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ABSTRACT: Mobile laser systems have been used for close-range applications, such as agricultural management, due to the high 

penetrability of the laser beam enabling a unique 3D representation of the plant structure. However, some challenges remain in 

generating 3D mapping in agricultural environments. For instance, orange orchards are composed of trees with dense canopies which 

the laser scanner cannot penetrate for stem mapping. Therefore, most of the laser point clouds are pulses reflected from leaves and 

ground. This paper analyses approaches to detect keypoints, extract features and register the point clouds acquired with a laser scanner 

in an orange orchard. Three keypoints extraction methods (Uniform Sampling - US, 3D Harris and 3D Intrinsic Shape Signatures – 3D 

ISS), SHOT feature extraction and global registration methods (ICP and CPD) were evaluated. The results showed that improvements 

are still necessary for point cloud registration for orange orchards. In feature-based matching methods, an approach to filter the 

mismatches is needed to improve the estimation of the translation and rotation parameters. In the global registration methods, initial 

values of the trajectory are needed for ICP. CPD achieved good results for five sequence scans without initial values. 

 
 

1. INTRODUCTION 

Mobile mapping technologies (MMT) are a promising tool for 

agricultural management and smart farming. Mobile mapping 

data can directly contribute to autonomous farming operations, 

such as machine auto-driving, seeding, harvesting, plant health 

and growth monitoring. Notably, laser scanning mobile mapping 

platforms have been widely applied for the three-dimensional 

analysis of crops (Escolà et al., 2017, Zhang et al., 2020, 

Mahmud et al., 2021) since the good penetration of the laser 

beam enables a unique 3D representation of the plant structure 

(Wehr and Lohr, 1999). However, incorporating MMT in 

everyday farming operations with the required accuracy is 

proving to be challenging. One of the main issues is the features’ 

similarity, which directly affects keypoint detection, point cloud 

registration and platform positioning estimation. Here, we 

discuss the challenges of keypoint detection and matching in 

laser point clouds acquired by mobile mapping platforms at 

homogeneous agricultural environments, such as orange fields, 

with a focus on point cloud registration. 

 

Laser scanning mobile mapping platforms acquire laser data from 

different positions and orientations while the platform moves. 

The alignment of these individual scans to a common coordinate 

system is required to obtain a complete representation of the 

scene. This process is well-known as point cloud registration. 

Consecutive point clouds can be registered by estimating the 

parameters of a rigid body transformation (rotations and 

translations) between clouds and then applying the 

transformation to the scans (Vosselman and Maas, 2014). The 

estimation of the rotation and translation parameters between two 

or more laser point clouds needs corresponding points, which can 

be measured manually or automatically. Manual tie point 

selection can be quite efficient for small datasets. However, it 

becomes laborious for large data, complex scenes, and real-time 

applications, emphasising the need for an automated detection 

algorithm.  

 

 
*  Corresponding author 

A keypoint should have repeatability and distinctiveness 

(Aldoma et al., 2012). The first refers to the capability of a 

detector to consistently extract the same keypoints in sequences 

of point cloud acquisitions. The latter is the ability to detect 

points that are easily described and matched. Challenges for 

automated feature detection in point clouds among others are 

homogeneity, occlusions in complex scenes, noise, and variable 

point densities caused by different scanning distances (Yang et 

al., 2018). Some works have presented strategies to cope with 

these problems by locating distinctive and robust 3D keypoints, 

extracting their features, and performing 3D matching for point 

cloud registration. 
 

Urban and indoor environments contain distinctive features that 

can be used in point cloud registration. These features may 

include buildings, corners, road networks, and transport facilities, 

which can provide points, planes, and surface features (Cheng et 

al., 2018). Arastounia and Lichti (2021) presented an approach 

for identification and point cloud registration using poles. Forest 

and agricultural environments are more challenging for point 

cloud registration due to the complexity of the field features. In 

these environments, laser data can be noisy, and a few features 

are available for matching, which has motivated the development 

of recent solutions for point cloud registration using forest and 

agricultural features. Liang and Hyyppä (2013) proposed a 

method for point cloud registration using tree stem locations as 

registration features. The method was evaluated in a point cloud 

obtained with a static terrestrial laser scanner in managed boreal 

forests. Kukko et al. (2017) presented a method for point cloud 

matching also using stem and ground observations for mobile 

mapping systems. Yuan et al. (2022) proposed a variant ICP 

(Iterative Closest Point) for the registration of point clouds 

collected in a peach field. 

 

However, tree stems are not always available in some agricultural 

environments, such as orange fields. Mature orange trees have a 

dense canopy covering the whole tree (see Fig. 2 and Fig. 3). 

Points reflected from the leaves populate a large portion of the 

data but are not suitable for solving an accurate registration with 
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the existing methods. Therefore, a feasibility study of keypoints 

detection and matching in such a challenging dataset for mobile 

mapping laser point cloud registration is still needed. In this 

work, Uniform Sampling (US) (Aldoma et al., 2012), 3D Harris 

(Sipiran and Bustos, 2011) and 3D ISS (Intrinsic Shape 

Signatures) (Zhong, 2009) keypoint detectors were investigated 

to evaluate the performance in an orange orchard dataset. The 

laser point clouds were collected by an Ouster OS0-128 laser 

scanning mounted in a backpack mobile mapping system. 

 

2. BACKGROUND 

2.1 Solid-state LiDAR sensor: Ouster laser scanner 

Solid-state sensor technology made feasible the introduction of 

laser scanning systems with only a single laser unit generating 

lightweight and compact systems, which have been currently 

employed for backpack mobile mapping systems (Castanheiro et 

al., 2022). The Ouster system is composed of vertical-cavity 

surface-emitting lasers (VCSEL) and a CMOS sensor with 

single-photon avalanche diodes (SPADs) to detect the returned 

pulse (Pacala, 2018). VCSEL is a technology for laser beam 

emission, which is a small generating compact sensor. SPAD is 

a solid-state photodetector that generates binary data when a 

returned pulse is detected. SPAD is incorporated into a silicon 

CMOS sensor, replacing many analogue components. The Ouster 

laser scanner is also composed of micro-optics that direct the 

laser light. Castanheiro et al. (2022) presented an overview of 

Ouster laser scanning systems. Fig. 1 shows the optical module 

of Ouster laser scanners, in which (a) illustrates the internal 

architecture and (b) the set of micro-optics. 

 

 
Fig. 1. Ouster laser scanners: (a) the internal architecture and 

(b) the set of micro-optics (adapted from Pacala and Frichti, 

2020, and Pacala and Shu, 2020). 

 

2.2 Point cloud registration methods 

Point cloud registration can be performed by feature-based or 

global methods. In this work we evaluated the performance of the 

global ICP method and CPD (Coherent Point Drift), and feature-

based approaches combining 3D keypoint detectors Uniform 

Sampling, 3D Harris and 3D ISS with the 3D feature extractor 

SHOT, aiming registration of consecutive point clouds acquired 

at orange fields. 

 

The most popular method of point cloud registration is the ICP, 

which has shown great potential for outdoor environments 

because it does not require keypoints and feature extraction (Besl 

and McKay, 1992). Another method is CPD (Myronenko and 

Song, 2010), in which rigid, affine, and non-rigid transformation 

point set registrations are supported. Implementation for most of 

these methods can be found in PCL (Point Cloud Library) (Rusu 

and Cousins, 2011), which has open-source codes to handle point 

cloud datasets. Furthermore, some of them were also 

implemented in MATLAB. 

Feature-based registration requires 3D keypoints extraction, 3D 

feature extraction, keypoint matching and the estimation of rigid 

body transformation. The 3D keypoint detector methods tested in 

this work (US, 3D Harris and 3D ISS) are briefly presented as 

follows. US keypoint detector builds a 3D voxel grid in the point 

cloud and takes the average point inside the voxel as keypoint. 

The resulting point cloud is downsampled in a uniform way. The 

3D Harris detector is an extension of the 2D Harris corner 

detector (Harris and Stephens, 1988). The keypoints are detected 

by taking the normals to the input point cloud. Points within a 

certain neighbourhood are selected, and then a covariance matrix 

of the normal is calculated. A value is calculated for each 

neighbourhood and its normal, based on the determinant and 

trace of the covariance matrix, similar to the 2D Harris operator. 

Finally, a local maximum suppression step is applied, and the 

resulting points are the keypoints for the input point cloud. 3D 

ISS keypoint detector uses the magnitude of the smallest 

eigenvalue and the ratio between two successive eigenvalues.  

 

After the 3D keypoints extraction, 3D feature extraction can be 

performed by applying different methods, such as Point Feature 

Histogram (PFH) (Rusu et al., 2008), fast PFH (FPFH) (Rusu et 

al., 2009) and Signature of Histogram of Orientations (SHOT) 

(Tombari et al., 2010). We evaluated SHOT in this work with the 

keypoint detectors. SHOT combined signatures and histogram 

features. The 3D descriptor is based on obtaining a local 

reference frame using the eigenvalue decomposition around a 

point. A spherical grid with an origin at this point divides the 

neighbourhood. Then, a weighted histogram of normal is 

determined in each grid, introducing geometric information 

concerning the location of the points. 

 

Most of the studies that evaluated 3D keypoint detectors and 

feature extraction have used benchmark point clouds, such as 

those from Stanford 3D Scanning repository (Stanford Bunny, 

the Happy Buddha, the Dragon, and the Armadillo), that do not 

represent real natural world objects (Tombari et al., 2013, 

Stancelova et al., 2020). Only recently, some works addressed the 

challenge of 3D point detection and feature extraction in mobile 

mapping point clouds acquired in indoor and outdoor 

environments. For instance, Ghorbani et al. (2022) evaluated the 

use of 3D keypoints detectors (i.e., 3D SIFT and 3D ISS) and 

SHOT method to register sequential indoor and outdoor point 

clouds. In conclusion, the authors highlighted as the main 

challenges for point cloud registration the quality, quantity, and 

spatial distribution of the extracted keypoints, and the matching 

of features extracted from homogeneous point clouds. This is 

because point cloud registration requires the estimation of the 

rigid body transformation parameters (Equation 1) using 

matching points found based on extracted features. The matching 

points can be obtained by comparing the resulting features based 

on a matching metric, such as Euclidean distance. Therefore, the 

features extracted from homogeneous point clouds, such as forest 

and agricultural environments, can be similar due to repetitive 

patterns, leading to false-positive matches and inaccurate 

estimation of 3D rigid body transformation. 

 

Equation 1 shows the 3D rigid body transformation in direct 

form, in which (xj, yj, zj) are the point coordinates in the laser 

point cloud j, (xi, yi, zi) are the point coordinates in the laser point 

cloud i, 𝑅𝑍(𝜅)𝑅𝑌(𝜑)𝑅𝑋(𝜔) are the rotation matrices from the 

reference system of point cloud i to point cloud j, and (TX, TY, 

TZ) are the translations in the respective axis. 

 

 (

𝑥𝑗
𝑦𝑗
𝑧𝑗
) = 𝑅𝑍(𝜅)𝑅𝑌(𝜑)𝑅𝑋(𝜔)(

𝑥𝑖 − 𝑇𝑋
𝑦𝑖 − 𝑇𝑌
𝑧𝑖 − 𝑇𝑌

) (1) 
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3. MATERIAL AND METHODS 

3.1 Backpack mobile mapping system 

The backpack mobile mapping system (Fig. 2 a) is composed of 

Ouster OS0-128 (Pacala, 2020) laser scanning system, a Ricoh 

Theta S dual-fisheye camera, Ublox GNSS receiver, a computer, 

a WiFi router and a 6S LiPo battery for power supply (Fig. 2 b). 

Regarding the aim of this work, only Ouster data was considered. 

The OS0-128 VCSEL simultaneously emits 128 pulses arranged 

in four vertical columns at an azimuthal FoV of 22° (Fig. 2 c). 

The laser scanner’s vertical and horizontal FoVs are 90° and 

360°, respectively, and can be classified as a wide FoV sensor. 

Table 1 shows the technical specifications of the OS0-128 laser 

scanner system. The Ouster laser scanners have an internal IMU 

with three-axis gyroscopes and three-axis accelerometers. The 

internal Ouster IMU (InvenSense ICM-20948) data is recorded 

at 100 Hz frequency. A Dell OptiPlex 3070 computer was used 

to collect the Ouster data. 

 

 
Fig. 2. Mobile Mapping System: (a) the backpack platform and 

the sensors embedded in the MMS, (b) OS0-128 sensor with 

128 beams that are simultaneously emitted, and (c) the 

computer, battery, GNSS receiver and WiFi router placed inside 

the backpack (adapted from Castanheiro et al., 2021). 

 

OS0-128 

Field of view Vertical: 90°; Horizontal: 360° 

Vertical resolution 128 

Horizontal resolution 1024 or 2048 

Frequency 10 or 20 Hz 

Laser wavelength 865 nm 

Beam divergence 0.35° (6.1 mrad) 

Beam diameter  5 mm 

Range accuracy 5 cm 

Angular accuracy Vertical: ±0.01°; Horizontal: ±0.01° 

Dimensions Diameter: 85 mm; Height: 73.5 mm 

Weight 445g 

Table 1. Technical information of Ouster OS0 sensor with 128 

channels (OS0-128) (OUSTER, 2020). 

 

3.2 Test area and data acquisition 

The experimental data were collected in an orange orchard (Fig. 

3 a). The backpack platform was carried by an operator while 

walking in the orange field (Fig. 2 a). The laser data was acquired 

with a 20 Hz scan frequency and a horizontal resolution of 1024 

ticks (number of steps in a single sensor turn). A trajectory of 

approximately 220 m totalling 7977 scans was recorded (Fig. 3 

b). In this work, five (5) first 360° scan point clouds (named here 

as frames), with 1 fps, were selected with the aim of evaluating 

the efficiency of the selected 3D descriptors to generate a local 

map. Local maps are one of the steps of SLAM (simultaneous 

localisation and mapping), which is used to generate a global map 

of the entire environment. Fig. 3 a shows the test field, while Fig. 

3 b shows the test field location and the trajectory (in yellow). 

Fig. 4 a shows examples of (a) top and (b) vertical views of a 

360° laser frame point cloud collected by the Ouster laser scanner 

in a top view. In Fig. 4 b, it is possible to visualise the oranges 

trees mapped in a 360° laser frame. Only the canopy, leaves and 

ground are mapped in the point cloud. The canopy is very dense, 

and the laser scanner penetration (only dual-mode echo 

detection) is not enough to detect the stems.  

 

 
Fig. 3. (a) Test field and (b) the location, the trajectory (in 

yellow). 

 

 
Fig. 4. 360° laser frame point cloud: (a) top view, and (b) 

orange trees. 

 

3.3 Data processing 

All experiments were performed with algorithms implemented in 

C++ in Visual Studio using PCL functions and MATLAB. The 

US, 3D Harris and 3D ISS keypoint detectors were implemented 

in C++ using PCL (Rusu and Cousins, 2011). These three 

methods use only 3D point coordinates. There are other methods 

available in PCL that use laser intensity stored in the point cloud 

data, but their use was left for future work.  
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First, the keypoints were detected in five sample point clouds 

with each one of the selected methods. The repeatability of the 

keypoint detection was evaluated as presented by Salti et al. 

(2011). A keypoint detected in a point cloud is transformed with 

three (3) rotations and three (3) translations to another point 

cloud, based on the initial alignment. A transformed keypoint is 

considered repeatable if the 3D distance to the nearest neighbour 

is less than a threshold. The threshold was set at 20 cm, based on 

the angular resolution and the average distance from the trees to 

the Ouster sensor. After that, the matched keypoints were used to 

estimate the transformation matrix by the Least Square Method 

(LSM). This result was compared with the transformation matrix 

estimated with the point cloud registration tool in CloudCompare 

(2016), used as a reference. 

 

The SHOT feature extractor was used with the keypoints that 

presented the best results. Then, the 3D matching was performed 

by calculating the Euclidean distance. The estimated 

transformation matrix was compared with the reference, as 

mentioned above. Aiming to evaluate the true matches, the 3D 

distances between the matched keypoints were calculated and 

compared to the specified threshold, as mentioned before. Then, 

the rigid body parameters were again estimated by LSM. 

 

The point cloud registrations with ICP and CPD were performed 

in MATLAB. Ouster system provides different vertical and 

horizontal resolutions for the resulting point clouds, as shown in 

Fig. 4 a. Therefore, the laser point clouds were downsampled, 

aiming to uniformalise the point cloud and improve the 

performance of the point cloud registration with ICP and CPD. 

In this case, no initial values were used. The CPD approach was 

applied considering 3D rigid body transformation. The 

transformation matrix obtained with each method was compared 

with the reference transformation matrix. The point clouds were 

registered with the first scan as the origin. 

 

4. RESULTS AND DISCUSSIONS 

4.1 Keypoints assessment 

The parameters in the keypoint extractor algorithm were set 

aiming to extract approximately 100 points. On average, 137, 65 

and 164 keypoints were obtained with US, 3D Harris and 3D ISS, 

respectively. Table 2 shows the total of keypoints detected in 

each point cloud with US, 3D Harris and 3D ISS methods and the 

keypoints repeatability of each point cloud evaluated in 

comparison to the first scan.  

 

Fig. 5 shows the distribution of the keypoints detected in the first 

scan with (a) US, (b) 3D Harris, and (c) 3D ISS methods. 

Repeatability and spatial distribution of the keypoints are 

important factors for accurate point cloud registration. Between 

the 3D keypoint methods tested, 3D Harris method presented the 

lowest performance in terms of repeatability and spatial 

distribution, detecting fewer keypoints when compared with the 

others (Fig 5 b). Uniform Sampling and 3D ISS methods show a 

more suitable repeatability performance (Fig. 5 a and Fig 5 c), 

however, 3D ISS method presented better repeatability and 

keypoint distribution when compared to the other two methods 

(Fig. 5 c). 

 

Scan 
US 3D Harris 3D ISS 

Total Match Total Match Total Match 

1 148  57  170  

2 148 24 70 6 171 62 

3 136 7 76 4 173 53 

4 138 6 85 5 161 39 

5 128 5 55 10 149 26 

6 126 5 44 1 160 26 

Table 2. Total of keypoints obtained with UniformSampling, 

3D Harris, and 3D ISS method.  

 

The matched points with the 3D Harris keypoints were almost the 

same in all stations in the trajectory, but only a single point was 

matched in the last station. Therefore, the transformation 

parameters were not estimated for this sample since it did not 

have enough matched points to compute a rigid body 

transformation (Table 2). The largest number of matched points 

was obtained with 3D ISS method. 

 

The rigid body transformation parameters estimated with the 

matched keypoints by LSM were compared with the parameters 

estimated with registration with CloudCompare. Table 4, Table 

5, and Table 6 show the mean, standard deviation and root mean 

square error (RMSE) of discrepancies between the reference 

parameters and those estimated with UniformSampling, 3D 

Harris and 3D ISS keypoints, respectively. This statistical 

analysis for parameters estimated using 3D Harris keypoints was 

performed for the first five point clouds (1 to 5). 

 

Parameters Mean Standard Dev. RMSE 

TX (m) 0.020 0.082 0.073 

TY (m) -0.021 0.081 0.073 

TZ (m) 0.022 0.068 0.061 

ω (°) -0.13349 0.85866 0.7680 

φ (°) 0.00008 0.49935 0.4466 

κ (°) -0.48489 1.34261 1.2008 

Table 4. Statistical of discrepancies of the transformation 

parameters estimated with US keypoints. 

 

Parameters Mean Standard Dev. RMSE 

TX (m) 0.038 0.122 0.105 

TY (m) -0.002 0.082 0.071 

TZ (m) 0.006 0.041 0.036 

ω (°) -0.07758 0.90631 0.78489 

φ (°) 0.53194 0.70224 0.60816 

κ (°) -0.72014 1.27878 1.10746 

Table 5. Statistical of discrepancies of the transformation 

parameters estimated with 3D Harris keypoints. 

 
Fig. 5. Keypoints (in red) detected in the first scan with (a) Uniform Sampling, (b) 3D Harris, and (c) 3D ISS methods. 
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Parameters Mean Standard Dev. RMSE 

TX (m) 0.015 0.069 0.061 

TY (m) -0.022 0.068 0.061 

TZ (m) 0.037 0.060 0.054 

ω (°) -0.39543 0.80148 0.71687 

φ (°) 0.25237 0.45084 0.40325 

κ (°) -0.44822 1.40009 1.25228 

Table 6. Statistical discrepancies of the transformation 

parameters estimated with 3D ISS keypoints. 

 

RMSEs of the translations were approximately 7 cm for each 3D 

keypoint method, which is similar to the laser accuracy. The 

angular precision was an average of 0.7° and 0.5° for ω and φ, 

respectively, and slightly higher for κ. 

 

4.2 SHOT method assessment 

The SHOT method was used to extract features for the keypoints 

detected by Uniform Sampling and 3D ISS for the five scans with 

the selected parameters. RMSE in translations were larger than 1 

meter and the angular errors were higher than 10° for both 

experiments. These errors are the result of many mismatches. The 

matching technique implemented in PCL compares a keypoint 

detected in a point cloud with all the keypoints detected in 

another point cloud (Brute-Force matcher). This can lead to 

incorrect matches in a homogenous environment, such as orange 

orchards. Fig. 6 shows the result of the point cloud registration 

obtained with the combination (a) SHOT+US and (b) SHOT+3D 

ISS keypoints. 

 

 
Fig. 6. Point cloud matching combined SHOT feature-based 

method with (a) Uniform Sampling and (b) 3D ISS keypoints. 

 

The green lines represent the matched pairs, and they evidence 

the incorrect matches. Therefore, it is necessary to eliminate false 

matchings before estimating the transformation parameters. In 

this paper, we filtered the mismatches by calculating the 3D 

distances between the matched points and compared them with 

the threshold. Table 7 shows the total matches obtained with 

SHOT and the number of correct matches based on the 3D 

distances and the threshold. Table 8 shows the RMSE of the 

estimated parameters, which were significantly improved. The 

RMSE of discrepancies were lower with 3D ISS keypoints. 

 

Scan 
US 3D ISS 

Total  Correct  Total  Correct  

1-2 88 11 156 46 

1-3 64 6 140 21 

1-4 65 1 116 10 

1-5 45 0 80 10 

1-6 39 0 78 6 

Table 7. Total of matches obtained with SHOT and keypoints 

(US and 3D ISS) and the correct matches based on the 3D 

distances between points. 

 

Parameters US 3D ISS 

TX (m) 0.111 0.076 

TY (m) 0.039 0.061 

TZ (m) 0.074 0.085 

ω (°) 0.11887 0.80795 

φ (°) 1.27536 0.61640 

κ (°) 1.42882 1.23609 

Table 8. RMSE of discrepancies of the transformation 

parameters estimated with the filtered SHOT matched 

keypoints. 

 

Some methods, such as RANSAC, can be used to identify 

mismatches combined with additional strategies, such as the 

reduction of the search space. These techniques are fundamental 

for feature-based matching methods in homogenous areas, as it 

was observed in this paper since better results were obtained 

when filtering the outliers by distance.  

 

4.3 Global method registration assessment 

The ICP technique had good performance for the registration of 

the two first point clouds in the sequence, which were acquired 

with 1-second interval (spatial distance of 1.5 m). However, the 

registration of the third and subsequential scans with the first 

point cloud did not present good results with the ICP, requiring 

reasonable initial values for the transformation parameters. The 

initial values of the trajectory can be obtained from the IMU data, 

an alternative which will be studied in future work to reduce 

motion deformations. On the other hand, the registration with 

CPD presented better results in the registration trials, and without 

needing for initial values for the trajectory. 

 

Parameters ICP CPD 

TX (m) 0.379 0.075 

TY (m) 0.030 0.055 

TZ (m) 0.028 0.055 

ω (°) 0.14628 0.71495 

φ (°) 0.18193 0.37697 

κ (°) 1.23400 0.31370 

Table 9. RMSE of discrepancies of the transformation 

parameters estimated with ICP and CPD. 

 

5. CONCLUSION 

This work presents the assessment of feature-based approaches 

combining the 3D keypoint detectors Uniform Sampling, 3D 

Harris and 3D ISS with the 3D feature extractor SHOT, and 
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global methods (ICP and CPD) for point cloud registration. First, 

the keypoint detection methods were analysed, with 3D ISS and 

US presenting better results. After that, the SHOT feature-based 

matching was evaluated considering both 3D ISS and US 

keypoints. Most of the laser data contain points over leaves and 

ground, making it difficult to extract stable features since most of 

these 3D feature extraction methods are developed for indoor 

areas abundant with corners and planes. The orange fields do not 

exhibit these types of objects (Fig. 4 b). In addition, orange 

orchards present an environment of globally repetitive patterns 

and locally fractal features, leading to a challenging matching 

problem. The excessive number of mismatches affected the 

estimation of the translation and rotation parameters, requiring an 

approach to filter the outliers. In this work, the matches were 

filtered based on 3D distances, which improved the results.  

 

Global methods, which do not use feature extraction, were also 

assessed. For better performance of these approaches, the point 

clouds need to be resampled to produce a regular pattern. In 

addition, the results can be improved using initial values, which 

can be obtained from the internal IMU sensor of the OS0-128 

scanner. The CPD outperformed ICP and did not require initial 

values for the transformation. 

 

For future work, other feature-based methods will be tested for 

this environment. Furthermore, an additional strategy will be 

used to filter the mismatches and reduce search space. 
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