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ABSTRACT: 

 

Using remote sensing modalities for forest inventory has gained increasing attention in the last few decades. However, tools for deriving 

accurate tree-level metrics are limited. This paper investigates the feasibility of using LiDAR units onboard uncrewed aerial vehicle 

(UAV) and Backpack mobile mapping systems (MMS) equipped with an integrated Global Navigation Satellite System/Inertial 

Navigation System (GNSS/INS) to provide high quality point clouds for accurate, high-resolution forest inventory. To improve the 

quality of acquired point clouds, a system-driven strategy for mounting parameters refinement and trajectory enhancement using terrain 

patches and tree trunks is proposed. To evaluate the performance of the proposed strategy, two UAV and one Backpack datasets 

covering a forest plantation are used in this study. Through sequential system calibration and trajectory enhancement, the spatial 

accuracy of the UAV point clouds improves from 20 cm to 5 cm. For the Backpack dataset, when the initial trajectory is of reasonable 

accuracy, conducting trajectory enhancement significantly improves the alignment of the point cloud from 30 cm to 3cm. For a lower-

quality trajectory, using the UAV data as a reference, the misalignment is reduced from 1 m to 3 cm. 

 

 

1. INTRODUCTION 

Traditional method for forest inventory is labour intensive, 

expensive, and time-consuming. Advances in algorithmic 

technology and remote sensing capabilities using LiDAR and 

photogrammetry based on aerial and terrestrial platforms have 

recently been explored as alternatives for automated tree-level 

inventory at various scales. These sensors/platforms have trade-

offs in terms of cost, spatial coverage, spatial resolution, field 

survey efficiency, and level of detail of the acquired information 

(Beland et al., 2019; Kelly and Tommaso, 2015). 

 

Manned airborne platforms, which have a large spatial coverage, 

have been explored in forestry research for estimating inventory 

attributes such as tree/canopy height, stem map/volume, and 

basal area, using imagery and LiDAR data (White et al., 2016). 

On the other hand, uncrewed aerial vehicles (UAVs) have the 

advantage of low cost, ease of deployment, rapid data 

acquisition, and ability to deliver fine resolution product at a 

higher frequency of field surveys. Several studies have used 

UAV imagery and LiDAR data to derive forest biometrics, 

including tree/canopy height, diameter at breast height (DBH), 

and above-ground biomass (Goodbody et al., 2019; 

Khosravipour et al., 2014). Another popular mean for 

determining various inventory attributes is by using terrestrial 

mapping platforms, including terrestrial laser scanner (TLS) and 

mobile ground LiDAR (UAV or backpack-mounted systems). 

These systems have the advantage of capturing below-canopy 

information (Barbeito et al., 2017; Su et al., 2020). Both the TLS 

and mobile ground LiDAR have been used to generate stem map, 

estimate DBH, and segment tree crown. Nevertheless, these 

platforms have their own challenges. TLS data acquisitions are 

complex and processing large datasets can be time-consuming. 

Most of the mobile ground platforms are equipped with 

GNSS/INS sensors crucial for deriving accurately georeferenced 

mapping products from the onboard sensors. Their main 

 
* Corresponding author 

challenge is the limited GNSS signal reception under tree canopy 

that impacts the quality of resulting mapping products. 

 

Several studies have proposed methods to tackle mapping in 

GNSS challenging environments. One of those popular 

approaches is by enhancing platform trajectory using well-

defined geometric features identified and extracted from 

successive LiDAR frames for odometry and trajectory 

optimization (Chiella et al., 2019; Kukko et al., 2017; Qian et al., 

2017). Results from these approaches have shown a significant 

improvement in the accuracy of estimated metrics, e.g., DBH, 

tree height, and trunk locations. However, research on improving 

the quality of mapping products from mobile terrestrial remote 

sensing systems still lacks in terms of (a) partially refining 

positional or attitude information, (b) inability to adjust LiDAR 

mounting parameters, (c) requiring extensive pre-processing for 

deriving suitable features for trajectory enhancement, (d) not 

taking full advantage of onboard IMUs, (e) limiting the range of 

acquired data to few meters, (f) not providing georeferenced 

products that could aid tracking of forest growth from temporal 

data acquisitions, and (g) being quite complex for scalable 

implementation. 

 

In response to the above-stated limitations of the state-of-the-art 

techniques, this study proposes a system-driven framework 

capable of conducting system calibration and trajectory 

enhancement for LiDAR units mounted on mobile LiDAR 

systems (UAV or Backpack) to generate accurate point clouds 

for forest inventory. By minimizing discrepancies among 

features captured from different timestamps/tracks and different 

systems while considering both absolute and relative 

positional/rotational information provided by the GNSS/INS-

based trajectory, system calibration parameters and trajectory 

information are refined through a non-linear least squares 

adjustment (LSA) process. The remainder of this paper is 

structured as follows: Section 2 introduces the UAV/Backpack 
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MMS followed by a description of the datasets used in this study; 

Section 3 proposes a system-driven strategy for system 

calibration and trajectory enhancement utilizing terrain patches 

and tree trunks extracted from LiDAR point clouds; Section 4 

presents preliminary results based on the proposed approach 

using UAV and Backpack datasets; Finally, Section 5 

summarizes the findings of the research presented in this paper 

along with recommendations for future work. 

 

2. ACQUISITION SYSTEMS AND DATASETS 

DESCRIPTION 

Three datasets were acquired for this study over a forest 

plantation using two UAV and one Backpack MMS. These 

systems were developed by the Digital Photogrammetry 

Research Group at Purdue University. The details of the mapping 

systems and acquired datasets are described below. 

 

2.1 UAV and Backpack MMS 

Two UAV systems were used in this study, denoted as UAV-1 

and UAV-2. The UAV-1 system (as shown in Figure 1a) consists 

of a Velodyne VLP-32C LiDAR and a Sony α7R III camera. The 

payload of the UAV-2 system is the same as UAV-1 except for its 

camera, which is a Sony α7R camera. The rotation axes of the 

LiDAR units on both UAV systems are set to be approximately 

parallel to the flying direction. For both systems, the LiDAR data 

is directly georeferenced through an Applanix APX15 v3 

GNSS/INS unit. The unit, with an IMU data rate of 200 Hz, 

provides a post-processing accuracy of 2–5 cm for position, 

0.025° for roll/pitch angles, and 0.080° for heading angle under 

open sky conditions. The Backpack MMS (as shown in Figure 

1b) comprises a Velodyne VLP-16 Hi-Res LiDAR and a Sony 

α7R II camera. A Novatel SPAN-CPT GNSS/INS is used for 

direct georeferencing of the LiDAR data. For this unit, the IMU 

data rate is 100 Hz, and it provides a post-processing accuracy of 

1–2 cm for position, 0.008° for roll/pitch angles, and 0.026° for 

heading angle under open sky conditions. 

 
(a) 

 
(b) 

Figure 1. The mobile mapping systems and onboard sensors used 

in this study: (a) UAV-1 system and (b) Backpack system. 

The UAV and Backpack MMS have undergone a rigorous 

system calibration to estimate the mounting parameters – lever 

arm and boresight angles – relating onboard LiDAR sensors to 

the GNSS/INS unit (Ravi et al., 2018a). The expected accuracy 

of the point cloud following the system calibration was estimated 

based on the individual sensor specifications using a LiDAR 

Error Propagation Calculator (Habib et al., 2006); for the UAV 

MMS flying at a height of 50 m, the calculator suggests 

horizontal and vertical accuracy values in the 5–6 cm range at the 

nadir position. At the edge of the swath, the horizontal accuracy 

would be about 8–9 cm and the vertical accuracy would still be 

in the 5–6 cm range. For the Backpack system, the calculator 

suggests an accuracy of 3 cm at a range of 50 m. 

 

2.2 Study Site and Dataset Description 

The study site used for this research is a forest plantation (Plot 

115 shown in Figure 2) located at Martell Forest, a research forest 

owned and managed by Purdue University, in West Lafayette, 

IN, USA. The plot follows a grid pattern consisting of 22 rows 

with 50 trees in each row. The total number of trees varied over 

time because of a tree thinning activity. In 2021, there were 

reportedly 1080 trees whereas by March 2022, 410 trees were cut 

down. 

 

Figure 2. Study site at Martell Forest (Plot 115) consisting of 22 

rows with 50 trees per row (aerial photo adapted from a Google 

Earth Image) 

A total of three LiDAR datasets were acquired at the study site 

on different dates, as listed in Table 1. Two UAV datasets, one 

from each platform, were collected under leaf-off conditions to 

capture the highest possible under-canopy details. On the other 

hand, one Backpack dataset was acquired under leaf-on 

condition, representing GNSS/INS challenged environment. It is 

important to mention that the UAV-2022 dataset had fewer trees 

due to tree-thinning activities prior to this data collection. Figure 

3 shows the top view of the two UAV flight trajectories. Figure 

4 shows a sample tree from the two UAV datasets where LiDAR 

points with large range measurements come from flight lines 

with large planimetric distances to this tree. The difference in 

noise level between UAV-2021 and UAV-2022 point clouds, 

particularly in the X direction (along-flight direction), is much 

higher compared to that in the Y direction (across-flight 

direction). This indicates that the mounting parameters of the 

UAV-2 system are out-of-date (assuming the GNSS/INS 

trajectory is accurate). 

Dataset Platform Date 
Leaf 

condition 

Flying 

height (m) 

Flying 

speed (m/s) 

Lateral 

distance (m) 

Number 

of tracks 

UAV-2021 UAV-1 March 13, 2021 Leaf-off 40 3.5 11 12 

UAV-2022 UAV-2 March 3, 2022 Leaf-off 40 3.5 13 10 

BP-2021 Backpack August 5, 2021 Leaf-on - - - 22 

Table 1. Field datasets used in this study.
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Figure 3. Top view of the flight trajectory for the two UAV 

datasets overlaid on the point cloud (coloured by height) captured 

in the UAV-2021 dataset. 

 

  
 

(a) (b) 

Figure 4. A sample tree (colored by LiDAR range) in the UAV-

2021 and UAV-2022 datasets viewed from (a) X-Z and (b) Y-Z 

planes. 

To evaluate the performance of the proposed approach on the 

Backpack dataset, two trajectories with different quality levels 

were derived from GNSS/INS post-processing. The first one, 

denoted as original trajectory, was generated using all available 

GNSS satellites where the trajectory is assumed to have 

reasonable accuracy. From the trajectory quality report, the 

largest expected standard deviation was 0.4 m for the Z 

coordinate and 0.04° for the heading angle. To simulate a further 

degraded trajectory quality from GNSS signal outages, a second 

trajectory was generated by removing 5 satellite observations 

between the 4th and 19th tracks. In this case, the largest standard 

deviation was reported to be 1.2 m for the Z coordinate and 0.05° 

for the heading angle. Figure 5 shows the two Backpack 

trajectories generated based on the above description. One can 

clearly see the difference between the two versions. 

 

Figure 5. Original and lower-quality Backpack trajectories 

(for the BP-2021 dataset) overlaid on the point cloud (colored 

by height) captured in the UAV-2021 dataset. 

Figure 6 illustrates the impact of GNSS signal outages on the 

quality of Backpack point cloud. A small region of interest (ROI) 

in the middle portion of row 13 (from the west) within the forest 

plantation is reconstructed using the original Backpack 

trajectory. A misalignment of about 1.7 m in horizontal direction 

and 1.2 m in vertical direction is observed in the point cloud. A 

significantly worse misalignment is expected from the lower-

quality trajectory. It is worth mentioning that, for the Backpack 

system, the impact of potentially erroneous mounting parameters 

on the resulting 3D coordinates of LiDAR points is negligible 

compared to that by inaccurate trajectory given the short sensor-

to-object distance. Therefore, the objective of the conducted 

experiments for the BP-2021 dataset is trajectory enhancement 

while the mounting parameters are assumed errorless. 

 

 
Figure 6. Side view of a profile from the BP-2021 dataset 

(colored by time) generated from the original trajectory for 

qualitative evaluation of the level of misalignment. 

3. SYSTEM CALIBRATION AND TRAJECTORY 

ENHANCEMENT STRATEGY 

This section describes the proposed system-driven approach for 

system calibration and trajectory enhancement that can mitigate 

misalignments within the point cloud caused by inaccurate 

LiDAR mounting parameters and/or GNSS signal outages. The 

strategy is based on the hypothesis that any inaccuracy related to 

mounting parameters and platform trajectory would manifest in 

point clouds as misalignment among conjugate features, as 

shown earlier in Figure 4 and Figure 6. The framework of the 

proposed approach is summarized in Figure 7, which mainly 

comprises two parts. Part 1 focuses on extracting and matching 

planar and cylindrical features, whereas Part 2 covers the 

optimization framework for system calibration and trajectory 

enhancement. A brief description of each of the processing steps 

is presented below. 

 

 
Figure 7. Proposed framework for system calibration and 

trajectory enhancement utilizing terrain patches and tree trunks. 

3.1 Feature Extraction and Matching 

It is assumed that UAV trajectories are of good quality given the 

platform’s continuous access to GNSS signals. This assumption 

allows for using a combined point cloud from all tracks for 

reliable feature extraction. On the other hand, in the case of 

Backpack dataset, the assumption of a reasonably accurate point 

cloud for feature extraction is confined only to individual tracks. 

Based on these assumptions, point clouds either from the entire 

UAV dataset or from individual Backpack tracks are 
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reconstructed using the original GNSS/INS trajectory and 

LiDAR mounting parameters. Thereafter, a ground filtering 

algorithm based on adaptive cloth simulation approach (Lin et al., 

2021b) is applied to generate a digital terrain model (DTM) and 

separate bare-earth (BE) points from above-ground (AG) ones 

based on certain height threshold (e.g., 0.5 m). The AG and BE 

points are respectively used for conducting extraction/matching 

of individual tree trunks and terrain patches. 

 

Terrain patch extraction and matching for vertical control: 

With the assumption that ground within a local neighbourhood 

can be approximated as a plane, terrain patches, which are 

extracted from BE points and matched among individual tracks 

and/or different datasets, are used as planar features to provide 

vertical control for system calibration and trajectory 

enhancement. The process starts by generating regularly spaced 

2D seed points over the ROI where the Z coordinates are derived 

from the DTM. Through a local neighbourhood search and 

iterative plane-fitting, segmented points and parameters defining 

respective plane models are derived. Figure 8 visualizes sample 

terrain patches extracted from one track of the BP-2021 dataset. 

Once terrain patches from different point clouds are extracted, 

features are matched if they are extracted from the same seed 

point and if the angle between their normal vector is smaller than 

a user-defined threshold.  

 

 
Figure 8. Sample planar features (terrain patches) extracted from 

the point cloud (colored by time). 

Tree trunk extraction and matching for horizontal control: 

Tree trunks are defined as cylindrical features to provide 

horizontal control. For tree trunk extraction, a lower portion of 

the AG points are isolated based on user-defined minimum and 

maximum height thresholds of ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 (e.g., 1.5 m and 

3.5 m) above the DTM, as shown in Figure 9. Thereafter, a tree 

detection and localization approach is used to identify individual 

tree trunk in the hypothesized trunk portion (Lin et al., 2021a). 

Once the planimetric locations of individual tree trunks are 

known, seed points corresponding to the trunk portion are defined 

at a user-specified height Δ𝑍  above the DTM, where Δ𝑍  is 

chosen somewhere between the minimum and maximum height 

thresholds. Through a dimensionality-based analysis (Demantké 

et al., 2012) and an iterative model-fitting, a cylinder feature is 

identified. Finally, a region-growing is performed to augment 

neighbouring points that belong to the current feature evaluated 

based on whether their normal distances from the fitted cylinder 

are smaller than a factor of the root-mean-square (RMS) of fitting 

error. Figure 9 shows sample tree trunks extracted from an 

individual track of the BP-2021 dataset. Once tree trunks from all 

point clouds have been extracted, conjugate features are matched 

if the planimetric distance between two seed points is less than a 

distance threshold (e.g., 1 m) and the angle between cylinders’ 

axes is smaller than an angle threshold (e.g., 10°). 

 
Figure 9. Minimum and maximum height thresholds used for 

tree trunk extraction and sample cylindrical features (tree trunks 

in red) extracted from the point cloud. 

3.2 Optimization Framework for System Calibration and 

Trajectory Enhancement 

The planar/cylindrical features extracted and matched from 

single or multiple datasets are used to refine system calibration 

parameters and enhance the quality of GNSS/INS trajectory. 

Conceptually, the proposed optimization framework aims at 

minimizing the normal distance between LiDAR points and the 

respective parametric models for planar/cylindrical features 

through a non-linear LSA. The basis of this optimization is the 

point positioning equation. Accordingly, for any LiDAR point 𝐼 

captured at time 𝑡, its coordinates in the mapping frame, 𝑟𝐼
𝑚(𝑡), 

is a function of the coordinates of the point in laser unit frame, 

𝑟𝐼
𝑙𝑢(𝑡)

, derived from raw measurements at their firing time, 

trajectory position and orientation parameters at the 

corresponding time (𝑟𝑏(𝑡)
𝑚 , 𝑅𝑏(𝑡)

𝑚 ) , and LiDAR mounting 

parameters which includes lever arm and boresight angles  

(𝑟𝑙𝑢
𝑏 , 𝑅𝑙𝑢

𝑏 ). The mathematical model is symbolically expressed by 

Equation (1). Subsequently, the corrected coordinates of the same 

LiDAR point after system calibration and trajectory enhancement 

will depend on the refined mounting parameters 

(𝑟𝑙𝑢
𝑏 (refined), 𝑅𝑙𝑢

𝑏 (refined)), and estimated corrections to the 

trajectory position/orientation parameters (𝛿𝑟𝑏(𝑡)
𝑚 , 𝛿𝑅𝑏(𝑡)

𝑚 ) , as 

expressed in Equation (2). 

 

𝑟𝐼
𝑚(𝑡) = 𝑓 (𝑟𝑏(𝑡)

𝑚 , 𝑅𝑏(𝑡)
𝑚 , 𝑟𝑙𝑢

𝑏 , 𝑅𝑙𝑢
𝑏 , 𝑟𝐼

𝑙𝑢(𝑡)
) (1) 

  

𝑟𝐼
𝑚(𝑡)corrected = 𝑓 (

𝑟𝑏(𝑡)
𝑚 , 𝛿𝑟𝑏(𝑡)

𝑚 , 𝑅𝑏(𝑡)
𝑚 , 𝛿𝑅𝑏(𝑡)

𝑚 ,                  

   𝑟𝑙𝑢
𝑏 (refined), 𝑅𝑙𝑢

𝑏 (refined), 𝑟𝐼
𝑙𝑢(𝑡)) (2) 

 

It is worth noting that solving the trajectory corrections at every 

timestamp of the observations is impractical as that would lead 

to over-parametrization in the LSA. Since the platform dynamics 

are moderate, the original high frequency trajectory (typically 

100-200 Hz) is down-sampled to a user-defined rate, where the 

down-sampled trajectory points are denoted as trajectory 

reference points. The corrections to the trajectory parameters at a 

specific laser beam firing timestamp are then modelled as 𝑝𝑡ℎ-

order polynomial functions of estimated corrections for their 𝑛 

neighboring trajectory reference points. 

 

The mathematical model of the proposed LSA comprises two sets 

of constraints. The first set of constraints aims at minimizing the 

normal distance of each LiDAR point from the parametric model 

of its corresponding planar/cylindrical feature. The second set of 

constraint equations is introduced to minimize the change in 

position and orientation parameters for each trajectory reference 

point as well as the change in the distance traversed between two 

consecutive trajectory reference points depending on the standard 
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deviation reported by the GNSS/INS post-processing. It is worth 

mentioning that due to the potential correlation between the 

LiDAR mounting parameters and trajectory corrections, 

conducting a simultaneous optimization could lead to inaccurate 

estimation of the involved parameters. Thus, at a time, only one 

set of parameters is estimated while fixing the other. Ultimately, 

the LSA for system calibration and trajectory enhancement is 

conducted iteratively until the change in the RMS normal 

distance from LiDAR points to corresponding features becomes 

less than a pre-defined threshold. 

 

4. EXPERIMENTAL RESULTS 

This section presents experimental results to evaluate the 

performance of the proposed system calibration and trajectory 

enhancement strategy in terms of the improvement in the 

alignment of UAV and Backpack MMS points clouds. For all 

three datasets, the radius of terrain patches was set to 1 m. On the 

other hand, the minimum/maximum height thresholds for tree 

trunks were set to 0.5 m/2.5 m for UAV-2021/BP-2021 datasets 

and 1.5 m/3.5 m for UAV-2022 dataset. The reason behind this 

difference was the existing debris from tree thinning activity in 

the UAV-2022 dataset. Table 2 lists the count of extracted 

features from each of the three datasets. The fewer tree trunks in 

the UAV-2022 dataset are due to the thinning activity as 

mentioned above. For the Backpack dataset, the large 

misalignments in the point cloud required manual quality control 

to ensure the accuracy of tree trunk matching. Since a part of this 

study aims at investigating the impact of integrating UAV and 

Backpack point clouds, features from the BP-2021 and UAV-

2021 datasets were matched, resulting in 3,041 and 817 terrain 

patches and tree trunks, respectively. 

Dataset 
Cylindrical feature  

(Tree trunks) 

Planar feature  

(Terrain patches) 

UAV-2021 843 

3,248 UAV-2022 540 

BP-2021 929 

Table 2. Number of the planar/cylindrical features extracted 

from the three datasets. 

For conducting trajectory enhancement, the trajectory reference 

points were established at a frequency of 1 Hz (down-sampled 

from 200 Hz and 100 Hz for UAV and Backpack systems, 

respectively). Finally, the performance of the proposed approach 

was evaluated based on:  

a) Estimated trajectory corrections: This is reported using 

statistical measures (mean, STD, RMS, and magnitude) of 

the corrections. 

b) Relative accuracy of derived point clouds: The relative 

accuracy is qualitatively assessed by checking the alignment 

of point clouds. Quantitative assessment includes statistical 

measures of normal distances between LiDAR point and 

corresponding best-fitting plane/cylinder model before and 

after trajectory refinement. 

c) Absolute accuracy of derived point clouds: Results from 

UAV datasets are used as a reference to analyse the absolute 

accuracy of Backpack point clouds after trajectory 

refinement. 

 

4.1 System Calibration and Trajectory Enhancement for 

UAV Datasets 

In this study, system calibration and trajectory enhancement were 

conducted sequentially on each UAV dataset to avoid any 

potential correlations among their parameters. At first, 

corrections to trajectory reference points were set to zero and 

fixed while estimating the system calibration parameters in the 

LSA. The 𝑍 lever arm component was also fixed in this process, 

as estimating it requires additional vertical control, which is not 

available for these datasets (Ravi et al., 2018b). The initial and 

refined system calibration parameters, along with their STD 

values, are presented in Table 3, where one can notice that the 

STD values are small. Subsequently, in the second LSA, the 

refined mounting parameters are fixed and then the trajectory 

corrections are estimated. Figure 10 shows the improvement in 

point cloud quality after each LSA process, where the initial point 

cloud of a sample tree (in red) is slightly improved after using the 

refined mounting parameter (in blue). However, the 

misalignment still exists, and only after the trajectory 

enhancement, the alignment is seen to improve significantly in 

both X and Y directions. The improvement in trajectory is 

statistically measured based on the RMS of differences between 

initial and refined position and orientation parameters for the 

UAV datasets. Accordingly, the RMS values for position 

parameters are in the range of 2 – 4 cm. Among the orientation 

parameters, RMS values for Δ𝜔 and Δ𝜙 are in the range of 0.03° 
– 0.06°. On the other hand, the heading angle, Δ𝜅, has a larger 

RMS value of around 0.15° . This large heading correction, 

whose impact is along the flying direction (X coordinate), 

explains the worse alignment along the X direction before 

trajectory enhancement, as observed earlier in Figure 10. 

 

For a quantitative evaluation of the performance of the proposed 

system calibration and trajectory enhancement, Table 4 reports 

the mean, STD, and RMS values of normal distances between the 

LiDAR feature points and their corresponding best-fitting 

plane/cylinder before and after the two-step LSA. Based on the 

RMS of normal distances, one can notice major improvements in 

the alignment of tree trunks after the two-step LSA for both UAV 

datasets. The smaller RMS value associated with cylindrical 

features for the UAV-2021 dataset compared to that for UAV-

2022 is due to the larger height range used for the extraction of 

tree trunk features in the latter to avoid the inclusion of woody 

debris. This resulted in the extraction of tree branches mistakenly 

which increased the point-to-cylindrical feature normal distance.

 
Mounting 

Parameters 
Δ𝜔(°) Δ𝜙(°) Δ𝜅(°) Δ𝑋(𝑚) Δ𝑌(𝑚) ΔZ(𝑚) 

UAV-2021 

Initial 0.499 -0.132 -0.092 -0.140 0.036 0.000 

Refined 
0.466 

±0.001 

-0.249 

±0.002 

-0.193 

±0.003 

-0.133 

±0.001 

0.042 

±0.001 
N\A 

UAV-2022 

Initial 1.261 -0.276 0.129 -0.115 0.022 0.100 

Refined 
1.202 

±0.001 

-0.295 

±0.002 

-0.139 

±0.003 

-0.095 

±0.001 

0.010 

±0.001 
N\A 

Table 3. Initial and refined mounting parameters using the proposed system calibration approach for the UAV-2021 and UAV-2022 

datasets.
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(a) (b) (c) (d) 

Figure 10. A sample tree in the original point clouds (in red), point clouds after system calibration (in blue), as well as point clouds 

after conducting system calibration and trajectory enhancement (in green): UAV-2021 dataset views along (a) X-Z and (b) Y-Z planes, 

as well as UAV-2022 dataset views along (c) X-Z and (d) Y-Z planes. 

Dataset 
Point-to-feature 

Normal Distance 

# points 

(thousands) 

Before LSA After LSA 

Mean (m) STD (m) RMS (m) Mean (m) STD (m) RMS (m) 

UAV-

2021 

Planar Features 10,313 0.036 0.037 0.052 0.032 0.033 0.046 

Cylindrical Features 412 0.107 0.106 0.151 0.048 0.053 0.072 

UAV-

2022 

Planar Features 10,698 0.056 0.054 0.078 0.038 0.041 0.056 

Cylindrical Features 310 0.181 0.147 0.233 0.061 0.076 0.097 

Table 4. Quantitative evaluation of point cloud alignment before and after sequential system calibration and trajectory enhancement 

for the UAV datasets.

Whereas the above evaluation was focused on the relative 

accuracy of each UAV dataset, the absolute accuracy of the point 

clouds after the proposed system calibration and trajectory 

enhancement is validated by analysing the alignment of point 

clouds from different UAV datasets. For the qualitative 

evaluation of the point cloud, Figure 11 shows a sample tree from 

the two UAV datasets after their sequential system calibration 

and trajectory enhancement. From the figure, it can be clearly 

seen that the tree trunks and branches are well-aligned in both X 

and Y directions. The slight misalignment in the Z direction is 

mainly because of the Z lever arm components of the two UAV 

systems that were derived through manual measurement and 

fixed in the LSA. Table 5 presents the quantitative evaluation of 

the point cloud alignment based on the extracted features. The 

mean, STD, and RMS values of the X and Y coordinate 

differences as well as the planimetric distances between tree 

locations indicate that the tree locations are in agreement with an 

accuracy of 0.1 m. The shift in the vertical direction is consistent 

with the Z discrepancy observed in Figure 11. Based on the 

results, hereafter, the UAV-2021 dataset is used to evaluate the 

absolute accuracy of the Backpack point cloud, which will be 

discussed in the subsequent section. 

 

Figure 11. A sample tree from the point clouds after 

sequential system calibration and trajectory enhancement for 

the UAV-2021 (in blue) and UAV-2022 (in green) datasets 

along the X-Z and Y-Z planes. 

4.2 Trajectory Enhancement Results for Backpack Dataset 

For the BP-2021 dataset, two tests were conducted to evaluate the 

performance of the proposed trajectory enhancement approach: 

• Test 1: Trajectory enhancement using original trajectory with 

frequent access to open sky at the beginning and end of each 

track, and 

• Test 2: Trajectory enhancement using lower-quality trajectory 

aided by the UAV-2021 dataset. To be specific, LiDAR 

features from both the Backpack and UAV datasets were 

simultaneously included in the LSA. For the UAV-2021 dataset, 

its refined mounting parameters and enhanced trajectory were 

treated as errorless. 

First, the relative accuracy of the Backpack point clouds from the 

two tests is evaluated. Figure 12 shows a profile from the BP-

2021 dataset after trajectory enhancement for the two conducted 

tests. One can notice a significant improvement in tree trunk 

alignment when compared to the point clouds derived using the 

original trajectory (as shown in Figure 6). Results from Test 2, 

where the Backpack dataset is aided by the UAV dataset, show 

that even with the low-quality trajectory, the resulting point cloud 

can reach the same quality as in Test 1. The RMS of differences 

between initial and refined position parameters for Tests 1 and 2 

have respective ranges of 0.19 – 0.26 m and 0.26 – 1.1 m, which 

indicates that Test 2 needed relatively severe corrections. Among 

the orientation parameters, RMS values for Δ𝜔 and Δ𝜙 are in the 

range of 0.005° – 0.03° and 0.03° – 0.07° for respective tests. 

For Δ𝜅, i.e., the heading parameter, RMS values are 0.12° and 

0.35° , respectively for Tests 1 and 2, which suggests higher 

corrections in the case of latter. For further quantitative 

evaluation, Table 6 reports the mean, STD, and RMS values of 

normal distance of the LiDAR points to their corresponding best-

fitting plane/cylinder before and after the LSA process for the 

two tests. The RMS values after trajectory enhancement for both 
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Tests 1 and 2 are under 4 cm and 3 cm for planar and cylindrical 

features, respectively. This means that with the help of UAV 

point clouds, the adjustment process achieved an overall high 

relative accuracy using the low-quality Backpack trajectory. 

 

  
(a) (b) 

Figure 12. Side view of a profile from the BP-2021 dataset 

(coloured by time) after trajectory enhancement depicting the 

alignment quality for (a) Test 1 and (b) Test 2. 

 

The absolute accuracy of the Backpack point cloud after 

trajectory enhancement is evaluated through a comparison with 

the refined point cloud from the UAV-2021 dataset. Figure 13 

shows a sample tree after Tests 1 and 2 on the Backpack dataset 

overlaid with the refined UAV point cloud. From the figure, one 

can see that the tree trunks from all three datasets are in good 

agreement in both X and Y directions. For the vertical direction, 

Test 2 shows slightly better alignment with the UAV-2021 point 

cloud. Table 7 reports the Z differences between the terrain 

patches as well as X/Y differences and planimetric distances 

between estimated tree locations from the BP-2021 and UAV-

2021 datasets. With the inclusion of UAV point cloud, Test 2 

achieved a better vertical accuracy than Test 1. The comparison 

of tree trunks reveals that the tree locations are in agreement with 

an accuracy of 0.1 m for both tests. 

  
(a) (b) 

Figure 13. A sample tree in the Backpack point clouds after 

trajectory enhancement overlaid with the refined point cloud in 

the UAV-2021 dataset (in red) along the X-Z and Y-Z planes: (a) 

Test 1 and (b) Test 2. 

 

 Comparison 
Statistics 

Measures 

Terrain Patches (3,248 features) Tree Trunks (494 features) 

𝑑𝑍(m) 𝑑𝑋(m) 𝑑𝑌(m) Planimetric Distance (m) 

UAV-2021 vs. 

UAV-2022 

Mean -0.099 0.019 -0.059 0.097 

STD 0.037 0.055 0.089 0.073 

RMS 0.106 0.058 0.107 0.121 

Table 5. Quantitative evaluation of the point cloud alignment between the UAV-2021 and UAV-2022 datasets after sequential system 

calibration and trajectory enhancement using terrain patches (for vertical direction) and tree trunks (for planimetric direction). 

Tests 
Point-to-feature 

Normal Distance 

# points 

(thousands) 

Before LSA After LSA 

Mean (m) STD (m) RMS (m) Mean (m) STD (m) RMS (m) 

Test 1 
Planar Features  16,789  0.224 0.171 0.282 0.026 0.021 0.034 

Cylindrical Features  10,805  0.190 0.181 0.262 0.016 0.017 0.024 

Test 2 
Planar Features  16,789  0.713 0.941 1.180 0.027 0.023 0.036 

Cylindrical Features  10,805  0.355 0.246 0.432 0.021 0.021 0.029 

Table 6. Quantitative evaluation of point cloud alignment before and after trajectory enhancement for the BP-2021 dataset. 

Comparison 
Statistics 

Measures 

Terrain Patches (3,026 features) Tree Trunks (788 features) 

𝑑𝑍 (m) 𝑑𝑋 (m) 𝑑𝑌 (m) Planimetric Distance (m) 

BP-2021 Test 1 

vs. 

UAV-2021 

Mean 0.004 -0.005 -0.028 0.078 

STD 0.033 0.061 0.070 0.059 

RMS 0.034 0.062 0.075 0.097 

BP-2021 Test 2 

vs. 

UAV-2021 

Mean 0.000 -0.029 -0.043 0.086 

STD 0.008 0.043 0.079 0.058 

RMS 0.008 0.052 0.090 0.104 

Table 7. Quantitative evaluation of the absolute accuracy of the point cloud from the BP-2021 dataset after trajectory enhancement 

through a comparison with the UAV-2021 dataset using extracted terrain patches (for vertical direction) and tree trunks (for planimetric 

direction)
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5. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

In this paper, a system-driven framework for system calibration 

and trajectory enhancement for LiDAR units mounted on UAV 

and Backpack MMS is proposed to generate accurate point 

clouds for high-resolution forest inventory. By minimizing the 

discrepancies among features from different 

tracks/datasets/systems while considering the absolute and 

relative positional/rotational information from the initial 

trajectory, system calibration parameters and trajectory 

information are refined through a non-linear LSA. The 

performance of the proposed strategy was evaluated using two 

UAV and one Backpack datasets. The results for the UAV 

datasets (after system calibration and trajectory enhancement) 

show a reduction in fitting error for the used terrain patches and 

tree trunks from 20 cm to 5 cm, and for the Backpack dataset 

(after trajectory enhancement), the fitting error reduced from 30 

cm to 3 cm. For both the UAV and Backpack systems, the results 

suggest that the proposed trajectory enhancement approach 

enhanced the absolute accuracy to the 10 cm level. 

 

The proposed and validated system calibration and trajectory 

enhancement framework for forest plantations will be used as the 

foundation for future research targeting accurate under-canopy 

mapping in rapidly changing natural forest environments. 

Further, modifications to the proposed algorithm will be 

investigated to increase its robustness to false tree trunk matching 

in cases where high misalignment within the point cloud might 

lead to a version of any tree trunk being matched with one of its 

neighbouring trees. Integrating raw IMU measurements, GNSS 

observations, and RGB imagery with LiDAR will be also 

explored to provide additional constraints to achieve trajectory 

with higher accuracy. 
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