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ABSTRACT: 
 

In remote sensing, disparity calculation using stereo images is a very necessary task and provides information for estimating the 
terrain elevation. The fields using disparity of stereo satellite images are used in various fields such as terrain models, autonomous 
driving using 3D maps, and content development. However, extracting disparity from stereo satellite images is a very difficult task, 
and inaccurate disparity may be extracted due to complex environments, façade areas of buildings, and texture-less areas. Our 
proposed method improves feature extraction and 3D aggregation steps based on Gwc-Net using stereo images rectified through 
RPC (Rational Polynomial Coefficients). To this achieve, we first improve the accuracy of the initial cost volume by extracting 
important features using the attention module 2D CBAM. In addition, in the aggregation step, we use 3D CBAM to extract important 
features from the cost volume and use GCE (Correlate-and-Excite) to guide image features to the cost volume to improve disparity. 
To evaluate the proposed method, the accuracy of disparity is evaluated using RPC-corrected stereo satellite images of DFC2019 
data track2 of the US3D dataset. As a result of the experiment, the proposed method exhibited improvement compared to the 
baseline Gwc-Net. 
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1. INTRODUCTION 

In remote sensing, disparity estimation using satellite images is 
a necessary task. A disparity map of a satellite image provides 
information needed to estimate the height or elevation of a 
terrain. The fields using disparity of satellite images are used in 
various fields such as terrain models, autonomous driving using 
3D maps, and content development. The goal of disparity 
estimation is to calculate the horizontal displacement value by 
matching the corresponding pixels in the left and right images 
given a pair of modified stereo images. Among the disparity 
estimation methods, the classical method selects a four-step 
pipeline to estimate stereo matching (Scharstein and Szeliski, 
2002). Disparity estimation is performed through several steps, 
including matching cost calculation, cost aggregation, disparity 
calculation, and disparity improvement. Recently, a learning-
based stereo method using convolutional neural networks 
(CNN) has been proposed. Examples of these methods include 
GC-Net (Kendall et al., 2017), PSMNet (Chang and Chen, 
2018), and GwcNet (Guo et al., 2019). GC-Net extracts feature 
from each image and concatenate the features of the left and 
right images to create a 4D cost volume. Next, the cost 
aggregation step is performed on the 4D cost volume to 
improve the noised initial cost volume. PSMNet extracts 
valuable features using the SPP module (Spatial Pyramid 
Pooling module) in the feature extraction of each image and 
improves the cost volume through the stacked hourglass module 
in the aggregation step. GwcNet proposes to construct a cost 
volume by fusion of group correlation and concatenation 
volume. The generated cost volume is aggregated similarly to 
PSM-Net to improve the cost volume to estimate disparity. 
However, remote-sensing image is more complex than natural 
images, making stereo-matching challenging. This is due to 

texture-less areas, repetitive patterns, complex structures, 
disparity discontinuity, and occlusion in certain areas caused by 
tall buildings. Therefore, the proposed method improves the 
accuracy of disparity by using 3D-CBAM (Huang et al., 2020) 
and GCE(Correlate-and-Excite) modules (Bangunharcana et al., 
2021) in the aggregation step. The features of the reference 
image is calculated as weights through GCE module. Excite the 
geometric features of each region by multiplying the calculated 
weight by the cost volume. In addition, channel and spatial 
features are aggregated using 3D-CBAM. This reduces 
inconsistency of brightness and prevents the occurrence of high-
frequency noise in fine structures. The proposed method is 
based on GwcNet and improves the accuracy of disparity by 
adding GCE and 3D-CBAM before and after each stacked 
hourglass module. In addition, in the feature extraction step, 
more valuable features are extracted using CBAM (Woo et al., 
2018). The proposed method is tested on DFC2019 track 2 data 
of the US3D dataset (Bosch et al., 2019, Le Saux et al., 2019) 
rectified with RPC information. The results of the evaluation 
confirmed that the proposed method outperformed the GwcNet. 
The structure of this paper is as follows. First, Chapter 2 
introduces related works to our proposed method. Section 3 
describes the step-by-step configuration of the proposed method. 
Chapter 4 shows the experiment. Finally, in Section 5, we 
describe the conclusions. 
 

2. RELATED WORK 

The CNN-based approach in the stereo-matching task has 
shown great potential compared to classical methods. In 
particular, CNN can be applied in complex scenes, texture-less 
areas and occluded areas to obtain more accurate disparity. The 
first method to apply CNN to stereo matching is MC-CNN 
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(Zbontar and Yann, 2015), which estimates disparity by 
applying CNN to a 4-step pipeline, which is a classical method. 
MC-CNN improves disparity by calculating the similarity 
between features extracted using CNN during the matching 
computation. Recently, end-to-end methods have dominated the 
field of stereo matching, including DispNet (Mayer et al., 2016), 
GC-Net (Kendall et al., 2017), and PSM-Net(Chang and Chen, 
2018). DispNet(Mayer et al., 2016) is the first model to apply 
end-to-end stereo matching. DispNet is designed as an encoder-
decoder and is a method of estimating disparity by extracting 
features from left and right images and then calculating the 
similarity between left and right correlation. However, this 
method is less accurate than the 3D convolution method. GC-
Net is a representative method using 3D convolution, which 
extracts the deep features of the left and right images, then 
concatenates the left and right features to create a 4D cost 
volume for the entire disparity range. The next step is cost 
aggregation using 3D convolution. PSM-Net utilizes the SPP 
module to extract feature maps with varying receptive fields. 
The following cost aggregation step is performed using a 
stacked hourglass module to improve accuracy. In CAR-
Net(Huang et al., 2020), CBAM-ResNeXt, which combines 
attention, and 3D-CBAM, which is connected to 3D CNN for 
cost aggregation, is proposed. This method extracts valuable 
features by utilizing CBAM at each layer of ResNeXt(Xie et al., 
2017) during the feature extraction step. In addition, this model 
used three hourglass models in the cost aggregation step and 
applied 3D- CBAM to each bottleneck model to improve 
accuracy by reducing high-frequency noise and inconsistency 
luminosity. CoEx(Bangunharcana et al., 2021) is a method that 
reduces the computational cost due to 3D convolution by using 
image features and improves the aggregation step. This method 
uses a reference image to improve the cost aggregation step. 
This module computes image feature weights and excites the 
cost volume. These methods improve cost volume by the 
interaction between context features and geometric features. 
GwcNet proposed a group-wise correlation method, which 
generates cost volume and improves cost volume by fusion of 
the concatenation method used in GC-Net and group-wise 
correlation. This method does not lose as much information as 
the single-channel correlation method (Mayer et al., 2016) and 
does not require more parameters in the cost aggregation step to 
learn correlation, like the concatenation method. This paper 
improves cost aggregation using CoEx's GCE module and 3D-
CBAM introduced in CAR-Net as a GwcNet-based network. In 
addition, we enhance the features of each image using 
CBAM(Woo et al., 2018). Our method is similar to CAR-Net. 
However, we further improve disparity estimation by applying 
context information to cost volume using image features. The 
proposed method exhibits robustness against weather changes 
and luminance inconsistencies, which are common 
characteristics of satellite images, resulting in more accurate 
disparity estimation than GwcNet. 
 

3. APPROCHS 

 
Figure 1. The overall framework of the proposed disparity 

estimation network. 
 

The structure we propose is a stereo-matching network that 
improves disparity using attention and GCE modules 
(Bangunharcana et al., 2021). The proposed model consists of 

feature extraction, cost volume construction, cost aggregation, 
and disparity prediction based on Gwc-Net (Guo et al., 2019). 
We provide a detailed description of the proposed network's 
architecture and introduce the loss function in the network. The 
proposed network is composed of four main components: 
feature extraction, cost volume construction, cost aggregation, 
and disparity computation. 
 
3.1 Feature extraction 

Feature extraction is a step for extracting meaningful features 
from images. Our structure consists of a CBAM module (Woo 
et al., 2018) and a network similar to ResNet used in GwcNet 
(Guo et al., 2019). We determined that extracting meaningful 
features from remote sensing images with unary feature maps is 
difficult and improved them using CBAM. In our network, we 
first extract the features with a network similar to ResNet to 
extract the features of the left and right images. During this 
process, the resolution size of each feature map is reduced to 1/4 
of its original size. Next, we concatenate the three layers to 
extract unary feature maps. To enhance the quality of the 
extracted unary feature maps, we apply the CBAM module. The 
enhanced unary feature maps are employed to generate the 
concatenation volume. Additionally, we apply CBAM to 
compress and enhance the extracted unary feature maps, 
extracting features to generate the group-wise correlation 
volume. Finally, during the cost aggregation step, the two 
features used for concatenation volume generation and group-
wise correlation volume generation are connected to create a 
feature map that guides the GCE module (Bangunharcana et al., 
2021). 
 
3.2 Cost volume construction 

 
Figure 2. Cost volume construction work, the right feature 

shifts from -Dmin to Dmax, resulting in a disparity range up to 
[Dmin, Dmax], where Dmin is the negative disparity region and 

Dmax is the positive disparity region. 
 
Using the two feature maps extracted in the previous step, as 
shown in Figure 1, first create two concatenation volumes and 
an initial cost volume of group-wise correlation volumes. These 
cost volumes have different characteristics. The concatenation 
volume contains abundant information, while the group-wise 
correlation volume provides correlation information between 
the left and right features. These cost volumes are created by 
shifting the left and right features. Typically, the cost volume 
creation method employs a network that ensures the production 
of only non-negative values. However, in the remote-sensed 
stereo images used in our proposed method, negative and 
positive disparities can be present due to the significantly 
different viewing angles. Therefore, as shown in Figure 2, we 
perform the shift operation to construct a cost volume that 
contains both positive and negative disparity (Tao et al., 2020). 
This is because the input image epipolar rectification, resulting 
in the disparity only existing in the horizontal direction. As 
shown in Figure 2, the reference feature is awaiting, and the 
target feature slides horizontally on the reference feature. 
Following the same procedure as shown in Figure 2, the 4D cost 
volume is obtained, proceeding with all disparity ranges. The 
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proposed method follows the same process as described above 
for both the group-wise correlation volume and the 
concatenation volume. These two cost volumes are 
concatenated to create a single cost volume. 
 
3.3 Cost aggregation 

In the next step, the cost aggregation process is conducted 
utilizing the initial cost volume. The cost aggregation stage 
involves three hourglass networks, four 3D-CBAM modules 
(Huang et al., 2020), and four GCE modules (Bangunharcana et 
al., 2021). As shown in Figure 1, our proposed method 
enhances the cost volume by incorporating 3D-CBAM and the 
GCE module before and after the output of the stacked 
hourglass module. First, an improved cost volume with noise 
removed is obtained by 3D-CBAM. 3D-CBAM is an extension 
of CBAM (Woo et al., 2018) that incorporates attention 
mechanisms at both the channel and spatial levels. It consists of 
spatial and positional information to a higher dimension than 
CBAM, comprising a 3D-channel attention sub-module and a 
3D-spatial attention sub-module. As a result, this approach 
enhances the representation of the region of interest and 
suppresses irrelevant features, leading to an improved cost 
volume. Next, the GCE module is employed to guide the 
characteristics of the reference image to the initial cost volume. 
This is achieved using the features obtained during the reference 
image feature extraction step. The GCE module uses the 
reference image features as weights to enhance the cost volume. 
By guiding the cost volume using image feature weights, 
contextual information is effectively conveyed to the geometric 
features, resulting in improved disparity estimation. The GCE 
module is implemented using 2D point-wise convolution and 
sigmoid activation functions. It calculates weights based on the 
input image features. These weights then guide the cost volume, 
extracting relevant geometry features. This is achieved by 
multiplying the cost volume with the calculated weights. Next, 
the improved cost volume is input into Stack Hourglass again 
and aggregated to create a cost volume with improved noise 
issue and object boundary. Finally, after generating a volume 
with 1/4 resolution and conducting cost aggregation, we 
perform trilinear interpolation to resize the cost volume to 
match the size of the original image. This interpolated cost 
volume is utilized to calculate the disparity. 

 

3.4 Disparity computation 

We use the soft-argmin operation proposed in GC-Net (Kendall 
et al., 2017) to convert the trilinear interpolated aggregated cost 
volume into a continuous disparity map that maintains subpixel 
accuracy. First, the softmax function transforms the inverse 
values of the cost volume into probability volumes. Then, the 
final disparity is calculated by summing the transformed 
probability volumes weighted by the corresponding 
probabilities for each disparity. The equation for calculating the 
disparity is 
 

 
 

Here, k denotes a disparity candidate, and  indicates a 
predicted disparity. Also, σ means softmax, and -c means the 
opposite cost volume. The proposed method has both negative 
and positive disparity and calculates the final disparity by 
summing the probabilities from the minimum negative disparity 
candidate to the maximum positive disparity candidate. 

3.5 Loss function 

 

 
 
We compute the loss between the predicted disparity and the 
ground truth in the four output modules. The predicted disparity 

of the four output modules is expressed as  , and    means 
the ground truth. Also,   represents a coefficient for the i-th 
prediction disparity. The formula for Smooth L1 loss is as 
follows (Girshick, 2015). 
 

 
 
 

4. EXPERIMENTS 

In this section, we first describe the metrics for quantitative 
evaluation with a description of the dataset and then describe 
the implementation details and quantitative and qualitative 
results for the proposed network. Finally, in the ablation study, 
we conduct evaluations by ablating each component of CBAM 
(Woo et al., 2018) used for feature extraction, as well as 3D-
CBAM (Huang et al., 2020) and GCE (Bangunharcana et al., 
2021) used for cost aggregation in the proposed method. This 
allows us to assess the individual effects of each module on the 
performance of the proposed method. 
 
4.1 Dataset 

We evaluated our proposed method's performance on the US3D 
track2 dataset, a challenge for the 2019 Data Fusion Contest 
(Bosch et al., 2019, Le Saux et al., 2019). This dataset contains 
high-resolution multi-view images collected by WorldView-3 
between 2014 and 2016 in Jacksonville, Florida, and Omaha, 
Nebraska, USA. The stereo pairs in this data set are rectified to 
size 1024 × 1024 and geographically do not overlap. 
Jacksonville and Obama have 2139 and 2154 RGB image pairs, 
respectively, with ground truth disparity labels. We conducted 
training, validation, and testing for the experiment using the 
Jacksonville data. The Omaha data is only used for testing 
purposes. Table 1 provides an overview of the composition of 
each dataset utilized in the experiment. 
 

 
Table 1. Dataset configuration used in the experiment. 

 
4.2 Implementation detail 

Our model is trained with the Adam (Kingma and Ba, 2014) 
optimizer (b1:0.9, b2: 0.999). Normalize the input image to a 
pixel intensity level between -1 and 1 for data preprocessing. 
The input image size for model learning is 1024 x 1024 for 
object integrity, and learning proceeds without data cropping, 
data resizing, and data augmentation. We trained the model 
from scratch on the US3D dataset, set to 100 epochs in total. 
The initial learning rate is set to 0.001, and it drops by half 
every 10 epochs. The disparity range was set to [-64, 64], and 
the loss weights  , ,  and  were set to 0.5, 0.5, 0.7, and 
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1.0, respectively. We used an A6000 GPU for training, and it 
was implemented on Window 10 in the Pytorch environment. In 
addition, learning is performed with the batch size set to 2, and 
the test for the proposed model is also conducted in the same 
environment. 
 
4.3 Experimental results 

We included DenseMapNet (Atienza, 2018), Stereonet (Khamis 
et al., 2018), PSMNet (Chang and Chen, 2018), and GwcNet 
(Guo et al., 2019) for comparison purposes. The DenseMapNet 
used in our comparison is the official baseline provided by the 
US3D data (Bosch et al., 2019). The proposed method 
demonstrates superior accuracy compared to the official 
baseline, DenseMapNet. Stereonet and PSMNet are commonly 
used models for stereo-based disparity extraction, while 
GwcNet is the foundation for our proposed method. We 
compared the proposed method with traditional methods using 
US3D Omaha data. As shown in Table 2, the performance of 
the proposed method is improved compared to the traditional 
methods. Good performance on the Omaha dataset means good 
generalization performance. For quantitative evaluation in Table 
2, we used two metrics proposed by (Bosch et al., 2019), the 
average endpoint error (EPE) and the fraction of erroneous 
pixels (D1). Table 3 compares GwcNet and the proposed 
method for Jacksonville test data. For qualitative comparison, 
we present a selection of output disparity maps in Figure 3. Our 
network demonstrates enhanced robustness in texture-less areas 
like flat buildings and the ground. Figure 4 illustrates the error 
map between the ground truth and the estimated disparity to 
provide a clear representation. Our network achieves superior 
results compared to GwcNet. 
 

 
Figure 3. Disparity maps by different methods using the DFC 

2019 Omaha dataset. 
 

 
Table 2. Quantitative evaluation on the whole Omaha data set. 

Best results are shown in bold. 
 

 
Table 3. Quantitative evaluation on the Jacksonville data set. 

Best results are shown in bold. 
 

 
Figure 4. Error map visualization for the disparity in Figure 2. 

The blue color represents a correct estimate (<3px % error), and 
the red color represents a wrong estimate. 

 
Texture-less regions.  A texture-less area generally occurs a lot 
in buildings or on the ground, where it is challenging to 
estimate disparity because the intensity of pixels between the 
reference image and the target image changes feebly. We 
selected and listed only texture-less regions from some of the 
disparity maps output in Figure 5. Roof areas of the same 
building usually have the same disparity; examples of such 
regions are roads and flat lawns. As shown in Figure 5, we can 
see that it predicts more consistent disparity compared to other 
networks. Figure 6 illustrates the error map between the ground 
truth and the estimated disparity. Table 4 shows the quantitative 
evaluation of the individual images in Figure 5. 
 

 
Table 4. Quantitative evaluation for each individual image in 

Figure 5. Best results are shown in bold. 
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Figure 5. Results of disparity estimation of each individual 

image for various methods in the texture-less area. From left to 
right: Left image, GwcNet, Ours and Ground truth. 

 
 

 
Figure 6. Error map visualization for the disparity in Figure 5. 

The blue color represents a correct estimate (<3px % error), and 
the red color represents an wrong estimate. From left to right: 

Left image, GwcNet and Ours. 
 
 
 
Disparity discontinuities and occlusions. Disparity 
discontinuities have edge-fattening problems, and tall buildings 
can cause occlusion problems. In the case of an image with a 
high-altitude building, such as a satellite image, the occluded 
area is better observed. We show in Figure 7 the areas of 
occlusion and disparity discontinuities due to tall buildings. The 
proposed method improves the performance in the building 
edge area compared to the traditional network. Table 5 presents 
the quantitative evaluation of the individual images in Figure 7. 
Figure 8 illustrates the error map between the ground truth and 
the estimated disparity. Our results show improved performance 
in the evaluation of EPE and D1. 
 
 
 

 
Table 5. Quantitative evaluation for each individual image in 

Figure 7. Best results are shown in bold. 
 
 

 
Figure 7. Estimation results of various model disparity in 
disparity discontinuities and occlusion region. From left to 

right: Left image, GwcNet, Ours and Ground truth. 
 

 
Figure 8. Error map visualization for the disparity in Figure 7. 

The blue color represents a correct estimate (<3px % error), and 
the red color represents a wrong estimate. From left to right: 

Left image, GwcNet and Ours. 
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4.4 Ablation study 

In this section, an ablation study on the US3D dataset is 
performed and evaluated to validate the module used in the 
proposed network. To evaluate the performance of the proposed 
method, we conducted experiments using different 
configurations, including the use of only 2DCBAM in the 
feature extraction step, the addition of 3DCBAM in the cost 
aggregation step, and the incorporation of the GCE module. In 
Table 6, the "CBAM" results indicate the performance when 
CBAM is added to the feature extraction step in GwcNet, while 
the "CBAM + 3D CBAM" results indicate the performance 
when 3D CBAM is added to the cost aggregation step. The last 
row of Table 6 corresponds to the proposed method. As 
presented in Table 6, the performance of the proposed method is 
further improved. 
 

 
Table 6. Ablation study on US3D dataset. Best results are 

shown in bold. 
 

5. CONCLUSIONS 

This paper presents an enhanced network based on GwcNet for 
estimating disparity in high-resolution satellite stereo images. 
The proposed network enhances the accuracy of the feature 
extraction step by adding CBAM and improves the cost 
aggregation step by including 3D-CBAM and GCE module. In 
the experimental results, through a comparison with traditional 
methods, and performance evaluation, our method outperforms 
traditional methods in terms of performance. In the future, we 
will study methods to effectively fusion image features into the 
cost volume by enhancing the performance of the GCE module 
and improve the proposed method's performance further. 
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