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ABSTRACT: 
 
The demand for navigation and positioning is increasing in various fields nowadays. Although Global Navigation Satellite Systems 
(GNSS) are currently the most widely used high-accuracy positioning method, their operation rests on signal transmission and reception, 
which is prone to interference from obstacles such as high-rise buildings, thereby limiting indoor navigation. In addition, in highly 
dynamic scenarios, the low update rate of the signal cannot track detailed motions. In this case, Inertial Measurement Units (IMUs) 
play an important role in serving as a complementary component. However, a single high-accuracy IMU is financially prohibitive. On 
the other hand, the lack of accuracy and stability limits the application of low-cost IMU in navigation. One way to improve the 
performance of low-cost IMU is to fuse multiple IMUs. This study focuses on the development of pedestrian navigation using multi-
sensor integration of low-cost IMUs and magnetometers exploring different integration techniques to compare their performance. The 
Pedestrian Dead Reckoning (PDR) algorithm is a technique used to estimate the relative motion of pedestrian, which is a commonly 
used technology for indoor pedestrian navigation. This study use PDR with multi-sensor integration of low-cost IMUs to reduce the 
position error of pedestrian navigation to within one meter, with the aim of establishing a high-precision, reliable, and low-cost 
pedestrian navigation algorithm. 
 
 

1. INTRODUCTION  

The emergence of Micro Electro Mechanical Systems (MEMS) 
level IMUs has increased their potential applications. Although  
the MEMS-grade IMU is low-accuracy, which accuracy of the 
gyroscope and accelerometer decreases as the price drops, 
affecting their performance and stability. However, since the 
MEMS technology has reduced the volume, power consumption 
and cost of IMU, combing multiple IMUs in a single Printed 
Circuit Board (PCB) becomes more available.  
 
The gyroscope is even more critical than the accelerometer in 
conventional Inertial Navigation System (INS) due to the error 
from the gyroscope propagated to the overall performance, 
including orientation, velocity, and position. Among various 
types of errors, particularly the bias instability of the gyroscope 
can be very large. Therefore, the bias instability of the gyroscope 
is the most important error term that dominates the overall 
performance of the IMU (Alteriis et al., 2021). In general, IMUs 
can be classified by their performance, from high to low: 
navigation-grade, tactical-grade, and consumer-grade. The lower 
the performance, the greater the accumulated error in IMU 
applications, which can lead to faster drift in position and 
orientation error. The bias instability of consumer-grade MEMS 
gyroscopes is typically around 70 degrees per hour (Lee et al., 
2016). Such large bias, when integrated under high dynamic 
motion in any arbitrary orientation of the arm, will result in 
significant errors in orientation estimation. 
 
Fusing multiple low-accuracy IMUs is one way to improve the 
performance of a single low-accuracy IMU by leveraging 
complementary advantages. With the development of MEMS 
technology and improvements in multi-IMU integration, the 
balance between the cost and accuracy of IMUs can be achieved. 
In addition, using multiple low-accuracy MEMS-level IMUs can 
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not only significantly reduce costs but also increase the ability to 
find errors, increase fault tolerance, and reduce noise. Moreover, 
high-accuracy IMUs are too large and heavy to be placed in 
mobile devices, while low-accuracy IMUs can be built into 
mobile devices and are more suitable for pedestrian navigation 
applications.  
 
This study focuses on the development of pedestrian navigation 
using multi-IMU integration of MEMS-grade IMUs. Different 
integration techniques and fusion methods of multi-IMU will be 
explored and compared for their performance differences, aiming 
to obtain the optimal IMU array geometry design and fusion 
algorithm. The study applies the improved Pedestrian Dead 
Reckoning (PDR) algorithm to conduct the navigation of 
pedestrians reaching one-meter positioning accuracy. The goal is 
to establish high-precision, high-reliability, and low-cost inertial 
sensors using multi-IMU integration of MEMS-grade IMUs. 

 

2. RELATED WORK 

2.1 Inertial Sensor Error  

Inertial sensor errors can be classified into two types: systematic 
errors (also known as deterministicm errors) and stochastic errors 
(also known as random errors).  
 

 
Figure 1. Inertial Sensor Error   
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In the case of an accelerometer, systematic errors can be divided 
into three types: bias, scale factor errors, and misalignment 
(Unsal, 2012). When the accelerometer measures an acceleration 
value without any external acceleration applied, it is called bias. 
Scale factor error is a proportional relationship between the input 
and output observation quantities, usually represented in 
floating-point form with a value range between -1 and 1. 
Misalignment is an orthogonal error that arises due to imperfect 
production and installation of sensor components, leading to 
changes in observation quantities of other axes for any motion on 
any axis. 
 
For the gyroscope, there are four types of systematic errors: bias, 
scale factor errors, misalignment, and acceleration-dependent 
bias (also known as g-dependent bias) (Unsal, 2012). The first 
three are the same as those of the accelerometer, while 
acceleration-dependent bias is a deviation in the gyroscope 
output signal caused by the structural impact of acceleration. The 
numerical value of the relationship between acceleration and 
gyroscope measurements is determined by the bias coefficient of 
acceleration-dependent bias. 
 
Stochastic errors refer to the errors that arise from the random 
variation over time of bias or scale factor, as well as sensor noise. 
These errors are respectively known as bias instability, scale 
factor instability, and sensor noise (Unsal, 2012). And sensor 
noise can be further divided into three types: angle random walk 
(ARW), velocity random walk (VRW), and white noise. The 
most important feature of these errors is that there may be no 
direct relationship between input and output. Bias instability 
refers to the changes in bias over time, which can be determined 
by Allan variance and autocorrelation analysis, and can be 
modeled using the results of these tests and analyses. Scale factor 
instability refers to the changes in the scale factor over time, 
which require long-term dynamic rate tests to determine. Sensor 
noise can be reduced by filtering 
 
Allan variance, first proposed by David Allan in 1966, is a 
method of representing the root mean square (RMS) random-drift 
error as an average time function. Its calculation, interpretation, 
and understanding are relatively simple. The method was initially 
used to analyze the instability of the phase and frequency of 
crystal oscillators or atomic clocks and can be applied to any 
signal with potential noise. As gyroscopes, accelerometers, and 
other sensing elements themselves also have oscillator 
characteristics, this method is now widely used to identify the 
random errors of various inertial sensors. Calibration via Allan 
variance analysis typically lasts for several hours. 
 
For MEMS-grade IMUs, systematic errors usually only consider 
bias and scale factor errors. Because the performance is relatively 
low compared to other grades, these two errors are significant, 
while the others are relatively less prominent. Therefore, it is 
usually ignored for the time being. 
 
2.2 Sensor Array Techniques  

In previous examples of fusing multiple low-accuracy IMUs, 
most methods simply obtained the average specific force and 
angular rate signals from the array (Bancroft and Lachapelle, 
2011). If N IMUs are simply processed by taking the average of 
the observations, and the observations are independent and the 
specifications of each IMU are the same, the error propagation of 
noise can be derived, as shown equations below, and the error can 
be reduced to 1 over the square root of N, significantly improving 

performance. This method is the simplest way to achieve a 
reduction in error, but it does not maximize the reduction in error. 
 
The error propagation of noise equations: 
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where  X = IMU observations  
 N = quantity of IMUs 
 𝜎 = standard deviation 
 
Each systematic error source has four components: a fixed 
contribution, a temperature-dependent variation, a run-to-run 
variation, and an in-run variation (Groves, 2007). The array-
based IMU composition technology aims to improve the 
performance of low-cost MEMS-level IMUs. Simply averaging 
the array information is not enough. In (Martin et al., 2013), it is 
mentioned that more accurate estimation can be achieved by 
utilizing the characteristics of the IMUs when setting up multiple 
IMUs. By placing the sensitive axes of the IMUs in opposite 
directions, systematic errors between the same type of IMU can 
be reduced. Among the errors that IMUs may encounter, the 
specific systematic errors generated by IMUs of the same 
specification are usually close to or positive or negative values. 
Therefore, if the sensing axes of the three axes are placed in 
opposite directions, at least some of the temperature drift can be 
offset. As for random errors, there is not much difference 
between the average noise from IMUs on two opposite sensing 
axes or the average noise from IMUs on two same sensing axes. 
 
2.3 Traditional Pedestrian Dead Reckoning  

The Dead Reckoning (DR) algorithm is a technique used to 
estimate the relative motion of objects. When applied to 
pedestrians, it is called Pedestrian Dead Reckoning (Fujii and 
Sakuma, 2018). PDR is a commonly used technology for indoor 
pedestrian navigation today. This algorithm predicts the position 
at time k+1 (Ek+1, Nk+1) based on the known position (Ek, Nk) and 
azimuth angle φk at time t. Most of the time, in order to simplifies 
the estimation process by assuming that the scenario is walking 
on a flat surface and reduces the 3D space to a 2D plane to 
construct an inertial navigation system suitable for general 
walking situations. 
 
Pedestrian Dead Reckoning equations: 
 

 
𝑁ାଵ

𝐸ାଵ
൨ = 

𝑁 + 𝑆𝐿 × 𝑐𝑜𝑠𝜑

𝐸 + 𝑆𝐿 × 𝑠𝑖𝑛𝜑
൨        (3) 

 
where  k = time 
 Ek, Nk = the user coordinates at k time 
 𝑆𝐿 = step-length at k time 
 𝜑 = azimuth angle at k time 
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Figure 2. Schematic diagram of the Pedestrian Dead Reckoning 

principle 

 
Its principle is mainly based on the information obtained from the 
accelerometer, gyroscope, and magnetometer to calculate the 
next position, such as the number of steps, stride length, and 
azimuth, to perform indoor navigation. The accelerometer 
measures the acceleration and gravitational acceleration of an 
object in motion and detects the features when people walking to 
calculate their stride. And then, in combination with an empirical 
formula, estimate the length of each step. The gyroscope 
measures the relative rotational angular velocity of an object in 
motion, and the magnetometer measures the changes in the 
Earth's magnetic field to determine the object's absolute azimuth. 
By using both sensors to estimate the azimuth and inputting it 
into the pedestrian dead reckoning (PDR) formula, the two-
dimensional spatial position information can be obtained. The 
existence of errors in the PDR system is due to the stride length 
estimation model, which is generally an empirical formula that 
cannot accurately match the walking habits of each user, and the 
uncertainty of the model coefficients. Additionally, the errors of 
the stride length estimation model and the azimuth information 
accumulate with the number of steps and time, causing the 
trajectory to gradually drift. Therefore, the PDR system requires 
external assistance information to limit the accumulation of 
errors. 
 
In many traditional PDR studies, the value of acceleration 
magnitude in three-axis direction is used for step detection 
(Jiménez, 2009). To obtain heading information, it can only be 
applied when the IMU is perpendicular to the direction of gravity 
acceleration and cannot support various posture states. Most 
cases place the IMUs on the ankles or insteps (Jiménez, 2009). 
 
2.4 Attitude Estimation  

An Attitude and Heading Reference System (AHRS) includes 
attitude data calculation and provides information on the attitude 
and position of an object in space. The attitude information is 
specified by the prediction of the Roll, Pitch and Yaw angles, 
known as Euler angles. (Junco, 2017)  
 
If AHRS is used to obtain roll, pitch, and yaw, the obtained roll 
and pitch can be used to transform the coordinate system to the 
local level frame, which is commonly used in navigation 
coordinate systems such as the North-East-Down (NED) frame. 
By rotating the X-axis and Y-axis of the sensor with gravity 
acceleration, the Z-axis of the sensor can be aligned with the D-
axis of the NED frame, which is called Leveling. The X and Y 
directions of the sensor can be used for dead reckoning, while the 
Z direction of the sensor is used for step detection. This method 
is suitable for devices with non-specific attitudes, such as 
watches or mobile phones. 
 

3. METHODOLOGY  

 
Figure 3. The Multi-IMU Based Self-contained Pedestrian 

Navigation Algorithm diagram 

 
3.1 Initial Calibration 

As mentioned in Section 2.1, for MEMS-grade IMUs, only bias 
and scale factor errors are usually considered for systematic 
errors. Therefore, in the experiments conducted in this study, 
after the sensors start recording data, they are first placed in a 
static state for a while. The data recorded during this stationary 
period can be used to estimate the bias and scale factor errors of 
the gyroscope. These errors of the gyroscope can then be used to 
perform initial calibration of the experimental data. 
 
The reason why only preliminary calibration is performed on the 
gyroscope, but not on the accelerometer, is because for PDR 
navigation applications, unlike in-car navigation or integration 
system navigation applications, the acceleration value does not 
play a role in obtaining the moving distance for position 
calculation through integration. In PDR navigation applications, 
the acceleration value mainly serves two purposes. First, it is used 
for step detection, and errors will affect the acceleration values 
but not the periodical pattern of the steps. Second, it helps with 
leveling. As the gravity acceleration value is much larger than the 
error, even if there is an error in the acceleration value, the 
leveling process is not significantly affected. Therefore, it is 
currently ignored. 
 
As for the magnetometer, this study used pre-processed 8-shaped 
movement to obtain the magnetometer errors and perform 
preliminary calibration on the experimental data for the 
magnetometer. 
 
3.2 Attitude Estimation 

As mentioned in Section 2.4, through AHRS, providing the 
attitude of the sensor in the North-East-Down (NED) frame, 
which is then leveled to obtain new attitude information. The 
horizontal orientation can be used for navigation, while the D 
direction of the accelerometer is used for step detection. This 
method can make the navigation estimation more accurate and 
the gait the pattern more prominent. The process of attitude 
information calculation in this study is handled by using the 
Versatile Quaternion-based Filter (VQF). VQF is an extended 
filter structure by an optional gyroscope bias estimation 
algorithm and an algorithm for magnetic disturbance detection 
and rejection. (Laidig et al., 2023) 
 

    
Figure 4. The value of acceleration magnitude in three-axis. 
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Figure 5. The value of acceleration magnitude in D direction. 

 
Different from the traditional PDR that uses the magnitude of the 
acceleration vector for step detection (Figure 4), this study uses 
the value of acceleration in the D direction for step detection 
(Figure 5). By using the D direction acceleration value, 
interference from the horizontal direction is eliminated, and only 
the vibrations generated when the foot touches the ground during 
walking or running are shown. This makes the waveform of the 
vibration more obvious and facilitates accurate identification of 
the peak position. Therefore, the device is not restricted to a 
specific posture and can be applied to devices such as 
smartwatches or mobile phones. 
 
3.3 Pedestrian Dead Reckoning  

The Pedestrian Dead Reckoning diagram of this study is shown 
in Figure 6. To simplify the calculation process, it is assumed 
that the scene is walking on a flat floor, which is simplified to a 
two-dimensional plane. An empirical model is used to estimate 
the step length based on personal information such as height, 
weight, and age. This study uses nine-axis information (including 
three-axis accelerometers, three-axis gyroscopes, and three-axis 
magnetometers) to estimate attitude. The D direction of the 
leveled acceleration value is used for step detection, and the other 
information is used for heading determination. Finally, the 
estimated trajectory is plotted. 
 

 
Figure 6. The Pedestrian Dead Reckoning diagram 

 
4. RESULTS AND DISCUSSIONS 

The inertial sensors used in this study include Osmium 
MIMU4844 and MIMU22BL for the combination design of the 
IMU array. The two sensors were separately tested by hand for 
indoor and outdoor experiments. In the indoor experiments, the 
position error is compared between the trajectory position and the 
control point layout. For outdoor experiments, the position error 
is calculated using the same starting and ending points. 
 
The MIMU4844 configuration, as shown in Figure 7, consists of 
a total of 32 IMUs. Sixteen IMUs are mounted on the top side 
with the z-axis pointing downwards (the red text in Figure 7), 
while the other sixteen are mounted on the bottom side with the 
z-axis pointing upwards (the green text in Figure 7). 
 

The MIMU22BL configuration, as shown in Figure 8 consists of 
a total of 4 IMUs. Two IMUs are mounted on the top side with 
the z-axis pointing downwards (the red text in Figure 8, while 
the other two are mounted on the bottom side with the z-axis 
pointing upwards (the green text in Figure 8) 
 

  
Figure 7. MIMU4844 configuration(red text for IMUs on top 

side; green text for IMUs on bottom side) 

 

 
Figure 8. MIMU22BL configuration(red text for IMUs on top 

side; green text for IMUs on bottom side) 

 
4.1  Allan Variance 

As mentioned in Section 2.1, Allan Variance is widely used to 
identify the random errors of various inertial sensors. We applied 
Allan Variance to the MIMU4844, and the results are shown in 
Figure 9. The thick green line represents the average of 32 IMUs. 
As mentioned in Section 2.2, if the observation values of N IMUs 
are simply averaged and are independent and have the same 
specification, the error will be significantly reduced. 
 

 
Figure 9. Allan Standard Deviation of MIMU4844 

 
4.2 The Different Quantities of IMUs tested Indoor 

As shown in Figure 10, it can be seen that the error of a single 
IMU is larger. The error exceeded one meter at the second control 
point, and the position error was 2.7941 m. The best result of 
multi-IMU was achieved with 32 IMUs, and the position error at 
the fourth control point was 0.3315 m. However, the position 
errors of the three were not significantly different, all being 
within one meter, indicating that the result of four IMUs may 
have already met the current pedestrian navigation requirements 
in this test scene.  
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Figure 10. The indoor trajectories and position errors of 

different quantities of IMUs 

 
 Quantity of IMUs 

Position errors 
(m) 1 IMU 4 IMUs 16 IMUs 32 IMUs 

Control Point 1 0.7612 0.2086 0.1580 0.1808 
Control Point 2 2.7941 0.2247 0.2140 0.1975 
Control Point 3 3.4789 0.4582 0.3704 0.2529 
Control Point 4 3.7424 0.5113 0.4789 0.3315 

Table 1. The indoor trajectories and position errors of different 
quantities of IMUs 

 
4.3 The Front Side and the Back Side of IMUs tested Indoor 

As mentioned earlier, the specific systematic errors generated by 
IMUs are usually almost the same in value and may be positive 
or negative. Therefore, if the sensing axes are placed in opposite 
directions, at least some of the temperature drift can be 
compensated. In Figure 11, the error of the IMU array on a single 
side is larger, with position errors of 0.9654 m and 0.7610 m at 
the fourth control point. And the array with an equal number of 
IMUs on both the front and back sides has the smallest error, with 
a position error of 0.4806 m at the fourth control point. 
 

 
Figure 11. The indoor trajectories and position errors of the 

front and back sides of IMUs 

 
 The front and back sides of IMUs 

Position errors 
(m) 

top side  
16 IMUs 

bottom side 
16 IMUs 

top side 8 
and bottom 
side 8 IMUs 

Control Point 1 0.2392 0.1204 0.1586 
Control Point 2 0.4143 0.5572 0.2137 
Control Point 3 0.7480 0.4016 0.3698 
Control Point 4 0.9654 0.7610 0.4806 

Table 2. The indoor trajectories and position errors of the front 
and back sides of IMUs 

 

4.4 The Different Geometric Relationships of IMUs tested 
Indoor 

Different geometrical configurations of IMU arrays were 
selected to compare position errors, attempting to achieve better 
precision through geometric constraints. Figure 7 shows the 
MIMU4844 configuration diagram. In Figure 12, in Figure 3, the 
symmetric array (the green trajectoty) located far from the center 
of the IMU array has the smallest error, with a position error of 
0.3366m at the fourth control point. The asymmetric array (the 
red trajectoty) located far from the center of the IMU array has 
the largest error, with a position error of 0.9146m at the fourth 
control point. 
 

 
Figure 12. The indoor trajectories and position errors of 

different geometric relationships of IMUs 

 
 Number of IMUs in MIMU4844 

Position errors 
(m) 

4,5, 
26,27 

4,5, 
8,9 

2,3, 
28,29 

28,29, 
30,31 

Control Point 1 0.2086 0.2633 0.3172 0.1170 
Control Point 2 0.2247 0.2475 0.1764 1.2320 
Control Point 3 0.4582 0.4591 0.3139 1.0413 
Control Point 4 0.5113 0.3971 0.3366 0.9146 

Table 3. The indoor trajectories and position errors of different 
quantities of IMUs 

 
4.5 The Different Geometric Relationships of IMUs tested 
Outdoor 

Figure 13 shows the trajectory of outdoor preliminary 
experiments. The test field was the National Cheng Kung 
University playground, with a distance of 400 meters and starting 
and ending at the same point. Under high dynamic arbitrary 
postures of arm swinging, the algorithms used in this study were 
able to demonstrate high-precision trajectory results. As for how 
to calculate high dynamic posture changes, we have another 
algorithm to solve it, which is not the focus of this study. 
 

 
Figure 13. The outdoor trajectories of different quantities of 

IMUs 
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5. CONCLUSIONS  

The results from Section 4.2 to 4.5 demonstrate that the results of  
multiple IMUs are better match actual walking paths than a single 
IMU. And the consequent regardless of indoor or outdoor settings 
or different brands and specifications.When an array of 4 IMUs 
is reached, the positioning error of pedestrian navigation is 
reduced to within one meter, meeting current demands for 
pedestrian navigation. The benefit of increasing the number of 
IMUs to 16 or 32 is diminishing. In addition, the results of the 
geometric relationships of the IMU array are consistent with  
(Martin et al., 2013) paper. Systematic errors generated by 
sensors of the same specifications are usually nearly the same or 
either positive or negative values. Therefore, if the sensing axes 
are placed in the opposite directions, at least some temperature 
deviation drift can be eliminated. 
 
Through multiple testing iterations, it was found that excessive 
magnetic field interference in the indoor experimental field led to 
unexpected results. Therefore, the magnetic compass was not 
used in indoor experiments in this study. Magnetic field 
interference may also occur in outdoor fields, so in the future, an 
automatic mechanism for detecting magnetic interference could 
be conducted. By exclude those interfered magnetic 
measurement, the distorted results of IMU arrays can be reduced. 
 
The results of this study show that multiple IMUs can construct 
a vertual, low-cost, high-accuracy, and high-reliability inertial 
sensor. It is more suitable for navigation on watches or mobile 
devices and can be used indoors and outdoors. Multiple IMUs 
have considerable potential. 
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