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ABSTRACT: 

 

As research on autonomous driving deepens, High-definition Maps (HD Maps) have gradually become an auxiliary information for 

the new generation of autonomous driving technology. Compared to traditional electronic navigation maps, HD Maps have higher 

accuracy requirements and more information. Multi-road environment information and road elements are included. In the production 

of  HD Maps, the on-board Mobile Laser Scanning (MLS) system has the ability to quickly collect environmental information, with 

high precision, thus making the system a widely used data collection method today. However, subsequent map building, digitization, 

and other mapping work still rely on manual operation, which is time-consuming and laborious. Therefore, this research is dedicated 

to developing a semi-automatic algorithm to generate HD Maps from the acquired point cloud data. This research focuses on the 

extraction of road surface markings, using the Cloth Simulation Filter (CSF) to obtain the road surface point cloud to improve the 

extraction efficiency. The road markings are extracted using the characteristic of high intensity values, and the commonly used Otsu 

threshold filter in image processing is used to extract point clouds with high reflectance intensity, eliminating the need for manual 

setting of point clouds. And based on geometric conditions, the objects are classified, such as arrow lines, pedestrian crossings, stop 

lines, and lane lines, which are convenient for further mapping HD Maps. 

 

 

1. INTRODUCTION 

1.1 General Instructions 

    According to the Monitoring Progress in Urban Road Safety: 

2022 Update, released by the World Health Organization(WHO) 

in 2022, an estimated 1.3 million people die on the roads 

worldwide every year, with 20-50 million people suffering non-

fatal injuries. The main factor in traffic accidents is human error, 

such as driver distraction, excessive speed, and poor directional 

control (Papantoniou et al., 2019). As a result, the technology 

related to autonomous vehicles has received widespread attention 

from both the industrial and academic sectors. 

With the development of smart cities and Intelligent 

Transportation Systems (ITS), the problem of autonomous 

driving has recently received much attention. In addition to 

increasing road safety, autonomous vehicles can also reduce the 

stress and cost of drivers, increase road capacity, reduce energy 

consumption and pollution, and improve fuel efficiency (Litman, 

2022). 

 

    Many car systems have started to integrate Advanced Driver 

Assistance Systems (ADAS), which provide drivers with 

information about the vehicle's operation and changes in the 

external environment. The ADAS then assists the driver in 

assessing the surrounding situation and issuing early warnings of 

potential dangers, allowing the driver to respond promptly and 

take appropriate measures. With the rise of intelligent unmanned 

vehicles, the development of self-driving technology requires 

HD Maps as a base for spatial information to ensure that the self-

driving vehicles operate on the correct path. (Bock, 2021). 

 

 

Figure 1. SAE levels of driving automation (Bock, 2021). 

 

The Society of Automotive Engineers (SAE) has defined six 

levels for driving automation, as shown in Figure 1. Level 0 is 

non-autonomous driving, which means that the driver is required 

to drive the vehicle throughout the entire process. Levels 1 and 2 

apply the functions of Advanced Driver Assistance Systems 

(ADAS) to reduce the burden of driving. However, the driver still 

needs to be fully focused during the driving process. For Level 4, 

the Automated Driving System (ADS) can independently 

perform all driving tasks, except in special circumstances, 

(NHTSA). 
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In recent years, with the development of self-driving cars, the 

sensors equipped on vehicles have become more diverse, such as 

cameras, LiDAR, and radar. However, these sensors also have 

their own limitations, such as being affected by lighting or cost. 

To improve navigation accuracy, HD Maps are used as additional 

auxiliary information and are less affected by external factors 

such as weather and other vehicles. HD Maps enable AD systems 

to surpass the view of traditional sensors, thus providing accurate 

and detailed information about the driving environment (Jeong et 

al., 2022) However, HD Maps are expensive to produce due to 

the use of expensive sensors and manual digitization in terms of 

data processing. Therefore, reducing the production cost of HD 

Maps is an important topic for the dOtevelopment of autonomous 

vehicles (Chiang et al., 2022). The automatic production of HD 

maps can significantly reduce labour and time costs. Semi-

automatic procedures have been proposed for final evaluation 

and revision of the generated HD maps(Chiang et al., 2022), as 

shown in Figure 2. 

 

 

Figure 2. Semiautomated HD maps production procedure 

(Chiang et al., 2022). 

 

Some studies have tried to use deep learning to extract road 

objects (Elhousni et al., 2020), but the extraction accuracy does 

not meet the accuracy requirements of HD Maps. In addition, in 

terms of data acquisition, MLS point clouds are currently the 

most widely used due to their high accuracy. Therefore, this study 

proposes a semi-automatic method to extract specific road 

elements from MLS point clouds to generate HD Maps based on 

geometric properties. 

 

The accuracy of HD Maps is important for the development of 

autonomous vehicles. According to the Taiwan Information and 

Communication Standards Association, the accuracy 

requirements for HD Maps are 20 cm in the horizontal direction 

and 30 cm in 3D space. In this study, specific road elements such 

as arrow lines, pedestrian crossings, stop lines, and lane lines are 

extracted from MLS point clouds to generate HD Maps through 

a semi-automatic method. The results of this study will contribute 

to the development of more efficient and cost-effective methods 

for producing HD Maps, which will ultimately aid in the 

advancement of autonomous vehicle technology. The accuracy 

of the results is validated in three test fields and must meet the 

accuracy requirements of HD Maps. Therefore, the goal is to 

determine road surface regions, preserve surface point clouds, 

and identify road surface features. Some methods in the literature 

can achieve such a goal, with a common road surface extraction 

method based on curb structures using the height differences 

between sidewalks and roads to find the lane and further obtain 

the road surface (Yang et al., 2013). However, not all fields 

contain curb structures. Additionally, there are also research 

methods that use the intensity differences between road and 

sidewalk point clouds to extract road edge information (Zeng, 

2020).; however, if the road boundary contains low-reflectivity 

materials such as soil, some errors may occur during the 

extraction process. Therefore, this study applies Cloth Simulation 

Filter (CSF) as an alternative road surface extraction method, 

which can fit the local terrain based on the ground, and is less 

affected by height differences and reflectivity. 

 

Specifically, this paper aims to: 

 Develop semi-automated algorithms for extracting specific 

road surface elements from point clouds. 

 Implement a semi-automatic method on the MLS point cloud 

in the experimental field for the practical application of 

high-definition map feature object extraction. 

 Evaluate the absolute accuracy of the modeling results using 

existing validated HD maps to ensure the quality of the 

extracted objects. 

 

The structure of this paper is arranged as follows: In Section 

2, the semi-automated extraction process and method are 

described, including the screening of road surface point clouds, 

the use of the Otsu threshold method (Otsu, 1979) for automatic 

threshold selection, and the identification of target objects based 

on their geometric characteristics. Section 3 provides an 

overview of the experimental setup. Section 4 presents the 

extraction results and precision. Finally, the paper concludes with 

Section 5, which summarizes the findings and highlights the key 

takeaways. 

 

2. METHODOLOGY 

To improve the efficiency of extracting road surface objects, 

this paper incorporates the Cloth Simulation Filter (CSF) and 

Otsu Threshold Filter for extracting road surface point clouds 

into the algorithm architecture. These methods can save a 

significant amount of time that would have been spent on manual 

editing. Section 2.1 will introduce the process of extracting road 

surface markings and lane lines. Section 2.2 will explain the data 

preprocessing while Section 2.3 will introduce the methods used 

in road surface marking extraction. 

 

2.1 Extraction Flowchart of Road Surface Markings 

    The flowchart in Figure 3 shows the process of extracting 

road surface markings. The first step is to apply a Cloth 

Simulation Filter to the point cloud to obtain the road surface 

point cloud. Then, the input road surface point cloud is translated 

to the local coordinate system to reduce the impact of the number 

of digits on the algorithm. Next, the point cloud is downgraded 

to voxels to reduce the computational cost of subsequent 

algorithms. Otsu Threshold Filter is then used to automatically 

filter the threshold and divide the point cloud into two categories: 

asphalt road and road surface markings. Then, the obtained road 

surface markings point cloud is processed with a Statistical 

Outlier Removal (SOR) filter to remove scattered noise point 

clouds statistically. However, the three targets we need to extract 
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- pedestrian crossing, arrow line, and stop line - are all painted 

with white paint, so they have very high reflectivity. Therefore, 

Otsu Threshold Filter (Otsu, 1979) is used again to obtain road 

surface markings painted with white paint. Subsequently, the 

obtained white point cloud is separated into individual objects 

using the Euclidean distance clustering method, and the length 

and width of the object are calculated using the Oriented 

Bounding Box (OBB) method. The object is then classified based 

on the geometric characteristics of the length and width. 

 

    Figure 4 shows the flowchart of extracting lane lines. After 

the high-reflectivity point clouds are classified into pedestrian 

crossing, arrow lines, and stop lines, the point clouds belonging 

to these three categories are removed. The remaining high-

reflectivity point clouds are the lane line point clouds. Through 

mathematical fitting, the obtained lane lines can be analyzed for 

accuracy with high-definition maps. 

 

 

Figure 3. Flowchart of road surface marking extraction. 

 

 

Figure 4. Flowchart of laneline extraction. 

 

2.2 Point Cloud Preprocessing 

Before performing object extraction, this research first 

applies Cloth Simulation Filter (CSF) to extract ground point 

clouds, as the original point clouds from MLS are very large. 

Then, the point clouds are downgraded to voxels and redundant 

point clouds are removed based on trajectory in order to increase 

the efficiency of the following algorithms. The following will 

provide an explanation of the Cloth Simulation Filter (CSF) and 

the removal of redundant point clouds based on trajectory. 

 

2.2.1 Cloth Simulation Filter (CSF): In this study, we use 

the Cloth Simulation Filter (CSF) method (Zhang et al., 2016) as 

a preprocessing step for efficiently extracting road surface 

objects from point cloud data. Traditional methods, which rely 

on elevation and slope as the filtering basis, are not suitable for 

complex and scene steep terrain areas. Therefore, we propose the 

use of CSF as an alternative method for data preprocessing.  

 

The CSF method simulates the interaction between cloth 

nodes and corresponding lidar points, and uses the positions of 

the cloth nodes to generate an approximation of the surface. The 

method involves inverting the existing point clouds and 

simulating a natural falling point cloth to fall on the inverted 

point clouds. The surface of the cloth is then used as the datum 

for the ground point cloud, as shown by the red dotted line in 

Figure 5. 

 

The parameters set by the CSF will affect the simulation 

results of the datum surface, including rigidness, cloth grid 

resolution, and classification threshold. The rigidity determines 

the rigidity of the cloth and the flatter of the extracted reference 

plane. In this research, we set the rigidness to "Flat" as the 

experimental area is a flat environment. The cloth grid resolution 

determines the density of cloth nodes used, and it is set to 0.1 

meter. The classification threshold sets a threshold to represent 

the elevation difference between the point cloud and the obtained 

datum, it is set to 0.1 meter. And we use CloudCompareStereo 

v2.12 software to perform CSF. 

 

 

Figure 5. Cloth simulation filter. 

 

2.2.2 Remove Redundant Point Cloud based on Trajectory:   

In our study, we have implemented a filtering process for the lidar 

point clouds to remove some redundant data, such as those from 

surrounding grass or buildings. This is achieved by setting a 

threshold based on the scanning trajectory of the lidar and 

deleting any point clouds that are too far from this trajectory. The 

result of this point cloud filtering is shown in Figure 6, where 

Figure 6 (a) represents the point clouds before deletion and 

Figure 6 (b) represents the point clouds after deletion. The white 

points in the figure are the trajectory data we use. We set the 

threshold according to the road width of the experimental field to 

eliminate redundant point clouds. This process helps to reduce 

the amount of calculations required and improve overall 

performance. 
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            (a)                       (b) 

Figure 6. Flowchart of laneline extraction. 

 

2.3 Road Surface Marking Extraction 

After preprocessing, the point cloud data mostly consists of 

road surface point clouds, which can generally be divided into 

two categories: asphalt road surfaces and road markings. There is 

a significant difference in reflection intensity values between the 

two. Otsu Threshold Filter to automatically select the most 

suitable classification threshold, which replaces the manual 

selection of thresholds used in the past. After extracting the road 

markings, the Euclidean Distance Clustering method is used to 

group different objects. Before clustering, the discrete points will 

be removed using the Statistical Outlier Removal (SOR) filter. 

Finally, the Oriented Bounding Box (OBB) Algorithm is used to 

calculate specific lengths and widths for the road surface objects. 

However, stop lines are often connected to lane lines and are not 

easily grouped, so they are extracted with the assistance of 

trajectory. The detailed method will be explained in Section 2.3.5. 

 

2.3.1 Otsu Threshold Filter: In extracting road surface 

markings, we filter by intensity values. This is because lines such 

as arrow lines, pedestrian crossing, stop lines, etc. that are painted 

with yellow or white paint have higher reflectivity values than 

asphalt roads. As shown in the reflection intensity value square 

diagram in Figure 7, an appropriate threshold can be selected to 

divide all point clouds into two categories. However, if we 

manually set an intensity threshold to distinguish road markings, 

it takes a lot of time to search for the threshold and it is difficult 

to set the optimal threshold at once. Therefore, in the extraction 

of road markings, we introduce the Otsu threshold method to set 

the threshold. The Otsu threshold method is a common 

binarization method used in image processing. The method uses 

an exhaustive search to find the optimal threshold that maximizes 

the variance between two classified classes by searching from the 

minimum value to the maximum value and selecting the 

threshold with the maximum variance between the foreground 

and background. However, this method is only effective when 

there is a significant difference in strength between the two 

categories, which is the case between road markings and asphalt 

roads. The formula for interclass variance is shown in Equation 

1: 

  

 𝑔 =  𝑁𝑓  ×  𝑁𝑏  ×  (𝐼𝑓  −  𝐼𝑏)2  ,   (1) 

 

where 𝑁𝑓 =  the number of points in the foreground 

𝑁𝑏 =  the number of points in the background 

𝐼𝑓  = mean reflection intensity of foreground 

𝐼𝑏  = mean reflection intensity of background 

 

 

Figure 7. The histogram of point clouds reflection intensity 

value. 

2.3.2 Statistical Outlier Removal (SOR) Filter: Road 

markings typically have higher intensity values than paved roads, 

and LiDAR intensity values are less affected by external factors 

such as weather and lighting (Gwon et al., 2017), making LiDAR 

point cloud data suitable for automated extraction. However, 

even after applying an intensity-based threshold, scattered 

outliers may still exist in the point cloud data. These outliers may 

be caused by various sources such as noise from the scanning 

process or errors in measurement and can negatively impact 

subsequent clustering-based point cloud classification. 

 

To address this issue, this study proposes the use of 

Statistical Outlier Removal (SOR) filter as a processing step to 

remove scattered outliers before extracting road surface objects. 

The SOR filter uses statistical analysis to identify outliers by 

calculating the average distance of each point to its neighboring 

points, and then uses a threshold to identify points with distances 

far greater than their neighbors. These points are considered 

outliers and are removed from the dataset. The threshold can be 

set based on user preference or application. 

 

The results of this study show that using SOR filter as a 

processing step effectively removes scattered outliers, improving 

the accuracy and reliability of subsequent clustering-based point 

cloud data classification. 

 

2.3.3 Extract and Classify White Objects: In this study, we 

use the Euclidean clustering algorithm to further extract specific 

road markings such as white arrows, crossing lines, and stop lines. 

By using the Otsu threshold method again, we extract the white 

road markings with high reflection intensity. These specific 

markings have distinct geometric features, such as specific 

shapes and sizes, which we use to filter the corresponding road 

markings. 

 

The Euclidean clustering algorithm groups all road point 

clouds into different clusters based on semantic and topological 

information, as shown in Figure 8 (Jiang, 2017). This process 

begins by marking all road point clouds as non-clustered points. 

Then, a random seed point is selected, and its neighboring point 

clouds are searched within a given radius (referred to as the 

Euclidean threshold). After the clustering search is completed, 

another seed point is selected from the remaining non-clustered 

points and the process is repeated until all point clouds are 

grouped into clusters. 

 

This method allows us to effectively separate road markings 

into different clusters, separating the target point clouds we wish 

to extract into different groups. 
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Figure 8. Illustration of clustered road markings (Jiang, 2017). 

 

2.3.4 Oriented Bounding Box (OBB) algorithm: The road 

surface markings after point cloud clustering can be classified 

into various categories according to the geometric information of 

each cluster. This study refers to road marking design standards, 

adjusts the parameters of the algorithm, and distinguishes the 

types of road markings by the geometric shapes of various road 

markings. To obtain the geometry of each cluster, we generate a 

minimum bounding box to wrap all point clouds in each cluster 

to determine the width and length of the cluster. The reason this 

method works is because bounding boxes are usually regular and 

more efficient for calculation, representing the object with a 

bounding box instead of using the real shape of the object. 

Among the types of bounding boxes, Axis-Aligned Bounding 

Box (AABB) and Oriented Bounding Box (OBB) are commonly 

used bounding volume types (Gottschalk et al., 2000). The 

AABB is easy to construct because it is aligned with the three 

axes in the current coordinate system. However, the AABB does 

not rotate with the wrapped object. It results in the bounding box 

not tightly surrounding the object. In contrast, OBB generates a 

rectangular bounding box that follows the principal components 

of the object, which means that any plane of the bounding box 

does not have to be parallel to any of the three axes in the current 

coordinate system, as shown in Figure 9. It can describe the target 

object more accurately. The principal components of each 

bounding box, that is, the principal components of each cluster, 

can be obtained by the Principal Component Analysis (PCA) 

algorithm. PCA is known as a data analysis method that 

transforms raw data into a set of linearly independent 

representations in each dimension by linear transformation, and 

reduces the dimensionality of the dataset by identifying the most 

salient directions (Dimitrov et al., 2006). 

 

 

Figure 9. Axis-aligned bounding box (AABB) and oriented 

bounding box (OBB). 

 

After OBB calculates the length and width of the object, we 

will classify it according to the road marking design standard. 

Table 1 sorts out the geometric characteristics of the target object. 

 

 

 

Type Note 

Pedestrian crossing 
Width = 0.4 m 

2 m < Length < 8 m 

Arrow lines 
0.9 m <Width < 2.3 m 

4 m < Length < 5 m 

Stop lines 0.3 m <width < 0.4 m 

Table 1. The geometric definition of road markings 

 

2.3.5 Extraction of Stop Lines: However, even after 

extracting pedestrian crossing lines and arrow lines using the 

Euclidean clustering algorithm and OBB algorithm, there are still 

issues with identifying stop lines. This is because stop lines are 

often connected to lane lines. Therefore, by applying a distance-

based Euclidean clustering method, these different types of road 

markings are assigned to the same cluster. In this paper, we use a 

geometric condition to differentiate between stop lines and lane 

lines. Under normal circumstances, the direction of the test 

vehicle platform is perpendicular to the stop line. Therefore, we 

use track data to divide the road markings into blocks to search 

for stop lines. As shown in Figure 10, if the density of points in 

the red block is higher than a given density threshold 𝐷𝑇, the 

points within the block are likely to be stop lines. The condition 

for identifying stop lines is as following Equation 2: 

 

{
𝑖𝑓 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  

𝑃𝐵

𝑊𝐵×𝐿𝐵
> 𝐷𝑇 , 𝑏𝑙𝑜𝑐𝑘 ∈ 𝑠𝑡𝑜𝑝 𝑙𝑖𝑛𝑒 𝑝𝑜𝑖𝑛𝑡𝑠

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑎𝑑 𝑚𝑎𝑟𝑘𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠
   ,  (2) 

 

where 𝑃𝐵 =  the number of points in the block 

            𝑊𝐵 = the width of the block 

𝐿𝐵 =  the length of the block                                
 

 

Figure 10. Trajectory-based search for stop lines. 

 

As shown in Figure 10, the yellow arrow represents the 

vehicle trajectory, and the red box represents the search box of 

the stop line. 

 

    However, due to the poor accuracy of stop line extraction, 

this study additionally uses manually corrected trajectories, 

which can make up for the weakness of the algorithm in this 

study in accurately extracting stop lines. 

 

3. EXPERIMENT SETUPS 

3.1 Experimental Environmental Description 

The Taiwan CAR LAB in Shalun, Tainan is an ideal 

location for research and development in autonomous driving 

technology. As the first closed-field test site in Taiwan, it offers 

a controlled environment for the evaluation and refinement of 

algorithms related to self-driving cars. The site features 13 

simulated traffic scenarios, including challenging situations such 

as railway level crossings, detours, and tunnels, which provide 

valuable data for researchers. One of the key advantages of the 
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CAR LAB is the clearly marked lines and the absence of other 

vehicle interference, which allows for more accurate and reliable 

testing. The simulated traffic scenarios also mimic real-world 

conditions, providing a more realistic testing environment. 

Overall, CAR LAB Taiwan provides a unique opportunity 

for researchers to develop and test autonomous driving 

technology, mapping technology in a controlled and realistic 

environment. Scenes from this site are shown in Figure 11. 

 

 

Figure 11. Taiwan CAR LAB (CARTURE , 2019). 

 

4. RESULTS AND DISCUSSION 

4.1 Extraction Result  

4.1.1 Otsu Threshold: After applying the Otsu threshold 

method, all point clouds are classified into two categories: low 

reflection intensity and high reflection intensity. As shown in 

Figure 12, the point clouds with high reflection intensity values 

have been successfully filtered out and isolated. These point 

clouds, which correspond to the road surface markings, can then 

be further analyzed using clustering algorithms and geometric 

characteristics to distinguish between different types of markings. 

To enhance the accuracy of the classification, additional image 

processing techniques such as morphological operations may 

also be applied to refine the point clouds. Additionally, statistical 

methods such as principal component analysis (PCA) can also be 

used to extract and analyze the geometric features of the point 

clouds, which can aid in the classification process.  

 

  

Figure 12. Extraction results of arrow lines, pedestrian 

crossing, and stop lines. 

 

4.1.2 Road Marking Extraction: The Figure 13 shows the 

results of road markings extracted by our algorithm. The white 

points in the figure represent pedestrian crossing, red points 

represent arrow lines, and yellow points represent stop lines. The 

accuracy of the extracted road markings is high.  

 

  

Figure 13. Extraction results of arrow lines, pedestrian 

crossing, and stop lines. 

 

4.1.3 Lane Lines Extraction: In the clustering process using 

the Euclidean clustering method, stop lines and lane lines are 

often grouped together. The results in Figure 14 show that the 

stop lines are extracted by using the track assistance method, and 

the remaining point cloud is then clustered again, and the lane 

lines are fitted by mathematical interpolation.  

 

  

Figure 14. Extraction results of lane lines. 

 

4.2 Accuracy Assessment 

    In this study, validation is conducted to evaluate the 

accuracy and performance of the proposed modeling methods. To 

ensure the reliability of the results, the reference data is taken 

from vector maps digitally recorded by a surveying company. 

The lane lines are depicted as polylines in shapefile format, 

which is commonly used in Geographical Information Systems 

(GIS) software. However, this format is not intuitive and it is 

difficult to assess the results automatically. Therefore, the 

shapefile is first converted into a CAD file. Then, the vector maps 

are divided into one point per centimeter, and the TWD 97 

coordinates of each point are generated. The results are then 

compared to the reference data through statistical analysis, 

including the Root Mean Square Error (RMSE), Standard 

Deviation (STD), Mean Value, and Maximum Value. The 

equations for RMSE and STD are as follows Equation 3 and 

Equation 4: 

 

RMSE =  √
∑ (𝑝𝑖−𝑃𝑖)2𝑛

𝑖=1

𝑛
,   (3) 

STD =  √
∑ (𝜀̂−𝜀𝑖)2𝑛

𝑖=1

𝑛−1
 ,   (4) 

 

where 𝑝𝑖 (i=1,2,…,n) indicates the coordinate of the modeled 

results, 𝑃𝑖  (i=1,2,…,n) denotes the true coordinate of the 

corresponding modeled points from the reference data, 𝜀𝑖 

(i=1,2,…,n) represents the true error of  𝑝𝑖  and 𝑃𝑖  and 𝜀̂ 
represents the mean value of the true errors. Through this 
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statistical analysis, the validation results demonstrate the 

absolute precision in the scale of the real world. 

 

For the accuracy validation of arrow lines and pedestrian 

crossings, we used vector files provided by the surveying 

company as ground truth. We first visually inspected the 

extracted point clouds to check for any missing points, and then 

overlaid our algorithm's extracted point clouds the ground truth 

to calculate the proportion of points that fall within the ground 

truth. We used the ArcMap 10.5 (GIS software) for the 

calculations, and in the three experimental areas, the proportion 

of arrow lines and pedestrian crossings extracted by our 

algorithm that fall within the ground truth is over 95%, as shown 

in Table 2. 

 

 Field 1 Field 2 

Overlaid on 

HD map / 

Extracted 

point clouds 

Rate 

(%) 

Overlaid on 

HD map / 

Extracted 

point clouds 

Rate 

(%) 

Pedestrian 

Crossing 
899/912 98.6% 814/834 97.6% 

Arrow 

Lines 
105/109 96.3% 120/126 95.2% 

Table 2. Statistical analysis of pedestrian crossing and arrow 

lines 

 

 Field 1 Field 2 

2D 3D 2D 3D 

Root Mean Square 

Error (RMSE) (m) 
0.072  0.085  0.200  0.203  

Average Error (m) 0.053  0.067  0.158  0.163 

Max Error (m) 0.228  0.241  0.538  0.539 

Standard Deviation 

(STD) (m) 
0.049  0.053  0.123  0.120  

Table 3. Accuracy analysis of extraction results of lane lines 

 

The results of the lane line extraction, as shown in Table 3, 

demonstrate that the accuracy is in compliance with the 

requirements of 20 cm in 2D and 30 cm in 3D in all three 

experimental fields. Notably, the 3D accuracy in field one and 

two reaches less than 10 cm. 

 

On the other hand, the modelling effect of the stop line is 

poor. This is because our algorithm will misjudge some lane lines 

as stop lines when extracting stop lines. Therefore, it is easy to 

make mistakes when fitting the end points of the stop line. In 

order to make up for the problem of excessive stop line extraction 

error, we use the manually corrected trajectories. We also 

analyzed the extraction accuracy of the stop line in two of the 

experimental fields, as shown in Table 4. The accuracy of this 

method meets the requirements for building HD Maps. 

 

In conclusion, the proposed algorithm architecture in this 

study can extract elements required for HD Maps with high 

accuracy that meets the precision demands of HD Maps, and it 

saves a significant amount of manual digitization cost in a semi-

automated way. 

 

 

 

 

 

 

 Field 1 Field 2 

2D 3D 2D 3D 

Root Mean 

Square Error 

(RMSE) (m) 

0.091 0.111 0.083 0.118 

Average Error 

(m) 
0.078 0.172 0.063 0.103 

Max Error (m) 0.168 0.172 0.244 0.245 

Standard 

Deviation 

(STD) (m) 

0.049 0.105 0.055 0.058 

Table 4. Accuracy analysis of extraction results of stop lines by 

using manually corrected trajectories. 

 

5. CONCLUSION 

    The study of HD Maps production is currently in a 

flourishing stage. The high cost of sensors and the large amount 

of manual digitization make producing HD Maps very expensive. 

And reducing the proportion of manual involvement is the focus 

of research in this field. Due to efficient data collection and 

precise 3D geographic space measurement, commercial MLS has 

been widely used in the collection of data for HD Maps 

generation. 

 

    To reduce the cost of manual digitization, this thesis 

presents a semi-automated method for extracting and modeling 

specific road elements, including pedestrian crossings, arrow 

lines, parking lines, and lane lines, to generate HD Maps. Since 

the target elements are all part of the road surface's high-

reflectance point clouds, this study uses the Cloth Simulation 

Filter for ground point filtering and the Otsu threshold method 

for automatically selecting the most suitable road marking 

threshold. 

 

    Additionally, this research tested the proposed method in 

three commercial MLS point cloud experiment areas using HD 

Maps vector files from a surveying company as ground truth. The 

results showed that the extraction accuracy of pedestrian 

crossings and arrow lines can reach above 95%. The modeling 

results for lane lines and stop lines meet the requirements of HD 

Maps, with a horizontal accuracy of less than 20 cm and a three-

dimensional spatial accuracy of less than 30 cm. This study 

aggregates the semi-automation and aims to generate HD Maps 

that can be directly applied to future autonomous driving systems. 
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