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ABSTRACT:

Exploration is a fundamental problem in robotics that requires robots to navigate through unknown environments to autonomously
gather information about their surroundings while executing collision-free paths. In this paper, we propose a method for producing
smooth paths during the exploration process in indoor environments using UAVs to improve battery efficiency and enhance the qual-
ity of pose estimation. The developed framework is built by merging two approaches that represent the state of the art in the field of
autonomous exploration with UAVs. The overall exploration logic is given by GLocal, a paper that introduces an hybrid, i.e. both
sampling-based and frontier-based, framework that is able to cope with the issue of odometry drift when exploring indoor environ-
ments due to the absence of absolute localization, e.g. through GNSS. The second paper is FUEL, which introduces a frontier-based
exploration methodology which computes the drone’s path as an optimized non-uniform B-Spline. The framework described in
this paper borrows the optimized B-Spline trajectory generation from FUEL and implements it in GLocal. The presented system is
evaluated in two different simulated environments, which show the pros and the cons of such method.

1. INTRODUCTION

Autonomous exploration with indoor Unmanned Aerial
Vehicles (UAVs) has become an increasingly popular approach
for mapping indoor environments, as can be seen in recent pa-
pers such as (Karam et al., 2022). Thanks to advancements in
sensor technologies and robotics algorithms, such as SLAM,
path planning, machine learning, and low-level control, UAVs
are now able to navigate complex and cluttered indoor environ-
ments with greater ease than before. UAVs are ideal for map-
ping indoor environments due to their speed, agility, and accur-
acy. However, planning a safe and efficient path indoors can
be difficult, particularly in scenarios such as Crisis and Disaster
Management (CDM) where low visibility and obstacles such
as furniture and rubble can impede the process. Furthermore,
indoor settings in CDM missions might be unstructured, thus
planarity and orthogonality assumptions on the environment
can’t be leveraged to support the trajectory generation process.
Moreover, estimating the UAV’s position and orientation can be
difficult without the availability of Global Navigation Satellite
System (GNSS) signals, forcing a reliance on relative state es-
timation. These factors necessitate the careful development of
path planning algorithms that account for the unique character-
istics of indoor environments in order to enable efficient and
collision-free indoor navigation.

Despite advancements in autonomous exploration with indoor
UAVs (Zhang et al., 2022), there is still a need to enhance map-
ping efficiency. This can be done by optimizing the traject-
ory generation process, thus making the UAV move more ef-
ficiently, covering the entire indoor environment more quickly
and with fewer movements. This involves creating a path for
the UAV that considers factors such as dynamic feasibility, col-
lision avoidance, energy management, and execution time.

This paper aims at improving the state of the art introduced in
∗ Corresponding author

GLocal (Schmid et al., 2021) by optimizing the execution of
the path computed by the already existing Receding Horizon
Rapidly Exploring Random Tree (RH-RRT) with a local tra-
jectory planning method based on B-Splines that allows the
quadrotor to fully utilize its dynamic capabilities. Figure 1
shows an example of a local B-Spline. This paper investig-
ates non-uniform B-Splines instead of other techniques such as
minimum-snap based trajectory generation (Mellinger and Ku-
mar, 2011), approaches based on Deep Reinforcement Learn-
ing (Sun et al., 2021) and control-based methodologies (Ku-
lathunga and Klimchik, 2022). This choice is motivated by
their unique properties, which will be explained in Section 3,
and their proven performance in computing trajectories for fast
flight in 3D complex environments (Zhou et al., 2019). It con-
tributes to the literature in two aspects:

• It improves the performance of a state of the art autonom-
ous exploration algorithm.

• The non-uniform B-Spline approach to path planning built
on top of the original GLocal framework adds to the scarce
literature of fast autonomous exploration under odometry
drift.

2. RELATED WORK

A. Autonomous Exploration

The goal of Exploratory Path Planning (EPP) algorithms
is to autonomously plan paths that cover an entire area that
needs to be mapped. Multiple solutions have been proposed in
the cases where the map’s occupancy grid is known a priori,
such as (Shen et al., 2021) and (Rottmann et al., 2021). These
approaches that assume a known map are not suitable for
completely unknown environments, since a global plan can’t
be computed a priori. Methods to tackle the exploration of
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Figure 1. An example of the B-Spline trajectories that our al-
gorithm produces in real-time. The colored (pink, light green
and violet) area in the background represents the mesh of the ex-
plored volume, the small arrows the sampled viewpoints pointing
towards the optimal yaw, the thick axes the flying UAV and the
red curve the sampled B-Spline that connects the selected best
viewpoints. The simulation is running in Gazebo.

unknown space have been researched since 1981 (Kuipers
and Byun, 1991), when a method to autonomously explore a
previously unknown 2D area while considering sensorimotor
errors was proposed. Over the years, new and more efficient
techniques have been researched and developed, and they can
be divided in three main classes: sampling-based, frontier-
based and hybrid. Most of the state of the art approaches
assume perfect knowledge of the robot’s position at all times
in the map, ignoring the estimation uncertainties that surround
real missions. For example, both the authors of (Duberg and
Jensfelt, 2022) and (Schmid et al., 2020) use a motion capture
system in their real world experiments to remove the errors
introduced by state estimation drift. A solution to this problem
has been proposed by (Zhang et al., 2022), in which the
approach includes a Truncated Signed Distance Field (TSDF)
mapping framework with real-time re-integration and frame
pruning based on a set cover selection criterion. Key frames
are re-integrated with updated camera poses to rectify the
map distortions caused by the localization drift whenever a
loop closure is detected. The authors also introduced a novel
key frame selection method based on set cover formulation
and space partitioning improving real-time performance.
Furthermore, the localization drift is reduced by implementing
an active loop closing strategy in the path planning process.
Another paper that proposed a solution to this issue is GLocal
(Schmid et al., 2021), the paper on which our methodology
builds upon. It introduces the idea of actively tackling the
pose drift problem that naturally arises in real-word scenarios
of indoor exploration. The core idea is to combine various
layers of mapping and planning to achieve the goal. A sliding
window map is used to overcome the problem of inaccurate
state estimation, which might lead to collisions with the envir-
onment. This map is built exclusively on up-to-date sensor data
so that reliable collision checking can be performed. Sliding
window maps are periodically stored as sub-maps, which are
then organized in an overall global map. Whenever a sub-map
is added to the global one, its traversability graph is computed
and connected to the graphs of overlapping sub-maps. To
ensure collision-free path planning even under pose drift,
the local planner samples viewpoints only within the sliding
window, which are then connected forming a graph. The
computed most informative path is then executed in a Receding
Horizon - Next Best View (RH-NBV) fashion. If none of the
sampled viewpoints returns a high enough information gain,

the planner plans a path over the frontiers in the global map.
The assumption behind this step is that even small frontiers
can lead to discovering large unknown areas. Thus, the closest
frontier according to the Euclidean distance is chosen as a goal.
To reach it while still guaranteeing a collision-free path, the
trajectory is computed over the previously saved traversability
graph of each submap. They show that this approach leads to
safe exploration even under strong odometry drift.

B. Optimization-Based Trajectory Planning

To improve GLocal’s explored volume over time, the ori-
ginal receding-horizon planning logic is replaced with a
method based on FUEL (Zhou et al., 2021). It involves
the computation of a smooth minimum-time non-uniform
B-Spline trajectory that enables the UAV to navigate through
the sampled viewpoints of the RRT by fully utilizing its
dynamic capabilities. Many optimization-based trajectory
generation methods have been proposed and implemented
in the field of robotics, and existing methods can be broadly
categorized as hard-constrained or soft-constrained methods.
Hard-constrained methods, such as minimum-snap trajectory
generation (Mellinger and Kumar, 2011), represent trajectories
as piecewise polynomials and generate them by solving a
quadratic programming problem. These methods ensure
global optimality but are limited by conservative kinodynamic
constraints that can result in slow trajectories. Soft-constrained
methods such as (Park et al., 2021), on the other hand, use
non-linear optimization to generate smooth trajectories while
also considering safety constraints. However, they suffer from
local minima and have no strong guarantees of convergence
nor kinodynamic feasibility. Other methods take a two-step
pipeline approach, where a collision-free path is planned first,
and then the smoothness and time-allocation of the relevant
trajectory are optimized based on the shape of the path. For
instance, B-Splines, Bézier curves, and piecewise polynomials
are commonly used to represent shape-constrained trajectories
in cluttered environments. Sampling-based (Karaman and
Frazzoli, 2011) and searching-based (Likhachev et al., 2003)
methods are used to plan a collision-free path, while gradient-
based methods (Ratliff et al., 2009) are employed to guarantee
smoothness and dynamical feasibility. However, these methods
separate the trajectory shape and the trajectory parametrization,
which can lead to sub-optimal or unfeasible trajectories since
the system behaviour over time is not taken into consideration.
This makes it important to choose appropriate methods that
consider the system’s dynamics when generating trajectories.
To address these issues, some recent methods consider both
the trajectory shape and the dynamics at the same time. For
example, (Usenko et al., 2017) uses an optimization-based
method which cost function considers smoothness, dynamic
constraints, and obstacle avoidance.

In this paper, we propose an autonomous exploration frame-
work that expands the original approach of GLocal (Schmid et
al., 2021) with a real-time optimization-based trajectory gener-
ation process based on the work of (Zhou et al., 2021) to enable
faster exploration in indoor environments.

3. PROPOSED METHOD

Figure 2 describes the overall structure of our approach.
Everything begins from the data coming from the onboard
sensors the drone is equipped with, i.e. a 3D lidar with a 360°
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Figure 2. The structure of the proposed algorithm.

horizontal field of view (FOV) and a 59° vertical FOV and an
Inertial Measurement Unit (IMU). The mapping and sampling
components are kept almost identical to the original implement-
ation of GLocal in order to maintain the safety guarantees when
exploring environments under sever odometry drift. The only
difference is that, given the use of the 360° lidar mounted with
no pitch relative to the UAV’s frame of reference, the yaw op-
timization process carried out while sampling the RRT is not
needed anymore. This optimization was based on (Witting et
al., 2018), where the yaw that optimizes the amount of un-
mapped voxels in the sensor frustum for each sampled view-
point is computed. By removing this component, each sampling
iteration becomes more efficient. Once the original planner is
done with sampling the RRT and computing the optimal local
path, instead of executing the first segment and then sampling
the tree once again in a RH fashion, our method looks one more
step ahead by also selecting the second waypoint in the best
RRT branch. As will be shown in Section 4, this choice of
control points has both pros and cons, namely the exploration
of more space at the expenses of the overall traveled distance.
Then, the current pose of the UAV and the two connected way-
points become the initial control points used to initialize the
B-Spline, as shown in a simplified drawing in Figure 3.

B-Splines are piecewise polynomials uniquely defined by their
degree d, a set of N control points [P1, P2, . . . , PN ] and a knot
vector [k0, k1, . . . , kM ], where Pi ∈ R3, ki ∈ R and M =
N + d. A B-Spline trajectory is parameterized by time t, where
t ∈ [td , tM−d ]. In a uniform B-Spline, each knot span ∆ki =
ti+1 − ti has the same ∆t. By normalizing t ∈ [tj , tj+1), tj <

tj+1 to u(t) =
t−tj

tj+1−tj
, the matrix representation of the B-

Figure 3. A simplified 2D representation of how the local B-
Splines are planned. The black crosses and the related links are
the sampled RRT. As per the GLocal methodology, these points
are only sampled in the free visible space, so there will never be a
point behind the obstacles (the red shapes). The highlighted path
is the one with the highest cumulative gain, and the highlighted
waypoints are the one used to plan the B-Spline, the pink curve.

Spline can be used to evaluate the position at time t:

p(u(t)) =
[
1 u(t) u2(t) . . . ud(t)

]
Md+1


Pj−d

Pj−d+1

Pj−d+2

. . .
Pj

 (1)

As shown in (Kaihuai Qin, 1998), for a cubic B-Spline with d
= 3, Md+1 is:

M4 =
1

3!


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

 (2)

The two main properties of B-Splines relevant to path planning
are the continuity and the convex hull.

• Continuity: the continuity at the knots is at most Cd−2,
where d represents the degree of the B-Spline. So, a cubic
B-Spline is C2 continuous at the junction points between
the polynomials of order d-1 that form the spline itself

• Convex hull: a B-Spline curve is fully contained in the
convex hull of its control points, i.e. the smallest convex
polygon containing all the points. A representation of this
property is shown in Figure 4

If uniform B-Splines have the same knot spans ∆tj through-
out the entire curve, non-uniform B-Splines allow for different
∆tjs.

Once the set of control points has been selected, a smooth path
that passes through them has to be planned. For this purpose,
B-Splines are an ideal tool. To do so, the selected subset of
control points [Pd, Pd+1, . . . , PN−d] and the knot spans are
optimized based on factors such as smoothness of the path,
velocity and acceleration constraints and fit to the original
waypoints as described by the FUEL paper (Zhou et al., 2021).
A cost function that encapsulates all the desired characteristics
of the final trajectory is setup and used in the optimization
problem. The C2 continuity property of the cubic B-Spline
results in smooth paths both in velocity and in acceleration,
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Figure 4. Representation of the convex hull property of a B-
Spline. The red dots are the control points, the green ones are
the knots, the gray curve is the spline and the yellow areas are the
convex hulls of the control points. The image on the right shows
that the property is also valid for a sub-set of control points.

a desired property that avoids jagged and sudden movements
of the drone. Finally, to make sure that the resulting spline is
also collision-free, the convex hull property is leveraged: if
every convex hull of the B-Spline is collision-free, then the
B-Spline is collision-free as well. The original FUEL approach
explicitly incorporates an obstacle distance element in the cost
function, while our method omits it, as the GLocal sampling
logic guarantees that waypoints lie solely within known free
space during local trajectory planning. This process would not
be possible without the differential flatness property of quad-
copters, as shown in (Mellinger and Kumar, 2011). Differential
flatness is the extension of the concept of controllability in
linear dynamical systems to nonlinear ones. Thanks to this
property, the initial trajectory that will then be optimized can
be represented with three independent polynomial functions,
px, py, pz .

This same procedure for generating and optimizing the
B-Spline is also used on the global paths computed by GLocal,
this time using the A* waypoints as control points for the
B-Spline. Once either the local or the global smooth path has
been computed, the state machine that governs the overall
system enters a dedicated state where the drone follows the
spline while making sure that no collisions are about to happen.
Slightly before concluding the execution of the path, the next
RRT is sampled and the new spline is computed. By doing
so, the UAV can keep flying in a continuous trajectory and
stopping only when necessary. Furthermore, while following
the longer global splines, it keeps expanding the RRT in the
background to constantly check if it should stop following
the path to pursue a newly discovered viewpoint with a high
exploration value. This logic ensures that the drone is always
reactive to new discoveries.

4. EXPERIMENTS AND RESULTS

Originally, the GLocal framework was based on a simulation
built on AirSim 1 and Unreal Engine 4 2. Given the require-
ments of the overall project in which this paper has been de-
veloped, the code has been adapted to run on a custom simu-
lation environment. To validate the developed methodology, a
simulation based on the Software in the Loop (SITL) simula-
tion provided by ArduPilot 3, the Gazebo 11 simulator 4, the
1 https://microsoft.github.io/AirSim/
2 https://www.unrealengine.com/en-US
3 https://ardupilot.org/dev/docs/

sitl-simulator-software-in-the-loop.html.
4 https://staging.gazebosim.org/home

Robot Operating System (ROS) 5 and the MAVROS package
6 has been implemented. To use these tools together for UAV
simulation, a virtual environment in Gazebo that mimics the
physical environment in which the UAV will operate is created.
In this paper, the chosen testing environments are two:

• The Amazon Web Services (AWS) small house 7 shown in
Figure 5

• The AWS hospital environment 8 shown in Figure 5

Figure 5. The house and the hospital simulated worlds used for
testing the exploration algorithm.

The algorithm was developed for a mission that may require ex-
ploration of an indoor environment, and therefore the simulated
worlds have been selected as suitable options to represent such
an environment. Furthermore, the latter has been chosen be-
cause of its long corridors and its cluttered environment to test
the long range exploration performance of the algorithm.
Once the world has been created, the ArduPilot SITL is used
to simulate the UAV’s firmware and control system within the
Gazebo environment. The chosen UAV is a realistic replica of
the 3DR IRIS Quadcopter 9. MAVROS facilitates communica-
tion between ROS and simulated UAVs, enabling the develop-
ment and testing of algorithms using the ROS platform.

First, the house environment is evaluated. The results are shown
in Figure 6. Three different metrics have been chosen to com-
pare the performances of the two algorithms: observed volume
[m3], distance traveled over time [m] and CPU usage. Their rel-
evance can be easily motivated, given that the volume observed
over time is the primary objective of the exploration process,

5 https://www.ros.org/
6 http://wiki.ros.org/mavros
7 https://github.com/aws-robotics/

aws-robomaker-small-house-world
8 https://github.com/aws-robotics/

aws-robomaker-hospital-world
9 https://www.arducopter.co.uk/iris-quadcopter-uav.

html
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Figure 6. Comparative results of the two algorithms running in
the small house environment. The mean and the standard de-
viation of each metric are plotted. GLocal represents the per-
formance of the original implementation, whereas BSpline is our
approach. Each method is interrupted when there are no more
frontiers left to explore. The results were averaged over 5 exper-
iments.

minimizing the traveled distance is a desirable outcome in terms
of efficiency, and CPU utilization is crucial for real-time execu-
tion of the algorithm. In the small environment of the house,
it can be seen how the original implementation of GLocal ini-
tially outperforms our method with respect to the amount of ob-
served volume as it converges to a higher amount more quickly.
However, it’s worth noticing how the B-Spline algorithm con-
cludes the exploration approximately 50 seconds earlier. This
result is explainable by the smoothness and continuity of the
generated paths. Furthermore, the overall traveled distance is
slightly lower in our approach, a result that can be seen as a
consequence of the shorter exploration time. Lastly, The CPU
usage is comparable between the two algorithms, a significant
result given the added complexity of the nonlinear optimiza-
tion problem which generates the B-Splines at every iteration.
More simulations were run in the hospital environment, and the
results are shown in Figure 7. Given that fully exploring this
much larger environment would take significantly more time,
a different approach has been taken with these results; rather
than waiting for the environment to be fully explored, a fixed
time window has been chosen, and the metrics have been as-
sessed over this period. The results show a marginal improve-
ment in the observed volume of approximately 100 m3, which
is not much but still quite important in the context of autonom-
ous exploration. On the other hand, this extra explored space
is counterbalanced by a higher traveled distance. These out-
comes can be interpreted by looking at the simulations: in this
bigger and more complex environment, the longer planning ho-
rizon of the B-Spline algorithm was often led to explore nooks
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Figure 7. Comparative results in the hospital world over a fixed
time window. The results were averaged over 3 experiments.

and crannies that the GLocal algorithm simply observed by ex-
ploring their immediate surroundings and immediately moving
on. This behaviour had a smaller impact in the previous exper-
iments in the house given the smaller overall volume. Lastly,
it’s worth noticing how the CPU usage of the two algorithms is
still comparable, shining a light on the real-time capabilities of
this approach.

The real strength of the B-Spline method is represented by the
smoother trajectories that it produces. As previously stated, a
third degree spline is C2 continuous, which leads to a continu-
ous linear acceleration profile.

Table 1. Comparison of mean, standard deviation and absolute
maximum value of the three dimensional accelerations of the
UAV using the two different algorithms.

Acceleration [ms−2]

GLocal B-Spline
x y z x y z

Mean 0.054 0.015 0.049 0.033 0.035 0.012
SD 0.841 0.978 0.725 0.401 0.390 0.275

|Max| 2.988 3.422 4.801 3.011 2.783 1.757

As shown in Table 1, the standard deviation of the accelera-
tion is at least 47% lower while following the B-Spline traject-
ories. This results shows how the GLocal approach produces
more jagged movements given by the start and stop that hap-
pens whenever a waypoint is reached. Smoother linear accel-
eration trajectories are desirable for many reasons, one of them
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being the quality of the pose estimation of the robot in Active
SLAM (A-SLAM) frameworks. Continuous movements are re-
quired to enhance the estimation quality, as sudden changes in
trajectory might confuse the underlying motion model used to
propagate the pose estimation. Moreover, the enhancement of
pose estimation quality has a positive impact on the overall per-
formance of global mapping consistency. Furthermore, it can
be argued that more conservative acceleration profiles lead to
an increased power efficiency. This assumption can be done by
looking at Equation 3, which relates the required thrust to the
linear acceleration, as shown in (Kumar et al., 2020).

ẍÿ
z̈

 = q⊗ 1

m

 F2sθ2 + F4sθ4
−F1sθ1 − F3sθ3

F1cθ1 + F2cθ2 + F3cθ3 + F4cθ4

⊗q∗−

00
g


(3)

In the equation, ẍ, ÿ, z̈ represent the linear accelerations along
the respective axes, q the quaternion that rotates the acceleration
array from the body frame to the inertial frame of reference, s
and c are respectively sine and cosine, θi are the tilt angles
of the rotors, and Fi are the propeller thrust forces. Finally, m
and g are the mass of the drone and the gravity acceleration.
It’s easy to see that stronger accelerations require higher thrust
from the rotors, which is one of the main culprits when it comes
to battery drain.

5. CONCLUSION AND FUTURE WORK

This paper has explored the implementation of a planning
algorithm based on optimized non-uniform B-Splines in an
autonomous exploration framework. At every iteration, a non-
linear optimization problem that computes the optimal, with re-
spect to factors such as curve smoothness and dynamical feas-
ibility, control points and knot spans of a B-Spline curve that
explores the next best view waypoints sampled by the under-
lying exploration algorithm. This approach has been shown
to slightly improve on the baseline algorithm GLocal in small
scenarios such a small apartment by reducing the exploration
time and the overall traveled distance while maintaining com-
parable performances with respect to CPU usage. When ex-
ploring bigger and more complex environments with many
obstacles and different rooms, our methodology produces sim-
ilar performance in terms of the selected metrics while margin-
ally increasing the explored volume. A significant improvement
over the baseline technique are the C2 continuous trajectories,
which could lead to enhanced performances with respect to con-
tinuous pose estimation in A-SLAM frameworks and battery
management. Future work on this method includes the devel-
opment of a different strategy to select the initial control points
that define the spline and the implementation of a more con-
tinuous velocity profile over the entire mission. Furthermore,
this method will be included in a bigger A-SLAM framework
to enable complete autonomous exploration of unknown envir-
onments. In this A-SLAM context, the assumption that was
made on the improvement of mapping accuracy will be tested.
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