process, LiDAR data from the first 
mission is used as control – i.e., trajectory from the Dana-M1 
dataset is fixed. In the LSA process, camera mounting 
parameters, trajectory information of the Dana-M2 dataset, 
coordinates of image-based object points, as well as the 
parametric models of extracted planar patches are refined. 
Considering the dynamic characteristics of the UAV system, the 
trajectory of the second dataset is modeled by a 5 HZ reference 
points with a 2nd-order polynomial. 
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Four profiles from the overlapping areas of LiDAR data and 
image-based object points are extracted, as shown in Figure 9. It 
is worth mentioning that the UAV was operated under manual 
mode in the northern part of the Dana-M2 dataset. Due to the 
limited overlap/side-lap among acquired images and the impact 
of dense vegetation, SfM could not derive image-based object 
points from that area. The alignment among camera and LiDAR 
data before and after the UMSAT optimization process are 
presented in Figure 10. By looking into the profiles before 
UMSAT, the intra-dataset alignment of camera and LiDAR is 
reasonable. However, large misalignment between the two 
datasets can be seen. By using the LiDAR data from the first 
mission as reference, camera and LiDAR data from both missions 
are well-aligned after the UMSAT throughout the overlapping 
areas, indicating that the integration process is successfully 
performed. The accuracy of the camera geo-tagging for the two 
missions is evaluated through backward projection, as shown in 
Figure 11. Three feature points are selected from the reference 
LiDAR data and back-projected onto the images (represented by 
magenta markers) from both datasets before and after UMSAT 
refinement. Similar findings can be observed from the back-
projection results, indicating that initial intra-dataset 
camera/LiDAR alignment is reasonable. 
 

 
Figure 9. Illustration of the LiDAR and image-based point 
cloud coverage from the two missions as well as the four 
profiles (represented by white lines) that will be used for 

evaluation superimposed on LiDAR data (colored by height). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Illustration of extracted profiles from the imagery 
and LiDAR point clouds from two datasets before/after the 

UMSAT refinement: (a) profile 1, (b) profile 2, (c) profile 3, 
and (d) profile 4. 

 

 
(a) 

  
(b) 

 
(c) 

Figure 11. Illustration of imagery back-projection accuracy 
before and after UMSAT refinement: selected feature point at 
(a) intersection of two walls and two cisterns in (b) and (c). 

 
As for the quantitative evaluation of UMSAT results, RMS 
values of residuals for the camera/LiDAR constraints are 
evaluated, including (i) normal distance from LiDAR points to 
the respective object-space areal feature, (ii) back-projection 
error for image tie points, and (iii) normal distance from the 
image-based object point to corresponding areal feature. Table 3 
lists the above metrics before and after the UMSAT optimization 
for the two datasets. It can be seen from this table that the initial 
misalignment in the range of 1-2 m is reduced to around 8 cm for 
the LiDAR areal features. An eight pixel back-projection error is 
achieved for the Dana-M1 dataset while the error for the Dana-
M2 dataset is smaller (around 5 pixels). This is mainly because 
the trajectory for the latter is refined in the process. In terms of 
the RMS value of normal distances for image-based object point 
and LiDAR areal feature correspondence, these two types of 
features are in good agreement in the range of 2 cm after the 
UMSAT process. 
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RMS of normal 
distances for 
LiDAR areal 
features (cm) 

RMS of back-
projection 

errors (pixel) 

RMS of normal 
distances of 
point-areal 

feature pair (cm) 
before after before after before after 

Overall 145.181 8.293 53.847 8.069 141.404 2.125 
Dana-M1 125.169 8.399 54.782 8.382 136.957 2.099 
Dana-M2 159.763 8.204 45.943 5.003 159.243 2.234 

Table 3. Quantitative evaluation of the before and after 
UMSAT optimization for the two Dana Island datasets. 

 
4.2 I-65 Highway Datasets 
For this study site, camera/LiDAR data collected by the UAV and 
wheel-based systems are integrated through the proposed 
UMSAT framework. LiDAR data acquired by DJI UAV is used 
as a reference due to the continuous access to GNSS signals 
during data acquisition. Specifically, the endpoints of linear 
features including lane markings and poles derived from the DJI 
UAV LiDAR are fixed as control information. For the wheeled 
MMS, camera/LiDAR IOP and mounting parameters have been 
established through a rigorous system calibration procedure. 
Therefore, their trajectory information will be refined through 
UMSAT using the extracted linear features. As for UAV 
imagery, only approximate geotagging information is available. 
While camera IOP were previously estimated in the SfM process, 
the EOP are estimated in UMSAT using both point and linear 
features. In this study, the trajectory of the wheeled systems is 
modeled by 1 HZ reference points with a 2nd-order polynomial. 
For the UAV images, we only solve for position/orientation 
corrections at their locations (i.e., a zero-order polynomial is used 
where a reference point is defined for each image). 
 
To evaluate the performance of UMSAT, a profile perpendicular 
to the driving direction is extracted from the DJI UAV, 
PWMMS-UHA, and PWMMS-HA LiDAR data as well as the 
image-based point cloud from the DJI UAV camera, as shown in 
Figure 12. From the zoom-in window of the road and concrete 
traffic barrier, we can observe that the misalignment in the across 
driving and Z directions of multi-system LiDAR data is 
significantly reduced after the integration process. In addition, 
the close-up views of the light pole in the profile demonstrate the 
good alignment along the driving direction. As for the image-
based point cloud, it is in agreement with the LiDAR data after 
the UMSAT refinement. After analyzing the agreement of 
camera and LiDAR in the object space, the camera geo-tagging 
accuracy is further assessed by back-projecting a point belonging 
to the top of a sign frame from the reference UAV LiDAR data 
onto imagery from all systems. As illustrated in Figure 13, 
reasonable back-projection accuracy is achieved for the datasets 
acquired from different dates. 
 

 
Figure 12. Illustration of extracted profile from the LiDAR data 

of all systems as well as image-based point cloud from DJI 
UAV imagery before/after the UMSAT optimization. 

 
(a) 

 
(b) 

Figure 13. Illustration of imagery back-projection accuracy (a) 
before and (b) after UMSAT refinement. 

 
As for the quantitative evaluation of UMSAT results, RMS 
values of (i) normal distance from LiDAR points to the respective 
object-space linear feature, (ii) α angle between the imaging ray 
for an intermediate point and the respective plane defined by the 
linear feature, and (iii) back-projection error for image tie points 
are evaluated. Table 4 lists these values before and after the 
UMSAT optimization for the DJI UAV, PWMMS-UHA, and 
PWMMS-HA datasets. For linear features, the initial 
misalignment is around 1.3 m for LiDAR data. Through the 
UMSAT process, this value decreases to 6-8 cm for the wheeled 
systems. In terms of image linear features, the RMS value of the 
α angle is within 0.25° after the optimization. Moreover, a 1.3 
pixel back-projection error is achieved for the DJI UAV camera 
data. In summary, qualitative and quantitative analysis suggests 
that the multi-temporal camera and LiDAR data are well-aligned 
through the proposed integration process. 
 

 

RMS of normal 
distances for 
LiDAR linear 
features (cm) 

RMS of α 
angles for 

image linear 
features (°) 

RMS of back-
projection errors 

(pixel) 

before after before after before after 
Overall 126.200 6.921 3.250 0.188 6.872 1.319 

PWMMS
–UHA 130.655 6.530 3.716 0.247 N/A N/A 

PWMMS
–HA 122.169 7.246 5.249 0.220 N/A N/A 

DJI UAV 
Camera N/A N/A 0.915 0.140 6.872 1.319 

Table 4. Quantitative evaluation of the before and after 
UMSAT optimization for the I-65 highway datasets. 

 
5. CONCLUSIONS 

In this paper, a tightly-coupled camera/LiDAR integration 
workflow – unified multi-sensor advanced triangulation 
(UMSAT) – is proposed. This strategy can incorporate 
point/linear/areal features derived from imaging and ranging 
remote sensing systems, as well as trajectory information 
provided by GNSS/INS units. By minimizing discrepancies 
among conjugate features captured by different sensor modalities 
from either single or multiple systems, system calibration 
parameters and trajectory information are refined to ensure high 
positional quality of the derived camera and LiDAR 
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data/products. The proposed UMSAT framework is evaluated 
using camera/LiDAR data from two sample applications, namely 
archaeological mapping and transportation corridor 
documentation. The experimental results demonstrate that 
UMSAT can successfully align multi-temporal, multi-sensor, 
and multi-platform geospatial data in both cases, which is critical 
for future activities that require the fusion of camera/LiDAR data. 
The limitation of the proposed integration strategy is that 
GNSS/INS information is loosely-coupled within the process – 
i.e., GNSS/INS raw measurements are not included in the BA 
procedure. Therefore, future work will focus on developing a 
tightly-coupled GNSS/INS/camera/LiDAR integration process. 
Additionally, the study will explore automated feature extraction 
and matching procedures in different environments. Lastly, the 
feasibility of utilizing UMSAT in GNSS-challenging and 
potentially GNSS-denied environments will also be investigated. 
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