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ABSTRACT: 

Outdoor positioning requires a reliable solution that can work in environments where satellite signals are often blocked or degraded. 

Global Navigation Satellite System (GNSS) is a common choice, but it may not provide accurate results for land vehicles. To address 

this challenge, this research proposes a multi-sensor integrated system for vehicle navigation that combines GNSS with other sensors. 

The system uses Extended Kalman Filter (EKF) to fuse the data from different sources and improve the navigation performance. The 

algorithm targets to provide seamless navigation for urban environments as well as various indoor environments fields with 

INS/GNSS/VIO aiding integrated solutions. The experimental vehicle of this research is equipped with a tactical-grade inertial sensing 

measurement unit (IMU) as the test system, a self-designed and assembled visual platform, which includes a camera with a time 

synchronization protocol and a low-cost IMU. Also, both indoor experimental fields and outdoor urban scenarios with different high 

challenging were tested to verify the developed algorithm. To evaluate the performance of the proposed real-time navigation system, 

we use a high-accuracy navigation-grade system as a reference, which provides a stable and reliable trajectory. The result indicates 

that using the GNSS RTK solution with VIO aiding integration scheme reduced the RMS errors in long outage (450 sec, 1812 m) by 

87.4% and 79.9% in position and velocity error, respectively. In urban scenario, the along-track/cross-track maximum errors can 

achieve 1.4 m / 1.5 m. Overall, these contribute to the development of real-time navigation systems for self-driving vehicle in the 

future. 

 

1. INTRODUCTION 

Global Navigation Satellite System (GNSS) is the user-preferred 

solution for the requirement of outdoor positioning. However, in 

the land vehicle application environment, the satellite signal is 

often obscured and denied, which further reduces the accuracy of 

the satellite positioning solution. Therefore, it is imperative to 

develop automotive solutions that can be applied to the hostile 

satellite signals environment. The Inertial Navigation System 

(INS)/GNSS integration solution is widely used in the 

positioning and navigation applications of land vehicles. This 

research proposes a multi-sensor integrated system for vehicle 

navigation adopting an Extended Kalman Filter (EKF). The 

proposed algorithm aims to provide seamless navigation for 

urban environments as well as various indoor environments with 

INS/GNSS/VIO aiding integrated solutions. This research 

focuses on the integration of visual-inertial odometry (VIO) and 

INS/GNSS system in Real Time Kinematic (RTK) mode. 

The major contributions of adopting VIO into INS/GNSS are: 

1. VIO provides continuous measurement and uses image and 

IMU constraints to reduce the accumulation of errors of the 

main receiver IMU. 

2. VIO brings higher performance to an IMU/GNSS system 

that uses a MEMS-level IMU. 

3. Compared to lidar, VIO can reduce the overall cost of future 

autonomous driving payloads. 

4. The integration scheme becomes more suitable for naviga-

tion in unknown or GNSS-denied environments. 

This research contributes to the performance enhancement of 

traditional positioning algorithms aided by cameras and inertial 

sensors and is dedicated to achieving accuracy at the level of 

“which lane”.  

 
*  Corresponding author 

2. RELATED WORKS 

Visual Inertial Odometry (VIO), also known as Visual Inertial 

Navigation System (VINS), is developed from Visual Odometry 

(VO) (Zhang & Ye, 2020). The problem of estimating 

displacement using visual information alone was first proposed 

in the 1980s, and the term VO was proposed (Nistér et al., n.d.). 

VIO makes VO more robust by adding a complementary IMU 

with the camera. Compared with GPS, VIO can still provide pose 

estimation indoors and does not suffer from the urban canyon 

scenario effect that degrades accuracy with near urban high 

buildings. Compared with LiDAR, the sensors required for VIO 

are relatively light, inexpensive, and have the means to provide 

higher frequency pose estimation. A major limitation of the 

monocular visual odometry method is the inability to determine 

the scale factor. This problem is inherent to the monocular 

approach and cannot be solved without additional information. 

The image frames processed by monocular VO easily lose the 

depth information of the environment. Although this process 

recovers three-dimensional information, it does not yield the 

actual physical scale of the depth recovery. It is necessary to 

provide benchmarks for scale recovery through other external 

sources such as GNSS. The accuracy of triangulation based on 

visual features depends on the frame-to-frame displacement. If 

the camera rotates approximately, the triangulation algorithm 

deteriorates and causes feature point tracking to fail. By 

comparing the advantages and disadvantages of monocular visual 

and IMU, the fusion of camera and IMU has good 

complementary characteristics (Aqel et al., 2016). The steps for 

fusion IMU and VO can be described briefly as follow. First, by 

aligning the pose sequence estimated by the IMU with the pose 

sequence estimated by the camera, we can estimate the actual 

scale of the camera/IMU platform trajectory. Second, the IMU 

can predict the image frame pose and the feature point location 

in the next image frame, which enhances the feature tracking 
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algorithm's speed and robustness against fast rotation. Finally, by 

using the current gravity vector from the IMU accelerometer can 

transform the estimated position into the navigation coordinate 

system required for actual navigation. The VIO process can be 

decomposed into several parts, including internal and external 

orientation parameter calibration, feature extraction, data pre-

processing, initialization and alignment, and nonlinear 

optimization, which will be explained in the following sections. 

Due to the slight error in the production process of the camera 

lens, as well as the difference in focal length and lens shape. The 

difference between the captured image and the real world is 

called lens distortion, including radiation distortion and 

tangential distortion. Using the camera calibration technology, 

the corresponding internal orientation parameters can be 

accurately determined. Then the original image with deformation 

can be corrected so that the relationship between the image point 

and the corresponding real-world object point satisfy the 

collinearity condition. In this research, calibrating the visual 

platform of the camera with the Kalibr toolbox (Qin & Shen, 

2018). The following equations represent the radial distortion and 

tangential distortion of the distortion point, respectively. 

{
𝑥𝑟𝑎𝑑𝑖𝑎𝑙 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)

𝑦𝑟𝑎𝑑𝑖𝑎𝑙 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)
 ( 1 )  

{
𝑥𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)]

𝑦𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑦 + [𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦]
 ( 2 ) 

where 

𝑘1, 𝑘2, 𝑘3 = The radial distortion coefficients. 

𝑝1, 𝑝2 = The tangential distortion coefficients. 

 

As well as camera, IMU calibration is also important. IMU 

calibration is performed using the Allen variance technique to 

characterize the random measurement and process noise of the 

accelerometer and gyroscope. This method requires collecting 

static data for a long duration to obtain reliable results. In this 

study, more than 10 hours of data were. Then the imu_utils 

toolbox were used to estimate random walk and bias instability. 

These coefficients are essential for modelling the IMU errors and 

improving the accuracy of the sensor fusion algorithm. After the 

camera and IMU are calibrated individually, continue to use the 

Kalibr toolbox to calibrate the visual platform designed in this 

research. After receiving the data, consider the calibrated camera 

interior orientation parameters and the random walk, bias 

instability of the IMU, and input the image and IMU data into the 

Kalibr toolbox to estimate the exterior orientation parameters 

(Qin & Shen, 2018). These are the rotation and translation 

relationships between the camera and the IMU. One of the key 

steps in visual odometry (VO) and visual-inertial odometry 

(VIO) is feature extraction, which builds the correspondence 

between images in a sequence. A common method for feature 

extraction is corner detection, which identifies salient points in 

different images. However, storing the features as gray value 

matrices is not robust enough for complex environments. 

Therefore, more advanced algorithms have been developed to 

extract local image features that are invariant to scale, rotation 

and illumination changes. Such as Harris corner (Harris & 

Stephens, n.d.), FAST corner (Rosten & Drummond, 2006), etc. 

However, corners are not robust enough for most applications, 

and more stable local image features are needed, such as the 

Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), 

Speeded Up Robust Features (SURF) (Bay et al., 2006), Oriented 

FAST and Rotated BRIEF (ORB) (Rublee et al., 2011) and so on. 

Feature points using feature extraction for images are composed 

of key-points and descriptors. The ORB is one of the most classic 

feature representatives, which is composed of the key point 

FAST and the descriptor BRIEF (Calonder et al., n.d.). The 

feature point method, ORB, estimates camera motion using 

algorithms such as triangulation, epipolar geometry, bundle 

adjustment (BA). Its high calculation accuracy is particularly 

prominent in Simultaneous Localization and Mapping (SLAM) 

applications. On the other hand, there is another method for 

extracting image feature points, the optical flow method (Lucas 

& Kanade, n.d.). The optical retention method is different from 

the feature point method in that only calculate key-points without 

descriptors. This reduces the computational cost of feature point 

matching, which is advantageous for real-time applications. In 

the literature, many VO and VIO frameworks have been 

developed. Especially in the VIO framework, some of them can 

solve the state by optimization and others can use a filtering 

process. The earliest monocular VO framework is Mono-SLAM, 

which is based on EKF. Since the number of feature points in the 

state of VO is much larger than the number of poses, and the 

system state dimension will increase significantly over time, it 

will make Mono-SLAM only suitable for sparse feature point 

environments (Davison et al., 2007). Parallel Tracking and 

Mapping (PTAM) was the first successful application of 

nonlinear optimization in VO (Klein & Murray, 2007). PTAM 

proposed the keyframe mechanism, which reduces the number of 

images that need to be optimized and ensures the real-time 

performance of the algorithm, which is the design basis of many 

current VO open-source frameworks. ORB-SLAM2 is also a 

framework for calculating keyframes based on the bundle 

adjustment method, which retains the advantages of fast 

detection of FAST features (Mur-Artal & Tardos, 2016). At the 

same time, the image pyramid algorithm is used to ensure scale 

invariance and the gray centroid is used to provide orientation 

description to ensure rotation invariance. However, its 

calculation can be time-consuming and resource-consuming.  

Different from feature extraction method, the direct method, 

which can build sparse, semi-dense, and dense point maps based 

on feature points to achieve the purpose of tracking. Based on the 

direct method, the typical VO representation of the semi-dense 

direct method is proposed as Large-Scale Direct SLAM (LSD-

SLAM) (Engel et al., n.d.). It uses the image gradient to 

approximate the optical flow transform and effectively reduces 

the computational time-consuming issue by ignoring the pixel 

information in the region where the grayscale change is not 

obvious or the depth information is difficult to estimate. 

However, Semidirect Visual Odometry (SVO) is a VO 

framework based on the sparse direct method (Forster et al., 

2014). SVO first detects the key points in the image based on the 

FAST corner detector and then estimates the camera pose by 

tracking the pixels within the 4×4 pixel range around the key 

points. The biggest advantage of SVO is lightweight. 

Subsequently, a sparse version of the direct method VO 

algorithm is proposed, which is Direct Sparse Odometry (DSO). 

DSO performs pose estimation and construction based on pixel 

points with large changes in image gray intensity and corrects the 

accumulated error through the relationship between geometric 

and photometric perspectives (Engel et al., 2016). This advantage 

of DSO is that it has good robustness under the weak texture. The 

IMU/camera VIO framework based on Kalman filtering uses the 

IMU positioning data to assist in determining the depth 

information of image feature points, which effectively improves 

the scale uncertainty of monocular VO. The Multi-State 

Constraint Kalman Filter (MSCKF) is a filter-based VIO 

algorithm (Mourikis & Roumeliotis, 2007). MSCKF uses EKF to 

fuse IMU and visual information, which can adapt to more 

intense motion and texture loss for a certain period of time, and 

maintain higher robustness. Robust Visual Inertial Odometry 

(ROVIO) is a visual state estimator based on EKF, which takes 

image photometric error as EKF innovation, and decomposes 

feature points into direction vectors and distance representation 
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to improve robustness (Bloesch et al., 2015). Open Keyframe-

based Visual-Inertial SLAM (OKVIS) is a VIO algorithm that 

uses a sliding window of keyframe poses for nonlinear 

(Leutenegger et al., n.d.). Older keyframes or newer redundant 

image frames are marginalized before the state estimator to keep 

the window lightweight. Similar to OKVIS, VINS-Mono tracks 

robust corner features based on a nonlinear optimized sliding 

window estimator (Qin et al., n.d.). Processing pre-integration of 

IMU measurements, and 4DOF pose graph optimization are 

proposed. The overall VINS-Mono architecture can be divided 

into the following three parts: 

1. Preprocessing, using the optical flow method to track the 

feature points of the sequence images, and pre-integrating 

the measurement data of the IMU at the same time. 

2. Parameter initialization, compare the estimated pose of 

the camera with the pre-integrated pose of the IMU, and 

complete the initialization of the velocity vector, the grav-

ity vector, and the scale factor, as well as the calibration 

of the gyro bias. 

3. BA estimation optimization, based on the sliding window 

algorithm to marginalize distant keyframes to ensure the 

real-time performance of VIO estimation. 

 

VI-DSO is a method for estimating camera pose and sparse scene 

geometry by minimizing photometric and IMU measurement 

errors, as well as the optimization-based method (von Stumberg 

et al., 2018). It can track any pixel with a sufficiently large 

intensity gradient, but it does not easily maintain the global map 

to affect accuracy. Finally, ORB-SLAM3 is an optimization-

based tightly coupled VIO method, which can navigate for a long 

term with weak visual information with high robustness (Campos 

et al., 2021). However, it can be time-consuming and resource-

consuming when computing, as the same ORB-SLAM2. In this 

study, the review of the state-of-the-art keyframe-based and 

filter-based VO confirms that without the intervention of the 

IMU, the scale issue cannot support long-term and real-time 

stable operation. Further, the filtering-based and optimization-

based VIO frameworks are reviewed. VINS-Mono performs 

excellent and is stable in the real-time application, while 

outperforming other types of VIO frameworks in accuracy and 

robustness. For these reasons, the VIO algorithm used in this 

research is designed based on VINS-Mono, as shown in Figure 

1. 

  

Figure 1 The flowchart of VINS-Mono process 

This visual inertial odometry starts with measurement 

preprocessing, where features are extracted for tracking, and pre-

integration of IMU measurements between two consecutive 

frames is performed. The initialization process provides all 

necessary values, including attitude, velocity, gravity vector, 

gyroscope bias, and 3D feature position, for guiding the 

subsequent nonlinear optimization-based VIO. And the scale of 

the visual odometry can be recovered by aligning the IMU 

measurements with the vision-only structure from motion (SfM)  

(Schönberger & Frahm, n.d.). Finally, the pose graph 

optimization module accepts the geometrically validated sliding-

window relocalization results and performs the global 

optimization to eliminate drift to obtain state estimation solution. 

3. METHODOLOGY 

In this study, we analysed the performance of traditional 

approaches including INS/GNSS/Camera, and vision navigation 

by using the proposed visual platform sensors. 

3.1 Coordinate Frames 

We now define notations and frame definitions that we use 

throughout this paper. Figure 2 depicts the coordinate frames 

used in this study. The navigation frame (N) is a locally defined 

frame and in this study, the north–east–down (NED) frame is 

chosen, the origin of which is located at the center of a platform 

for which the x-axis and y-axis are aligned with the Earth’s north 

and east directions, respectively. The z-axis is orthogonal to a 

reference ellipsoid that points downward the center of the Earth. 

In the vehicle coordinate system (V), the x-axis, y-axis, and z-axis 

point in the forward direction, to the right, and in the downward 

direction of the vehicle, respectively. We assumed that the 

transformation matrix (𝑅𝑏
𝑣) between the V frame and the IMU 

sensor frame (B) would be an identity matrix and that the effect 

of the lever-arm between the IMU sensor and the vehicle center 

would be ignorable. The transformation matrix between two 

frames is denoted by quaternion 𝑞𝑐1

𝑐2 . Finally, in the camera 

coordinate system (C), the x-axis, y-axis, and z-axis represent the 

left to right axis of image, top to bottom axis of image direction, 

and optical axis of camera, respectively. To estimate the 3D 

coordinates of the features in each image, it requires 

transformation that contains extrinsic and intrinsic parameters. 

 

Figure 2 Geometric relationship between each component. 

3.2 INS/GNSS/Camera (VINS) Integration Scheme 

In this section, the measurement state content and fusion strategy 

provided by VIO are discussed in detail and a checking 

mechanism is designed to ensure that all measurements provided 

by auxiliary sensors meet predetermined criteria before going 

into the fusion algorithm. In addition, the proposed model for 

VINS velocity update is developed to improve some important 

issue areas in traditional positioning. The concept of the proposed 

INS/GNSS/Camera integration scheme. 

3.2.1 Visual Inertial Odometry Integrated Algorithm 

The VIO applied in this research is VINS-Mono (Qin, T. et al. 

2018), which uses only one camera and one low-cost IMU with 

the self-developed and assembled vision platform. This method 

has been proven to be a robust and versatile monocular visual-

inertial state estimation. The state vector contains: 

𝑥𝑣𝑖𝑛𝑠 = [𝑟𝑏𝑘

𝑁 , 𝑣𝑏𝑘

𝑁 , 𝑞𝑏𝑘

𝑁 , 𝑏𝑎, 𝑏𝑔, 𝑝𝑐
𝑏, 𝑞𝑐

𝑏 , 𝜆0, 𝜆1, … 𝜆𝑚], 𝑘

∈ [0, 𝑛] 
( 3 ) 
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where 

𝑘 = It represents the kth image. 

𝑝𝑐
𝑏 = The translation between camera frame and 

IMU. 

𝜆𝑙 = It is the inverse distance of the lth feature from 

its first observation. 

𝑚 = The total number of features in the sliding 

window. 

 

This equation also shows that, to get a good estimation of this 

state, the premise is the joint calibration (images and IMU) that 

obtain good interior orientation parameters (IOPs) and exterior 

orientation parameters (EOPs), and then a good initialization 

through the specific movement. Thanks to the fact that the 

features of most outdoor scenarios and indoor parking lot 

scenarios are repeatable and abundant so the extracting and 

tracking procedure by the VINS algorithm is not difficult. This 

not only provides a robust position but also limits drift caused by 

IMU. In this algorithm, estimator initialization is carried out 

firstly the scale of the visual odometry can be recovered by 

aligning the IMU measurements with the vision structure from 

motion. Mathematically, given extrinsic parameters (𝑝𝑐
𝑏 , 𝑞𝑐

𝑏) 

between the camera and the IMU, the translate poses from the 

camera to IMU sensor frame are derived by: 

𝑞𝑏𝑘

𝑐0 = 𝑞𝑏𝑘

𝑐0 ⊗ (qc
b)−1 ( 4 ) 

sp̅bk

c0 = sp̅ck

c0  − Rbk

c0 pc
b ( 5 ) 

where 

𝑠 = The scale obtains by visual-inertial alignment. 

𝑐0 = It represents the first camera frame is used as 

the reference frame for SfM. 

𝑞𝑐0
𝑁  = The derived refined gravity vector. 

 

In this research, using provide the heading angle to coincide local 

level frame to n-frame. In this algorithm state estimation process, 

the IMU is applied to accurately predict the pose of the image 

frame and the position of the feature points in successive frames. 

It is worth mentioning that this method improves the matching 

speed of the feature tracking algorithm and the robustness against 

fast camera rotation to support real-time applications. For the 

establishment of this visual inertial odometry, the roll angle and 

pitch angle are completely observable, and the cumulative drift is 

only for four degrees of freedom (x, y, z, heading angle), so the 

pose graph is only for these four degrees of freedom 

optimizations. Finally, the corresponding velocity 𝑣𝑏𝑘

𝑁  is 

obtained and further utilized in the proposed EKF using Equation 

( 6 ). Since in-vehicle navigation applications usually do not 

match the premise of loop closure scenarios, the loop closure 

thread is not used in this research. 

𝛿𝑍𝑣𝑖𝑛𝑠 = 𝐻𝑣𝑖𝑛𝑠𝛿𝑥𝑣𝑖𝑛𝑠 + 𝜀𝑣𝑖𝑛𝑠 ( 6 ) 

𝐻𝑣𝑖𝑛𝑠

= [03×3 𝐼3×3 03×3 03×3 03×3 03×3 03×3] 
( 7 ) 

Where 

𝛿𝑍𝑣𝑖𝑛𝑠    = The vector of residual of velocity between current 

solution and VINS solution. 

𝐻𝑣𝑖𝑛𝑠    = The design matrix derived from the linearization 

process to connect the navigation states and 

measurement values. 

𝜀𝑣𝑖𝑛𝑠   = The VINS position and velocity error in the n-frame. 

 

On the other hand, for the VIO aiding application of this research, 

in terms of visual aid information processing, the measured 

coordinate vector and rotation matrix are transformed from the 

visual platform to the main receiver (Pwrpak7D-E2); this is the 

coordinate vector and the rotation matrix from the c-frame to the 

b-frame (lever-arm and boresight). And then calculated aiding 

data converted to the n-frame for this research to integrate the 

navigation application of the system. 

3.2.2 GNSS Measurement Condition Assessment 

This VIO innovation sequence can indicate the quality of the 

GNSS signal based on the VIO innovation sequence. By setting 

a threshold for the VIO innovation sequence, the EKF can reject 

the GNSS measurements that are affected by multipath or non-

line-of-sight (NLOS), and only update the EKF with reliable 

measurements. On the other hand, if the velocity derived from 

the VIO is authorized, then the difference between the GNSS 

velocity and the velocity derived from the VIO (∆𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦) must 

also be smaller than the velocity threshold, which means that the 

GNSS position is consistent with the VIO position and can be 

trusted.  Conversely, it can be derived for possible effects, such 

as multipath, NLOS, and other sources, which means that the 

GNSS position is affected by some errors and should be rejected. 

The condition assessment of the design is shown in Equation ( 

8 ). 

{
𝑖𝑓 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑛𝑛𝑜 ≤ 𝜃𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑖𝑓(𝑉𝐼𝑂) & ∆𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ≤ 𝜃𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 𝑖𝑠 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑. ( 8 ) 

3.2.3 VIO Scale Coefficient Estimation 

As described before, the visual-inertial odometry (VIO) system 

that combines the camera and the inertial measurement unit 

(IMU) can recover the scale factor in real time. However, due to 

the limitations of the IMU, there may be some drift in the scale 

estimation over long distances. With each duration during the 

run, it must extract the INS/GNSS solution in the open sky area 

and calculate its scale coefficient. And at the same time meet the 

requirement of satisfaction below the designed GNSS Standard 

Deviation (STD) threshold. The VIO can then be estimated using 

this scaling coefficient by the following Equation: 

𝑠𝑎 =
‖𝑑𝐼𝑁𝑆/𝐺𝑁𝑆𝑆‖

‖𝑑𝑉𝐼𝑂‖
 ( 9 ) 

where 

𝑠𝑎 = The estimated scale. 

‖𝑑𝐼𝑁𝑆/𝐺𝑁𝑆𝑆‖ = The distance is derived from the INS/GNSS 

position solution. 
‖𝑑𝑉𝐼𝑂‖ = The distance is derived from the VIO position 

solution. 

This scale coefficient estimation method can be applied into real-

time applications. Therefore, the scale estimation mechanism 

designed in this research is shown in Figure 3. The flowchart of 

this work can be explained as follows. 

 
Figure 3 Flowchart of INS/GNSS-based VIO scale adjustment 

The INS/GNSS solution while moving in open sky areas is used 

for the standard deviation empirical threshold of position 𝜃𝑟, and 

the design period threshold 𝜃𝑡 . For the following INS/GNSS 

solutions, their position 𝑟𝑆𝑇𝐷  will be compared to 𝜃𝑟  and the 

duration 𝑇𝐷𝑢𝑟  must exceed 𝜃𝑡 . If these conditions are met, the 
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scale coefficients calculated from the INS/GNSS previous stable 

solutions will be used to update the scaling adjustment process. 

3.2.4 VIO Velocity Update 

The proposed fusion algorithm employs measurements from the 

VIO, such as velocity measurements. These measurements with 

different drift behaviors could reduce the drift issue in the INS-

only case and enhance the detection and rejection of 

contaminated measurements. Consequently, the velocity update 

is calculated based on the difference between the two frame 

positions and the time interval. The velocity of VIO-derived can 

be written as follows: 

𝑣𝑉𝐼𝑂
𝑛 =    

�̂�𝑏𝑘

𝑛 − �̂�𝑏𝑘−1

𝑛

𝑡𝑘 − 𝑡𝑘−1
 ( 10 ) 

where 

𝑣𝑉𝐼𝑂
𝑛   = The velocity information in the navigation 

frame. 

�̂�𝑏𝑘

𝑛   = The position of VIO at the time kth frame. 

Assuming that the measurements of velocity are independent and 

uncorrelated, which covariance matrix can be defined as: 

𝑅𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝐽𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑃𝑉𝐼𝑂𝐽𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑇  ( 11 ) 

where 

𝑃𝑉𝐼𝑂 = The VIO covariance matrix. 

𝑅𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = The measurement covariance matrices of 

velocity. 

3.2.5 The proposed INS/GNSS/Camera Integration Scheme 

The proposed integration scheme is shown in Figure 4. 

Navigation states from GNSS and INS are fused through an 

Extended Kalman Filter (EKF), while high output rates and 

continuous INS trigger prediction equations each epoch. 

Utilizing camera/IMU source measurements for updating the 

EKF, these will be described separately. Inputs are the sensor 

measurements and motion constrain, output is the navigation 

state, including the position, velocity, and attitude of the filtered 

solution. In this scheme, IMU measurements are processed using 

INS mechanization to provide a navigation solution in position, 

velocity, and attitude in the navigation frame. GNSS provides the 

absolute position as the primary survey update. For the camera, 

the VINS-Mono method constructed with several characteristics 

was chosen to process the data and provide measurement updates 

in this research. It is including image feature optical flow 

tracking, IMU data pre-integration, vision-only SfM, sliding 

window-based nonlinear optimization to achieve tight coupling, 

and 4DoF pose graph optimization, so on. To provide the velocity 

measurements as a minor update. 

 
Figure 4 Flowchart of INS/GNSS/Camera fusion algorithm 

In general, velocity is one of the important states for land vehicle 

applications. Velocity measurements could provide information 

for estimating IMU error state (such as bias) in EKF. It is clearer 

to identify the state of the vehicle based on the velocity of the 

vehicle. For example, if the velocities in the three directions are 

below a certain threshold, it can be considered static to allow the 

application of motion constraints, such as zero velocity update 

(ZUPT) or zero integrated heading rate (ZIHR) in EKF. This 

information also allows users to identify or check for outliers in 

other measurements. This velocity update assists with overall 

navigation solutions, especially in GNSS-hostile environments. 

 

4. EXPERIMENT 

The experiment setups were show as Figure 5 The test system 

data was obtained using a SPAN (Synchronized Position Attitude 

Navigation) system from NovAtel, model Pwrpak7D-E2, which 

consists of a MEMS-based tactical-grade IMU, Epson G370, and 

an OEM7 GNSS receiver. The visual platform is composed of a 

low-cost MEMS-based consumer-grade IMU and an industrial 

camera. The reference data system is from iMAR model iNAV-

RQH-10018 which provides high-precision and reliable IMU 

measurements at data rates up to 300 Hz. The test system and the 

reference system are secured with aluminium extrusions and 

hardwood plywood boards to ensure the lever arm. Finally, the 

reference trajectories generated by commercial software 

(NovAtel Inertial Explorer® ) that use double differential and 

smooth mode tightly coupled carrier phase measurements for 

INS/GNSS integration processing are regarded as true values. 

 

Figure 5 Experimental setup, including the mounting of the 

visual platform and reference system. 

Physical Characteristics 
iNAV-RQH-10018 

(reference) 

Epson G370  

(testing) 

Output Rate 300𝐻𝑧 100𝐻𝑧 

Gyro 
Bias Instability 0.002 °/ℎ𝑟 0.8 °/ℎ𝑟 

Random Walk Noise 0.0015 °/√ℎ𝑟 0.06 °/√ℎ𝑟 

Accel 
Bias Instability 10 𝜇𝑔 12 𝜇𝑔 

Random Walk Noise 8 𝜇𝑔/√𝐻𝑧 15 𝑚/𝑠/√ℎ𝑟 

Table 1 Specification of the RQH-10018 and EPSON G370 

To ensure that the benchmarks for each test experiment are the 

same, an experimental platform was designed with support from 

Free CAD software for the Basler acA1300-75gc camera and 

OpenRTK330 IMU. The relative relationship between the 

original hole size and the design of the two sensors into this 

software for implementation. Considering the tolerance unit and 

size of the 3D printer, the results of the 3D printing design 

platform can be placed and fitted on the aluminium extrusion of 

the roof rack, as shown in Figure 6. In this way, it can be ensured 

that the relative relationship (distance and angle) of the camera 

and the IMU changes very little during installation. 

 

 
Figure 6 3D Printed design platform and fixed sensors 

Basler acA1300-75gc 

Resolution (H x V) 1280 x 1024 Pixels 
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Focal length 8 mm 

FOV (mm) 
Mono8, RGB8 BGR8, YCbCr 

(YUV) 

Frame Rate Up to 88 fps 

Sensor Type CMOS 

Interface Ethernet 

Synchronization 
Via hardware trigger 

Via software trigger 

Power Requirements 
Typical 3.3W when using Power 

over Ethernet 

Conformity 
IEEE 802.3af (PoE) 

IEEE 1588 (PTP-v2) 

Table 2 Camera and lens specifications 

 
Bias 

Instability 

Random 

Walk Noise 
Range Output 

Gyroscope 2 °/h𝑟 0.2 °/√h𝑟 ± 400 °/s 
100 Hz 

Accelerometer 20 𝜇𝑔 24 m/s/√h𝑟 ± 8 g 

Table 3 OPENRTK330LI EVB specifications  

The first experiment sight was in Tainan city, Taiwan. The 

scenario contains a long outage in Hai-An underground parking 

lot. The performance of the proposed multi-sensor integration 

scheme in the Hai-an underground parking lot is shown in Figure 

7, where the red line represents the reference, the green line 

represents the result of the proposed multi-sensor integration 

scheme without the VIO aiding, the blue line represents the 

proposed the multi-sensor integration scheme with the VIO 

aiding, and the orange line represents the two systems using the 

same GNSS results (RTK), and the purple box represents the 

height of the indoor. 

 

Figure 7 Test trajectory in the underground parking lot. 

The proposed multi-sensor integration algorithm is statistically 

analysed and evaluated with and without the aiding of VIO. Table 

4 and Table 5 are the PVA analysis of the proposed multi-sensor 

integration without and with VIO aiding, sequentially. For the 

position analysis, with the VIO aiding, the maximum error in the 

horizontal direction was reduced from more than 178 m to less 

than 18 m and the RMS error was reduced from 79 m to 10 m. 

The along-track and cross-track maximum errors were drastically 

reduced from 177 m to 17.8 m and 125 m to 10 m, respectively. 

In particular, the position error of the horizontal maximum per 

distance travelled was reduced from 9.7% to 0.1 %, and the 

position error of the horizontal maximum per time travelled was 

reduced from 0.394 m/s to 0.039 m/s as well. The along-track, 

cross-track errors and the comparison between the proposed 

multi-sensor integrate algorithm with or without the VIO aiding 

scheme in the Hai-an underground parking lot are shown in 

Figure 8 and Figure 9. In particular, the ability of the VIO-aiding 

algorithm to reduce errors is demonstrated in the horizontal 

position and velocity, along-track, and cross-track directions as 

well. VIO aiding for the multi-sensor integration scheme has 

better performance improvement in indoor environments. 

 
Figure 8 Along/cross track error of without (left) and with (right) 

the VIO aiding in the underground parking lot. 

 

Figure 9  Error analysis plots in the underground parking lot. 

                   Positional Error Analysis Outage: 100 % 

Unit: 

meter 
E N U H 3D 

Along 

Track 

Cross 

Track 

Mean -2.04 -14.54 7.238 59.346 60.224 -39.541 -2.415 

Max -50.587 171.389 10.261 177.519 177.765 176.955 124.41 

RMSE 20.877 75.933 7.957 78.75 79.151 77.45 14.248 

Velocity Error Analysis 
 E N U H 3D 

Mean 0.068 0.232 0.046 1.155 1.16 

Max 0.727 2.986 0.104 3.05 3.05 

RMSE 0.391 1.434 0.051 1.486 1.487 

Attitude Error Analysis 

Unit: 

degree 
Roll  Pitch  Heading 

Mean -0.066 -0.198 -0.19 

Max -0.161 -0.491 -0.531 

RMSE 0.071 0.216 0.313 

Distance travelled (DT): 
HPE Max / DT: 

1812 meters 

9.7 % 

Time traveled (TT): 

HPE Max / TT: 

450 s 

0.394 m/s (0.766 nm/h) 

Table 4 PVA analysis without VIO aiding in underground 

parking lot. 

 
                   Positional Error Analysis Outage: 100 % 

Unit: 

meter 
E N U H 3D 

Along 

Track 
Cross Track 

Mean -1.908 -3.787 2.573 8.557 9.024 -5.582 -0.011 

Max -6.086 -17.071 3.425 17.819 18.109 17.775 9.959 

RMSE 3.256 9.344 2.678 9.895 10.251 9.699 1.959 

Velocity Error Analysis 
 E N U H 3D 

Mean 0.009 -0.024 0.014 0.259 0.261 

Max 0.262 0.585 0.055 0.619 0.619 

RMSE 0.111 0.278 0.024 0.299 0.3 

Attitude Error Analysis 

Unit: 

degree 
Roll Pitch Heading 

Mean -0.073 -0.253 -0.266 

Max -0.137 -0.386 -0.799 

RMSE 0.075 0.259 0.401 

Distance travelled (DT): 

Horizontal Max DT: 

1812 meters 

0.1 % 

Time traveled (TT): 

Horizontal Max TT: 

450 s 

0.039 m/s (0.076nm/h) 
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Table 5 PVA analysis with VIO aiding in underground parking 

lot. 

The second experiment sight was in Taipei City, Taiwan. The 

performance of the proposed multi-sensor integration scheme in 

the Taipei urban area at the experimental site is shown in Figure 

10, where the red line represents the reference, the blue line 

represents the proposed multi-sensor integration scheme with the 

VIO aiding, and the orange line represents the two systems using 

the same GNSS results (RTK). It is worth noting that executing 

navigation under urban canyons and under the elevated road 

over-trusts poor GNSS results causing errors accumulation, as 

shown in Figure 10 (A) and (B), respectively. (A) is near the 

Taipei Railway Station, under the elevated road, and near there 

are more high buildings. 

 

Figure 10 Test trajectory in urban area. 

In the second scenario, the proposed algorithm is tested in the 

outdoor Taipei urban area. Table 6 and Table 7are the PVA 

analysis of the proposed multi-sensor integration without and 

with VIO aiding, sequentially. For the position analysis, with the 

VIO aiding, the maximum error in the horizontal direction was 

reduced from more than 38.4 m to less than 1.5 m. The along-

track maximum errors were reduced from 16.7 to 1.4 m, and the 

cross-track maximum errors were reduced from 37.3 to 1.5 m. It 

is worth noting that the probability of the along-track 

improvement from 86.3 % to 100 %, and the probability of the 

cross-track improvement from 80.1 % to 100 % as well. As well 

as due to the GNSS and VIO-aiding conditions, the maximum 

error in the height is greatly reduced by 29.7 m to 1.1 m, refer to 

the elevation position error analysis plot, as shown in Figure 12. 

 
Figure 11 Along/cross track error without (left) and with (right) 

the VIO aiding in the Taipei urban area. 

 
Figure 12 Error analysis plots of urban area 

                   Positional Error Analysis Epochs: 2478 

Unit: 

meter 
E N U H 3D 

Along 

Track 

Cross 

Track 

Mean 0.21 -0.08 0.166 0.261 0.36 0.074 -0.001 

Max 1.624 -2.071 4.758 4.289 5.428 1.656 2.063 

STD 0.155 0.21 0.53 0.225 0.546 0.215 0.259 

RMSE 0.261 0.225 0.556 0.344 0.654 0.227 0.259 

Velocity Error Analysis 
 E N U H 3D 

Mean 0.001 0.001 0.006 0.016 0.02 

Max -0.142 -0.52 -0.154 0.523 0.524 

STD 0.015 0.023 0.013 0.023 0.024 

RMSE 0.015 0.023 0.015 0.028 0.031 

Attitude Error Analysis 

Unit: 

degree 
Roll  Pitch  Heading 

Mean -0.098 -0.25 0.174 

Max -0.269 -0.383 1.047 

STD 0.057 0.021 0.159 

RMSE 0.113 0.251 0.236 

Which Road 100 % Which Lane 99.2 % 

Table 6 PVA without the VIO aiding in the urban area. 

                   Positional Error Analysis Epochs: 2478 

Unit: 

meter 
E N U H 3D 

Along 

Track 

Cross 

Track 

Mean 0.197 -0.063 0.129 0.247 0.31 0.065 -0.02 

Max 0.868 1.137 1.449 1.356 1.731 0.87 1.138 

STD 0.102 0.146 0.194 0.118 0.181 0.168 0.204 

RMSE 0.222 0.159 0.232 0.273 0.359 0.181 0.205 

Velocity Error Analysis 
 E N U H 3D 

Mean 0.001 0.001 0.008 0.014 0.018 

Max -0.142 -0.107 0.157 0.17 0.19 

STD 0.014 0.016 0.009 0.016 0.017 

RMSE 0.014 0.016 0.012 0.022 0.025 

Attitude Error Analysis 

Unit: 

degree 
Roll Pitch Heading 

Mean -0.098 -0.251 0.163 

Max -0.275 -0.311 1.034 

STD 0.059 0.023 0.137 

RMSE 0.114 0.252 0.213 

Which Road 100 % Which Lane 100 % 

Table 7 PVA analysis with the VIO aiding in the urban area. 
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5. CONCLUSION

This research proposes a navigation approach based on the visual 

integration structure using a camera and a low-cost IMU, which 

integrates INS, GNSS, and VIO respectively. For land vehicle 

positioning systems, to achieve the level of "which lane", it must 

be able to provide 1.5 meters of along/cross-track direction 

accuracy as a prerequisite. The characteristics of VIO composed 

of low-cost IMU are used to further solve the problems of drift 

and algorithm divergence of traditional VO in the travelled 

distance. The fundamental concept is to update existing velocity 

measurements based on INS/GNSS when VIO conditions are 

detected as non-stationary. And, built condition evaluation of 

GNSS measurements to verify the measurement results before 

the EKF update process. Protecting the navigation state for 

inaccurate measurement, whether GNSS or VIO. This research 

discusses the integration of GNSS RTK measurements with INS 

by using the same GNSS receiver, both with and without visual-

inertial odometry aiding to validate the proposed algorithm, 

respectively. GNSS outage and GNSS-hostile scenario are 

discussed and selected separately. Show that the proposed 

strategy to integrate multi-sensor has great potential to achieve 

lane-level accuracy (1.5 m). It is worth mentioning that compared 

with the traditional INS/GNSS integration, the maximum error is 

greatly reduced, and the performance is stable and reliable. 

Especially, for GNSS solutions that suffer from multipath 

interference or NLOS contamination. The improvement of the 

VIO aiding scheme reveals the ability to reduce 96.1 % of 

horizontal direction maximum error and 94.9 % of horizontal 

direction RMS error in the cross-track direction. As well as, the 

ability to reduce 90.2 % and 96.8 % maximum error for the along-

track and cross-track, respectively. 
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