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ABSTRACT:

Glacier monitoring plays a crucial role in understanding the impacts of climate change on these dynamic natural systems. One or
more time-lapse cameras are often employed to acquire short-term observations of glacier flow dynamics. However, the lack of
multi-camera photogrammetric software packages for multi-temporal 3D scene reconstruction, especially in case of wide camera
baselines, hinders the application of Structure-from-Motion techniques to these scenarios. To address this, we present ICEpy4D, a
novel Python toolkit designed for 4D monitoring of alpine glaciers using low-cost time-lapse cameras and state-of-the-art computer
vision techniques. ICEpy4D leverages deep-learning-based matching algorithms to solve 3D reconstruction with wide camera
baselines, making it well-suited for challenging scenarios encountered in mountainous regions. The toolkit offers comprehensive
functionalities for multi-epoch monitoring, enabling short-term glacier 3D reconstruction and extraction of relevant information
from time-series point clouds, such as volume variations and glacier retreat. In a pilot study on the Belvedere Glacier northern
snout (Italian Alps), ICEpy4D estimated glacier volume loss of 63 × 103 m3 of ice and ∼17.5m of retreat. Results showcased
the toolkit’s potential for analyzing a glacier ice cliff, with prospects for application to other glaciers with varying characteristics.
ICEpy4D is actively being developed as an open-source project at github.com/labmgf-polimi/icepy4d/, promoting ease of
extension and customization.

1. INTRODUCTION

Time-lapse cameras are commonly used in remote alpine en-
vironments for qualitative and quantitative data collection,
especially in monitoring glacier flow dynamics. They are
cost-effective, provide images with high temporal frequencies
(e.g., daily), and require minimal maintenance (Messerli and
Grinsted, 2015). Digital Image Correlation (DIC) techniques
are often employed to estimate in-plane velocities from se-
quences of monocular images and derive the glacier flow ve-
locity (Giordan et al., 2016, Giordan et al., 2020). However,
in most cases, only one camera is employed, which prevents
the application of photogrammetry and Structure-from-Motion
(SfM) for comprehensive 4D glacier monitoring.

Existing software packages such as ImGraft (Messerli and
Grinsted, 2015), Pointcatcher (James et al., 2016) and Py-
Trx (How et al., 2020) allow for calculating glacier velocities
from oblique time-lapse images using feature tracking. These
solutions, however, are limited to monoscopic camera systems.
Common photogrammetric software packages for 3D scene
reconstruction from multi-camera systems, such as Agisoft
Metashape or Colmap (Schönberger and Frahm, 2016) are more
suited for solving SfM problem, with one or more moving cam-
eras aimed at reconstructing a static scene, but they are not
designed for multi-temporal processing as they rely on tradi-
tional Feature-Based Matching (FBM) techniques for matching
on local features based on descriptors’ similarity.

In mountainous areas, environmental constraints often restrict
the number of feasible camera locations, forcing to install the
∗ Corresponding author

cameras with wide baselines. As a consequence, matching
corresponding points between images becomes a challenging
task for traditional Feature-Based Matching (FBM) (Yao et al.,
2021). In recent years, several Deep Learning (DL)-based
feature matching algorithms have shown promising results in
terms of performance in wide-baseline scenarios (Chen et al.,
2021, Remondino et al., 2022). Some open-source projects
for performing visual localization with DL matching techniques
have been developed including HLOC (Sarlin et al., 2019) and
GTSFM (Baid et al., 2021). Despite begin promising libraries,
they are mostly limited to solving 6-degree-of-freedom prob-
lems and they are not designed for a multitemporal processing.
To the best of the authors’ knowledge, there are no available
solutions for performing wide-baseline multi-temporal stereo or
multi-camera photogrammetric reconstruction.

This work introduces ICEpy4D (Image-based toolbox for Con-
tinuous monitoring of glaciers’ Evolution), a Python-based
toolkit for multi-epoch glacier 3D reconstruction and monit-
oring. ICEpy4D bridges the gap between the geomorpholo-
gical/glaciological and computer-vision communities by incor-
porating learning matching techniques for challenging 3D/4D
scene reconstruction problems. It integrates state-of-the-art
deep-learning-based matching for wide baselines and includes
functionalities for processing and extracting relevant informa-
tion from time-series of point clouds.

An application of ICEpy4D using low-cost stereo-cameras on
Belvedere Glacier (Italian Alps) is presented as a pilot-study.
However, the main focus of the paper is to describe the soft-
ware package and its functionalities. A comprehensive present-
ation of the monitoring results from the Belvedere Glacier
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will be covered in a separate paper. ICEpy4D is actively
being developed as an open-source project at github.com/

labmgf-polimi/icepy4d/ (current version is v1.8.0).

2. FIELD SETUP AND DATA

ICEpy4D was tested on the Belvedere Glacier, an alpine glacier
in Valle Anzasca, Italy, located at approximately 45◦ 58’ N 7◦

55’ E. It spans from ∼2250m a.s.l. to ∼1800m a.s.l. and has
two distinct lobes. The northern lobe features a sub-vertical
ice cliff, the source of the River Anza, with exposed bare ice
reaching ∼50m in height.

Figure 1. The Belvedere Glacier northern lobe used as study
area and the camera setup.

The northern lobe of the Belvedere Glacier was chosen as
the test site for ICEpy4D as part of an ongoing long-term
monitoring project (Ioli et al., 2023b). Historical aerial im-
ages were used for photogrammetric modeling from 1977 to
2001 (De Gaetani et al., 2021), and since 2015, yearly in-situ
UAV and GNSS surveys have been conducted to monitor gla-
cier evolution (Ioli et al., 2021).

In summer 2021, a low-cost stereoscopic system with two hand-
made time-lapse cameras was installed on the northern lobe to
observe sub-seasonal glacier dynamic. Each monitoring station
consisted of a DSLR camera Canon Eos 1200D, an Arduino
microcontroller for camera triggering and a Raspberry Pi Zero
with a SIM card for remote image transfer. The system was
described in detail in (Ioli et al., 2023a). The two monitoring
stations were installed on opposite sides of the northern lobe
moraines, with one camera placed ∼180m from the terminal
ice cliff and the other ∼340m away, resulting in a baseline of
∼260m. To maintain a comparable ground sample distance of
∼3.5 cmpx−1, lenses with different focal lengths (24 mm and
35 mm) were used. The cameras were set up on topographic
tripods at a height of ∼2m above the ground (Ioli et al., 2023a).
Image acquisition occurred remotely through a web-interface,
capturing two images per day around noon, at 12:00 and 13:00
UTC.

3. MOTIVATION

The Belvedere camera setup posed a challenge for traditional
hand-crafted matching techniques due to the camera baseline
comparable to the average camera-object distance. These tech-
niques struggled to find enough corresponding points with

wide-baseline matching. Even popular photogrammetric soft-
ware packages like Metashape, Pix4D Mapper and the open-
source solution COLMAP (Schönberger and Frahm, 2016),
which rely on SIFT (Lowe, 2004) or faster variants like Root-
SIFT (Arandjelović and Zisserman, 2012) for feature match-
ing, provided limited and unevenly distributed tie points. Ad-
ditionally, these few tie points were primarily concentrated in
the central part of the ice cliff (Fig. 2). Similar results were
observed when using other traditional detectors and descriptors
like SURF, KAZE and ORB, along with matching algorithms
from the OpenCV library. The lack of tie points found with ex-
isting SfM software packages hindered the estimation of cam-
era poses.

(a)

(b)

(c)

Figure 2. Comparison with feature matching by using different
approaches: (a) Agisoft Metashape (blue points are the matched
points); (b) COLMAP (green lines); (c) SuperPoint+SuperGlue
(colored lines). The color of the SuperGlue matches represents

the matching score, with colors ranging from blue to red.

Recently, DL-based feature matching algorithms have shown
promising performance in challenging scenarios (Yao et al.,
2021, Chen et al., 2021, Remondino et al., 2022). For ex-
ample, SuperGlue, an end-to-end Convolutional Neural Net-
work (CNN) for feature extraction and matching, has proven
effective in various real-world scenarios, including low-quality
images from webcams (Wu et al., 2021), historical im-
ages (Maiwald et al., 2021) and images with different view-
points or acquisition conditions (Bellavia et al., 2022). An-
other popular detector-free end-to-end matcher gaining traction
is LOFTR (Sun et al., 2021), which is also finding applications
in the computer vision and remote sensing communities (Bel-
lavia et al., 2022, Liang et al., 2023). ICEpy4D implements
both SuperGlue and LOFTR for feature matching, allowing for
solving challenging 3D/4D scene reconstruction problems with
wide camera baselines, which were not feasible with traditional
FBM techniques.
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4. ICEPY4D

ICEpy4D is organized in modules for solving different steps
of scene reconstruction and point cloud analysis problem. The
main workflow (Fig. 3) is composed of different steps: (i)
finding corresponding features between stereo-pairs; (ii) track-
ing features on single-camera time-series with template match-
ing e.g., for automatically detect targets on monoscopic im-
age sequences; (iii) solving relative and absolute orientation of
stereo/multi cameras; (iv) solving a Bundle Adjustment (BA)
using external libraries (e.g., Agisoft Metashape Python API
or COLMAP), including Ground Control Points (GCPs) and
self-calibration support; (v) building dense reconstruction and
meshing with external libraries; (vi) processing a time-series of
point clouds to estimate volume differences and glacier retreat.
A list of the main classes and modules of ICEpy4D is presented
in Tab. 1

Figure 3. Overview of the ICEpy4D workflow.

4.1 Data preparation

To perform stereo or multi-camera 3D reconstruction with
ICEpy4D, we used a checkerboard calibration target (Zhang,
2000) to pre-calibrate the cameras. This calibration allowed
us to estimate intrinsic parameters such as the principal dis-
tance, principal point, and radial and tangential distortion coef-
ficients, following the Full-OPENCV camera model, similar to
COLMAP (Schönberger and Frahm, 2016). The estimated in-
terior orientation parameters need to be saved in separate text
files for each camera used and serves as the initial calibration
for BA, where the interior orientation can be refined by self-
calibration.

First, we converted all acquired RAW images to JPEG format
using RawTherapee, with a compression quality of 95%. The
converted images were manually inspected to exclude unsuit-
able ones for stereo reconstruction due to issues like rain or low
clouds. We organized the selected images into separate folders
for each camera.

For automatic processing of the time-series, the image and
world coordinates of the available GCPs on each image must
be stored in separate text files with the same name as the cor-
responding image file. GCPs can be manually detected on all
images or automatically tracked using the template matching
routine (Sec. 4.2).

The ICEpy4D processing is initialized by creating an empty
Epochs object, which is filled by adding Epoch objects at each
iteration of the process.

4.2 Target tracking

To account for small camera rotations that can be caused by
adverse meteorological conditions in the mountain environment

(especially wind guts), we implemented a tracking routine in
ICEpy4D. This routine, based on the ImGraft TemplateMatch
function (Messerli and Grinsted, 2015), tracks the same targets
on all images in the time-series. It allows us to detect a template
defined on a reference image on a target image through cross-
correlation.

In ICEpy4D, the template matching routine uses the orienta-
tion correlation algorithm (Fitch et al., 2002), which is more
robust against illumination changes compared to normalized
cross-correlation (Heid and Kääb, 2012). The template match-
ing routine estimates the image coordinates of the GCPs on all
the images in the time-series and exports them to a text file.
This file serves as input for the subsequent processing steps in
ICEpy4D.

Figure 4. Example of template matching used to track GCPs on
a monocular image sequence. The green square represents the
template on the reference image that is searched in all the other

images of the sequence. The red cross marks the estimated
position of the center of the template in a new image.

4.3 Feature Matching

For matching corresponding points between stereo-pairs,
ICEpy4D implements both the combination of Super-
Point (DeTone et al., 2018) and SuperGlue (Sarlin et al., 2020)
and LOFTR (Sun et al., 2021). SuperPoint is a CNN that
detects interest points and extract their corresponding 256-
values descriptors. SuperGlue matches the extracted keypo-
ints using an attentional graph neural network, considering both
descriptor similarity and pixel positions. On the other hand,
LOFTR establishes dense pixel-wise matches at a coarse level
and then refines good matches at a fine level. It employs self and
cross attention layers in a Transformer model to obtain feature
descriptors conditioned on both images. LOFTR was imple-
mented in the well-known KORNIA library (Riba et al., 2020),
a state-of-the-art differentiable computer vision library based
on PyTorch.

To perform the matching, we utilized pre-trained models for
both SuperPoint/SuperGlue and LOFTR. The SuperGlue model
was trained on the MegaDepth dataset (Li and Snavely, 2018),
which includes various outdoor scenes and makes SuperGlue
particularly effective in matching corner-like features detected
by SuperPoint. We chose not to fine-tune the SuperGlue and
LOFTR models to test the replicability of the matching solu-
tions in different scenarios without the need for a dedicated
ground truth dataset. Acquiring such a dataset, especially for
remote mountain environments, in fact, can be challenging. For
a future software release, we plan to acquire or gather a substan-
tial dataset of UAV and ground-based images capturing various
glaciers, including debris-covered and bare-ice glaciers. This
dataset will enable us to fine-tune matching models specifically
for glacier reconstructions, offering broader applicability bey-
ond the Belvedere glacier case study.
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Name Brief description

classes (M) Module that contains all the main classes of ICEpy4D.
matching (M) Module that integrates functionalities for feature detection and matching by using CNN algorithms.
metashape (M) Module for interfacing ICEpy4D with Agisoft Metashape.
post processing (M) Module that implements functionalities post-processing series of stereo point clouds to derive volume

variations, glacier retreat and other information.
sfm (M) Module that implements functionalities for estimating relative and absolute orientation of two cam-

eras, calculating the exterior orientation of a single camera based on GCPs (i.e., space resection),
and triangulating points.

Epoch (C) Class that acts as a container for storing all the variables related to a single epoch: epoch timestamp,
images, camera, targets, features, points. Epoch class integrates functions for saving and reading
data to file.

Epochs (C) Class for storing a sequence of Epoch objects for multitemporal processing. Each Epoch is identified
by its timestamp and by an unique progressive integer identifier.

Image (C) Class for managing images and metadata. It allows for reading timestamps from exif data.
Camera (C) Class for storing interior (intrinsics matrix and distortions) and exterior orientation (camera pose) of

each camera. It provides methods for projecting 3D points on the image plane. A Camera object is
initialized by reading a calibration file or by estimating the camera focal length from image EXIF
data.

Calibration (C) Class for reading a calibration file with different formats (e.g. OpenCV, Agisoft) and building a
Camera object.

Feature (C) Class for storing a 2D features on images. A Feature is composed of a unique track id, the xy image
coordinates of the keypoints, and optionally, the descriptor and the matching score.

Features (C) Class for storing a series of Feature objects. Each Feature is indexed by a unique track id. A Features
object contains a dictionary of key-value pairs, with the structure track id: Feature.

Point (C) Class for storing a 3D point in object space.
Points (C) Class for storing a list of Point objects. Each Point is indexed with a unique track id that links it to

the corresponding Feature on the images. Points class has methods for converting points to a Numpy
array, as well as adding points from a Numpy array and filtering points by boolean masks.

PointCloud (C) Class for storing 3D points as an Open3D point cloud object, from which it is possible to access all
the Open3D functionalities for managing point clouds.

Target (C) Class for storing the image and world coordinates of the GCPs. A Target object is initialized by
reading a text file containing the coordinates of the GCPs.

Tiler (C) Class belonging to the matching module for subdividing images in regular tiles.
ImageMatcherBase (C) Base class that implement the interface and some basic functions for feature matching with a generic

algorithm. This class must be subclassed to implement the actual feature matching.
SuperGlueMatcher (C) Subclass of ImageMatcherBase belonging to the matching module for performing feature matching

by using the SuperGlue CNN.
LOFTRMatcher (C) Subclass of ImageMatcherBase belonging to the matching module for performing feature matching

by using the LOFTR, implemented in KORNIA library.
RelativeOrientation (C) Class of the sfm module for solving relative orientation of two cameras.
Triangulate (C) Class of the sfm module triangulating corresponding points in the object space, given two Camera

objects with known poses and two Features objects.
AbsoluteOrientation (C) Class of the sfm module for solving absolute orientation of Cameras and Points.
MetashapeProject (C) Class of the metashape module for building a Metashape project by using Metashape Python API. It

allows for importing ICEpy4D solutions, solving BA and dense reconstruction.
TrackTargets (C) Class for tracking the position of a point (usually a GCP target) on a sequence of monocular images.
DemOfDifference (C) Class of the post processing module for computing the DEM of Difference between two point clouds.

Table 1. Description of main classes (labelled as C) and modules (labelled as M) of ICEpy4D. For additional information, one can
refer to the documentation accessible from the ICEpy4D repository.

Feature matching is conducted using the SuperGlueMatcher
and LOFTRMatcher classes, implemented within the matching
module. The two classes have the same interface so that they
can be used interchangeably. This matching process is imple-
mented entirely with PyTorch, allowing for GPU acceleration
to enhance performance.

The user can specify if the matching is performed on full-

resolution images, on downsampled images or upsampled im-
ages. This is controlled by the Quality parameter, where Qual-
ity.HIGH means performing the matching on full resolution
images, Quality.HIGHEST means upsampling the images by
a factor two, and Quality.MEDIUM and Quality.LOW means
downsampling the images by a factor two and four respectively.

To guarantee the highest collimation accuracy, by default the
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Figure 5. Feature matching bytile preselection: a first matching is carried out on downsampled image A and B (red dots). For a second
matching step with full resolution images, corresponding tiles are selected based on the location of the matched keypoints found on

the downsampled images (e.g., tile A1 is matched with B1 and A3 with B2). A tile on image A can also be matched with multiple tiles
on image B (e.g., A8 is matched with both B8 and B10). Tiles with a low number of matching (e.g., A4 and B5) are discarded.

matching is performed on full resolution images. However,
due to limited memory capacity in mid-class GPUs, high-
resolution images captured by DSLR cameras may not fit into
GPU memory. To overcome this limitation, ICEPy4D divides
the images into smaller regular tiles with maximum dimension
of 2000 px, computed over a regular grid. The matching can
be executed in either exhaustive or preselection mode. In the
exhaustive mode, all tiles are matched with all tiles from the
other camera, whereas the preselection mode only matches tiles
that are likely to contain corresponding points. In the preselec-
tion mode, the matching process consists of two steps (Fig. 5).
First, a matching is performed on downsampled images. Sub-
sequently, the full-resolution images are subdivided into regular
tiles, and only the tiles that have corresponding features in the
low-resolution images are selected as candidates for a second
matching step. The selected tiles are matched using the same
procedure as before. To ensure keypoints near the tile boundar-
ies are detected, tiles can be enlarged with a buffer area in each
direction to achieve overlapping. The features matched within
each tile are then reassembled to recover their image coordin-
ates in the original image for geometric verification.

Geometric verification of the matches is performed by using
Pydegensac (Mishkin et al., 2015), that allows for robustly es-
timate the fundamental matrix. The maximum re-projection er-
ror to accept a match is set to 1.5 px by default, but it can be
changed by the user. The successfully matched features, to-
gether with their descriptors and scores, are saved as a Features
object for each camera and stored into the current Epoch object.

4.4 Relative and Absolute Orientation

ICEpy4D implements a class for estimating the relative orient-
ation of two or more cameras based on the matched features.
This step is necessary because it allows for deriving an approx-
imate solution that can be refined during the BA, carried out
with external software packages.

Relative and absolute orientation are implemented in specific
classes within the sfm module and they are based on OpenCV
library. The RelativeOrientation class allows for estimating the
relative pose of a new camera with respect to a reference one
(e.g., the first one). Estimated relative rotation and translation
are stored into the new Camera object. If the reference camera
has already been oriented with respect to an external reference
system, the RelativeOrientation class allows for updating the
camera pose of the new camera with respect to the external ref-
erence system. Additionally, if the camera baseline is known,

the relative translation is scaled correspondingly. Given two (or
more) camera objects with estimated pose, the features matched
as described in Sec. 4.3 are triangulated in the object space by
using the Triangulate class, available in the sfm module.

Absolute orientation is performed by using the AbsoluteOrient-
ation class, which allows to estimate a Helmert transformations
between two different reference systems, e.g., the local refer-
ence system defined by the first camera and a world (local or
global) reference system. To this end, at least three GCPs must
be available to estimate the transformation matrix. The two
camera locations, if known, can be used as additional GCPs.

If more than two cameras are available, the relative orienta-
tion is performed sequentially, by estimating relative orientation
between two cameras at a time. In a future release of ICEpy4D,
a preselection of the images to be matched will be carried out,
e.g., by place recognition algorithms such as NetVLAD (Arand-
jelović et al., 2016).

4.5 Bundle Adjustment

BA is performed with external software packages, such as
Agisoft Metashape or COLMAP. ICEpy4D allows for interfa-
cing with these software packages by using the MetashapePro-
ject class (based on the Agisoft Metashape Python API) and
the open-source library PyColmap (https://github.com/
colmap/pycolmap).

Although it is a commercial and closed-source software pack-
age, Agisoft Metashape is currently the preferred solution as
it allows for performing a full bundle adjustment, including
GCPs, refining cameras’ interior orientation by self-calibration
and giving weights to the observations based on their vari-
ance. However, using Agisoft Metashape API requires a valid
license of the software. This is clearly a limitation, but Agisoft
Metashape is currently widespread in the photogrammetric
community, as it is one of the most complete SfM software
packages available. Therefore, we believe that is worthing to
include it in ICEpy4D.

In particularly, the MetashapeProject class allows for building
a Metashape project by importing the images and the matched
features, setting the cameras’ interior orientation and fix the
desired parameter to not be optimized during the BA. The
MetashapeProject class also allows for running Metashape BA,
computing depth maps and running dense reconstruction. Cam-
era and Points objects of the current epoch are then updated
with the refined parameters.
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In the case of the Belvedere Glacier, we used Metashape to per-
form the BA, as at least 2 GCPs were always visible on the
images. This allowed us to perform a self-calibration of the
cameras for refining the estimation of the cameras’ principal
distance. In fact, it is known that the camera principal distance
is subjected to temperature variations, which can be relevant in
the case of cameras mounted in mountain environments.

Alternatively to Metashape, the BA can be performed with
COLMAP, by using the incremental mapping function, integ-
rated in PyColmap. This allows to refine the cameras’ exter-
ior orientation, the points’ coordinates and the camera interior
orientation. However, COLMAP does not support the use of
GCPs directly in the BA, but they can only be used to perform
an abolute orientation a-posteriori (i.e., with a Helmert trans-
formation). This hinders the possibility of performing a self-
calibration when only two cameras, with different interior ori-
entation, are available, as in the case of the Belvedere Glacier.

4.6 Dense Reconstruction

Similarly as for the BA, the dense reconstruction is performed
with external software packages Metashape or COLMAP, de-
pending on which software was chosen for the BA. Both
the software packages implement semi-global matching al-
gorithms (Hirschmüller et al., 2012).

In the case of the Belvedere Glacier, dense reconstruction of
the ice cliff is carried out by Agisoft Metashape. In fact,
although Agisoft Metashape was unable to perform feature
matching with wide baselines and estimate the camera poses,
as it employes hand-crafted features, but it was effective in per-
forming dense matching by applying semi-global matching al-
gorithms, if the camera poses are known. Depth maps are built
from full-resolution images (i.e., highest quality parameter in
Agisoft Metashape) with mild filtering. As Agisoft Metashape
is a closed-source software package, no additional information
about the dense matching algorithms is available. Estimated
depth maps are used to reconstruct a dense point cloud and a
triangulated mesh.

4.7 Point Cloud Processing

ICEPy4D integrates a module for processing a time-series of
point clouds, in particular to extract information about volume
variations and glacier retreat. The point cloud processing is
performed with the open-source library Open3D (Zhou et al.,
2018) and CloudComPy, which is the Python API for Cloud-
Compare.

The daily variation in ice volume is determined by calculat-
ing the DEM of Differences (DOD) in the streamwise direction
from a pair of point clouds. To this end, the point clouds are
first converted to triangulated meshes using the Poisson mesh-
ing algorithm (Kazhdan et al., 2006) in Open3D library to fill
small gaps. The meshes are cropped to the same bounding poly-
gon and uniformly sampled for a homogenous point density.
The sampled point clouds are rasterized to a vertical YZ plane
(Fig. 6) with a grid step of 0.3m, maintaining the same ori-
gin and extent. The volume variation between two epochs is
calculated by differentiating the rasters on a cell-by-cell basis
(Fig.6). To account for incomplete coverage and holes in the
point clouds (e.g., due to snow or shadows) that couldn’t be
filled by mesh sampling techniques, the percentage of full cells
in the raster is calculated. The raw volume variation estimate is
normalized by the percentage of full cells in both raster. This

normalization compensates for empty cells in one of the point
clouds, which would underestimate the resulting volume.

Figure 6. Scheme of Dem of Difference (DOD) approach used
to compute volume variations at the glacier terminal ice cliff.

In addition to DOD computation, most of the CloudCompare
functionalities, including M3C2 cloud-to-cloud distance com-
putation (Lague et al., 2013), are exposed to ICEpy4D by means
of the CloudComPy library. Similarly, through Open3D library,
ICEpy4D allows for applying various filters to the point clouds,
such as voxel downsampling, statistical outlier removal, radius
outlier removal, as well as for computing the normal vectors of
the points or filtering the point cloud based on a polyline.

5. THE BELVEDERE GLACIER CASE STUDY

For the Belvedere case study, we used a set of 158 pairs of ste-
reo images acquired from 01/05/2022 to 13/11/2022, during the
snow-free season. The presence of snow, in fact, clearly affects
the quality of the stereo reconstruction and made it difficult (or
even impossible) to locate the GCPs on the images.

Feature matching was carried out with SuperPoint and Super-
Glue. A number ranging from 1000 to 3500 valid matches was
obtained for each pair of images, depending mostly on weather
conditions. At each epoch, the approximate solution was de-
rived by estimating the relative and absolute orientation of the
cameras, followed by a BA carried out with Metashape.

As the cameras may slightly rotate due to wind, the location
of the two camera was supposed as fixed, while the camera
rotations with respect to the World Reference System (WRS)
were estimated at each epoch during BA. Moreover, to ensure
WRS coherence between different epochs and refine cameras’
principal distance, at least three GCPs located on stable areas
in front of the ice cliff and along the glacier moraines were
manually detected at the first epoch and tracked on all the oth-
ers. GCPs were introduced in the BA, properly weighted by
their variance. After the BA, on average, the reprojection error
of all the features on the two images at each epoch was 0.45
pixels, with a standard deviation of approximately 0.3 pixels.
The dense reconstrucion was carried out with Metashape, us-
ing full resolution images to compute depth maps, from which
dense point clouds and meshes were derived for every epoch.

An assessment of the accuracy of the dense reconstruction was
carried out by computing cloud-to-cloud distances with M3C2
algorithm (Lague et al., 2013) between the stereo point cloud
and a reference photogrammetric point cloud derived from a
UAV flight performed on 28/07/2022. The results of the assess-
ment were presented by Ioli et al. (Ioli et al., 2023a) and showed
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(a) (b)

Figure 7. (a) Monthly point clouds built with ICEpy4D from May to November 2022. (b) Vertical cross sections AA’ of the point
clouds extracted at the location marked in (a).

a mean of the distances of 0.01m and a standard deviation of
0.08m, which is less than 3 times the image GSD of 3.5 cm.

From the daily series of point cloud, one point cloud at the be-
ginning of each month was selected for visualize the glacier
retreat (Fig. 7a). The retreat was estimated by M3C2 algorithm
as ∼17.5m from May to November 2022. Ice volume loss was
derived by DOD from pairs of point clouds spaced by 5 days of
time interval in order to increase the signal-to-noise ratio (based
on the rate of movement and accuracy of the estimated dense
point cloud). From May to November 2022, 63× 103 m3 of ice
was lost (Fig. 8).

Figure 8. Cumulated volume variations from May to November
2022, estimated by Dem of Differences of stereo point clouds,

spaced by an interval of 5 days.

6. CONCLUSIONS

In this paper, we present ICEpy4D, a novel Python-based
toolkit designed for 4D monitoring of alpine glaciers using low-
cost setups, such as time-lapse cameras composed of off-the-
shelf components. ICEpy4D leverages state-of-the-art CNN
matching algorithms to solve 3D reconstruction with wide
baselines, making it suitable for glacier monitoring.

The software was successfully tested on the Belvedere Glacier,
allowing for the derivation of daily volume variations at the
glacier snout and glacier retreat. Although the glacier’s debris

cover and dirty ice terminal cliff provided favorable conditions
for 3D reconstruction, due to the presence of distinct patterns
in the images, we believe the method is applicable to other gla-
ciers with different characteristics Previous studies have shown
successful 3D reconstructions of debris-free glaciers using UAV
and ground based SfM with traditional feature matching tech-
niques (Gindraux et al., 2017, Belloni et al., 2023, Taylor et
al., 2023) It is worth noting that these examples utilized tra-
ditional feature matching techniques. With state-of-the-art DL
sparse and dense matching techniques, results can be further
improved.

Being written in Python and modular, ICEpy4D offers ease
of extension and customization for future improvements. Fu-
ture plans for ICEpy4D include interfacing with libraries like
py4dgeo (Anders et al., 2021) to enable multitemporal pro-
cessing of point clouds. Moreover, CERES library will be
tested as an open-source replacement for Metashape, incorpor-
ating GCPs and self-calibration in BA.
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