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ABSTRACT: 

 

Structure from Motion (SfM) is a 3D reconstruction framework that has achieved great success on large-scale Unmanned Aerial 

Vehicle (UAV) images. Due to the high time consumption of feature matching, a matching candidate subset is obtained by image 

retrieval to improve efficiency. Bag of Word (BoW) based image retrieval has been widely used in SfM systems, but the large 

number of local features and the high dimension of the BoW vector cause the retrieval method time-consuming. Vector of Locally 

Aggregated Descriptors (VLAD) and learning-based NetVLAD perform well in image retrieval, and these vector representation 

methods are evaluated in this study. After images are transformed into vectors, Nearest Neighbour (NN) searching methods like 

Brute-force and KD-Tree are used to find similar images. But as the number of images and the vector dimension increase, 

Approximate Nearest Neighbour (ANN) searching methods like Hierarchical Navigable Small World (HNSW) and Locality-

Sensitive Hashing (LSH) are considered to replace NN searching to avoid efficiency degradation. These vector searching methods 

are also evaluated in this study. The test results demonstrate that the optimal method VLAD with HNSW can speed up about 100 

times in finding matching candidate subset. A view graph that guides scene partition and sub-scene reconstruction in parallel SfM 

can be created by the optimal method. With this view graph construction method, the efficiency of SfM is significantly improved. 

 

1. INTRODUCTION 

Structure from Motion (SfM) aims to reconstruct a 3D scene 

from a set of images and estimate the camera poses. It has been 

implemented in well-known software packages, such as Bundler 

(Snavely et al., 2007),  COLMAP (Schonberger and Frahm, 

2016),  and applied in 3D modeling of internet images (Geppert 

et al., 2020) and Unmanned Aerial Vehicle (UAV) images 

(Jiang et al., 2020) (Li et al., 2023). The general procedure of 

SfM includes feature extraction, feature matching, view graph 

construction and 3D reconstruction (Jiang et al., 2022b). 

A view graph is an undirected weighted graph, where vertexes 

represent images and edges represent connections among 

images, and it is the input of 3D reconstruction (Jiang and Jiang, 

2017) (Liu et al., 2022). The construction of the view graph 

depends on the results of feature matching. But the computation 

of feature matching is expensive, especially for large-scale 

UAV datasets, which have a large number of images with high 

spatial resolution. The exhaustive matching method cannot 

satisfy the system's requirement for efficiency. To tackle this 

problem, image retrieval is used to compute a matching 

candidate subset to accelerate feature matching (Jiang and Jiang, 

2020). The current SfM systems, like COLMAP, use 

vocabulary tree (Nister and Stewenius, 2006) to acquire similar 

image pairs. As datasets grow larger, this method also gradually 

fails to meet the requirement due to high time consumption in 

the indexing of large-size of local features. Thus, more 

discriminative small-size global features and efficient 

approximate nearest-neighbor (ANN) searching methods 

provide new solutions. 

In the field of image retrieval, Bag of Word (BoW) (Sivic and 

Zisserman, 2003), Fisher Vector (FV) (Perronnin et al., 2010), 

and Vector of  Locally Aggregated Descriptors (VLAD) (Jegou 

et al., 2012) are the most typical methods for image vector 

representation. In recent years, learning-based image retrieval 

has also developed rapidly. The 3D model obtained from SfM 

was used by Radenović et al. (2016) to guide the selection of 

the training data for fine-tuning the network model, which 

aggregates features with a max pooling layer and is suitable for 

the task of image retrieval. Inspired by VLAD, a differentiable 

NetVLAD layer was proposed and embedded into 

Convolutional Neural Network (CNN) models for image 

retrieval (Arandjelovic et al., 2018). In order to enhance the 

performance of image retrieval, Radenović et al. (2019) 

proposed a novel trainable generalized mean (GeM) pooling 

layer that generalizes max pooling and average pooling. 

The accuracy and efficiency of image retrieval are crucial to 

view graph construction. In addition, it's important to avoid the 

loss of too many correct matching pairs, which would damage 

the completeness of the view graph and reconstruction. Efficient 

and accurate image retrieval methods support constructing a 

stable view graph to complete the reconstruction. 

In this paper, we describe view graph construction and image 

retrieval methods in Section 2. Section 3 gives details of the 

evaluation metrics and datasets in tests. Finally, we present and 

discuss the results of our experiments in Section 4. 

 

2. STATE-OF-THE-ART METHODS FOR VIEW 

GRAPH CONSTRUCTION 

2.1 View Graph Construction 

A view graph is required to guide the process of reconstruction 

in SfM. View graph is represented as an undirected weighted 

graph 𝐺 = (𝑉, 𝐸), where a vertex in the vertex set 𝑉 represents 

an image and an edge in the edge set 𝐸 represents a connection 

for an image pair (Jiang et al., 2022c) with an assigned weight. 

In addition, the relative geometries of the image pairs are 

preserved for the edges. After obtaining a matching candidate 

subset by image retrieval, filtering with feature matching and 
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geometric verification is performed on the subset to derive the 

final matching pairs. Assume that the image set 𝐴 = {𝑎𝑖} has N 

images and the number of matching pairs in set 𝐵 = {𝑏𝑖𝑗} is M. 

The construction of the view graph 𝐺  is as follows: firstly, 

adding the vertex 𝑣𝑖  to set 𝑉 for 𝑎𝑖 , where 𝑖 = 1,… , 𝑁 . Then, 

adding the edge 𝑒𝑖𝑗  connecting 𝑣𝑖  and 𝑣𝑗  to set 𝐸  for  𝑏𝑖𝑗 

connecting 𝑎𝑖 and 𝑎𝑗 . Finally, weights are assigned to the edges 

to differentiate the importance of the edges. Assume that the set 

of weights is 𝑊 = {𝑤𝑖𝑗}. The weight 𝑤𝑖𝑗 depends on the  

 
Figure 1. The pipeline of the retrieval methods. SIFT features or CNN feature maps of the input image are extracted in the feature 

extraction stage. SIFT features are transformed into BoW or VLAD vector based on different aggregation methods and codebooks, 

and CNN feature maps are transformed into NetVLAD vector through a NetVLAD layer. Four vector searching methods can be used 

to obtain the rank list. 

 

number of matching features and their distribution on the image, 

as in formula (1), where 𝑅𝑒𝑤   is the weight ratio between 

𝑤𝑖𝑛𝑙𝑖𝑒𝑟  and 𝑤𝑜𝑣𝑒𝑟𝑙𝑎𝑝  , 𝑤𝑖𝑛𝑙𝑖𝑒𝑟  and 𝑤𝑜𝑣𝑒𝑟𝑙𝑎𝑝  are determined by 

the number of matching features and the distribution of 

matching features, respectively. 

 

𝑤𝑖𝑗 = 𝑅𝑒𝑤 × 𝑤𝑖𝑛𝑙𝑖𝑒𝑟 + (1 − 𝑅𝑒𝑤) × 𝑤𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (1) 

 

To address the low efficiency of incremental SfM, the parallel 

technique has been used, in which the created view graph can be 

utilized to guide the scene partition and merging. Generally, the 

Normalized Cut algorithm (Shi and Malik, 2000) removes the 

edges with lower weights in the view graph and divides the 

entire scene into several clusters. These clusters are 

reconstructed in parallel and the cluster reconstructions are 

merged to obtain the final reconstruction model. 

 

2.2 Image Vector Representation 

The general method of image retrieval is first to extract vector 

representations of images in a database. Then, the query image 

is also converted into a vector, and the top-k nearest vectors are 

found by Nearest Neighbour (NN) searching. Finally, the 

images corresponding to the vectors are the retrieval results. 

Image vector representation includes traditional methods and 

learning-based methods. Traditional methods, such as BoW 

(Sivic and Zisserman, 2003) and VLAD (Jegou et al., 2012), 

generate global features from hand-crafted local features, like 

Scale Invariant Feature Transform (SIFT) (Lowe, 2004). Some 

researchers have attempted to apply deep learning to image 

retrieval due to its impressive performance on tasks like image 

classification. The common approach is to design a feature 

aggregation layer and add it behind the last convolution layer in 

existing CNN architectures. Then fine-tuning the new network 

so that it can be adapted to the task of image retrieval, 

NetVLAD (Arandjelovic et al., 2018) is one of the 

representatives. The retrieval pipeline shown in Figure 1, 

includes three feature aggregation methods and four vector 

searching methods. 

 

2.2.1 BoW: By treating images as documents and local features 

as words, BoW, a popular algorithm in the field of information 

retrieval, can be used to retrieve images. In image retrieval, the 

visual codebook is usually generated through K-means 

clustering. With the codebook, images can be converted into 

histogram vectors. A dimension of the vector corresponds to a 

cluster center. The value of the dimension is equal to the 

number of local features that are close to the corresponding 

cluster center. BoW-based image retrieval has been the most 

classic method for finding matching candidate subsets (Jiang et 

al., 2022a). For large-scale UAV datasets, a large-size codebook 

is required to ensure the differentiation of BoW vectors, which 

results in a long vector production process and high vector 

dimensionality. Additionally, a significant amount of 

information on local features is lost as a result of the counting 

mechanism. 

 

2.2.2 VLAD: The same as BoW, VLAD also requires a trained 

codebook and local features from feature extraction. Assume 

that N is the number of local features, D is the local feature 

dimension, and K is the number of codebook centers. This is 

how the VLAD descriptor is calculated: for each local feature, 

finding its nearest cluster center. Then we calculate the residuals 

between the cluster centers and the local features and sum the 

residuals for all cluster centers. This transforms the N ×  D 

initial image feature into a K ×  D VLAD descriptor. Formula (2) 

shows the specific calculation of VLAD, where 𝑣𝑘.𝑗  indicates 

the jth dimension of the kth row of the VLAD descriptor, 𝑥𝑖,𝑗  

indicates the jth dimension of the ith local feature, 𝑐𝑘,𝑗  indicates 

the jth dimension of the kth cluster center, and 𝑎  is an 

assignment function. When the nearest cluster center of 𝑥𝑖 is 𝑐𝑘, 

𝑎𝑖,𝑘 = 1, otherwise 𝑎𝑖,𝑘 = 0. 

 

 

𝑣𝑘.𝑗 = ∑ 𝑎𝑖,𝑘(𝑥𝑖,𝑗 − 𝑐𝑘,𝑗)
𝑛
𝑖=1

  

(2) 

 

In general, the size of the codebook used for VLAD is much 

smaller than that of BoW because it retains the dimension of the 

local feature. Besides, the size of cluster centers K is also much 

smaller than the number of extracted features N from UAV 
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images. Thus, high efficiency can be achieved for image 

indexing by using the VLAD vector. 

 

2.2.3 NetVLAD: A differentiable NetVLAD layer is designed 

since the indifferentiable assignment function 𝑎  in the initial 

VLAD is not available for the training of CNN, and the new 

assignment function is shown in formula (3), where 𝑥𝑖 denotes a 

local feature, 𝑐𝑘  denotes a cluster center, and 𝛼  is a positive 

parameter. Instead of assigning a local feature to only one 

clustering center, the assignment values of a local feature to 

different cluster centers are determined by the distances 

between them. 

 

�̅�𝑘(𝑥𝑖) =
𝑒−𝛼‖𝑥𝑖−𝑐𝑘‖

2

∑ 𝑒
−𝛼‖𝑥𝑖−𝑐𝑘′

‖
2

𝑘′

        (3) 

 

Formula (4) is obtained by expanding formula (3) and dividing 

the numerator and denominator with 𝑒−𝛼‖𝑥𝑖‖
2

, where 𝑤𝑘 =
2𝛼𝑐𝑘, 𝑏𝑘 = −𝛼‖𝑐𝑘‖

2. It is a softmax function. 

 

 �̅�𝑘(𝑥𝑖) =
𝑒𝑤𝑘

𝑇𝑥𝑖+𝑏𝑘

∑ 𝑒
𝑤
𝑘′
𝑇 𝑥𝑖+𝑏𝑘′

𝑘′

   (4) 

 

Therefore, the NetVLAD descriptor is calculated as in formula 

(5), where 𝑤𝑘 and 𝑏𝑘 are trained to obtain the assignment values 

and the parameter 𝑐𝑘 is trained as the cluster center. Since the 

cluster centers are acquired through supervised learning, they 

are preferable to those acquired through clustering in traditional 

methods, making the NetVLAD descriptor more distinctive. 

 

𝑣(𝑗, 𝑘) = ∑
𝑒𝑤𝑘

𝑇𝑥𝑖+𝑏𝑘

∑ 𝑒
𝑤
𝑘′
𝑇 𝑥𝑖+𝑏𝑘′

𝑘′

(𝑥𝑖(𝑗) − 𝑐𝑘(𝑗))
𝑁
𝑖=1  (5) 

 

The strong representation capability of deep learning enables 

the NetVLAD descriptor to perform well in image retrieval. 

Through embedding the NetVLAD layer into MobileNet and 

compressing the network model by knowledge distillation, 

NetVLAD descriptors have been used for image retrieval-based 

visual localization on mobile platforms (Sarlin et al., 2019). 

 

2.3 Nearest Neighbor Searching 

After transforming images into vector representations, we find 

the top-k nearest vectors of the query vector by nearest neighbor 

(NN) searching. Brute-force searching is the simplest and 

highest time complexity method, and KD-Tree (Bentley, 1975) 

is an NN searching algorithm like it to find the accurate nearest 

neighbors. Many approximate nearest neighbor (ANN) 

searching algorithms have been proposed because of the high 

time cost of NN searching, they all improve the searching 

efficiency at the expense of accuracy. For example, graph-based 

Hierarchical Navigable Small World (HNSW) (Malkov and 

Yashunin, 2020), and hashing-based Locality-Sensitive Hashing 

(LSH) (Indyk and Motwani, 1998). 

 

2.3.1 Brute-force: Brute-force searching traverses all vectors in 

the database, calculates the distances between the query 

vector and them, and ultimately determines the top-k nearest 

neighbors of the query vector by sorting vectors in the database 

according to the distances. This approach is not suitable for the 

case of high vector dimension and large amounts of data, and its 

result is generally utilized as a benchmark to evaluate other 

methods. 

 

2.3.2 KD-Tree: KD-Tree is a data structure for partitioning K-

dimensional data space and is widely used for NN searching. 

The K-dimensional space is divided into numerous subspaces 

through iterative partitioning, which is based on the largest-

variance dimension. The nearest neighbors of a query vector are 

discovered by dichotomous searching with a traceback 

mechanism after constructing a KD-Tree. As a result of the low 

dimension of the utilized feature descriptors, like the SIFT 

descriptor with 128-dimension, KD-Tree has been widely used 

for image retrieval algorithms (Hu and Nooshabadi, 2019; 

Huang et al., 2010) and software packages, like COLMAP 

(Schonberger and Frahm, 2016) and AliceVision (Griwodz et al., 

2021). As the feature dimension increases, the efficacy of KD-

Tree declines and even falls below that of brute-force searching. 

 

2.3.3 LSH: It is time-consuming to perform brute-force 

searching and KD-Tree searching on massive high-dimensional 

datasets, this issue is partially resolved by LSH. The main idea 

of LSH is that the probability of two vectors in the original 

vector space that are close to one another being hashed into the 

same cell is still high after the same mapping; in contrast, the 

probability is small when the distance between two vectors is 

large. After indexing the vectors with a locality-sensitive 

hashing function, the function is used on the query vector to 

find the corresponding cell at the time of searching, then the 

query vector performs a similarity measure with the vectors in 

this cell to find its approximate nearest neighbors. LSH has 

been employed for large-scale image retrieval, including online 

community and remote sensing photos, because of its high 

efficiency (Li et al., 2021). 

 

2.3.4 HNSW: HNSW and Navigable Small World (NSW) 

(Malkov et al., 2014) are graph-based algorithms in the field of 

ANN searching. The Small World is a kind of graph between 

the regular graph and the random graph, in which the 

connections of the same class of nodes are locally regular, and 

the connections of different classes of nodes are globally 

random. The construction of NSW is similar to its query 

operation and based on a modified naive Proximity Graph 

algorithm. In contrast to the Delaunay graph, it reduces the time 

complexity of construction and adds "Highways" with 

randomness. There are long edges and short edges in NSW. The 

approximate Delaunay graph for greedy searching is composed 

of short edges. The long edges, known as "Highways", are used 

for the logarithmic scaling of the greedy searching and result in 

the graph with the property of Navigable Small World. A multi-

layer framework is built in HNSW, which is an enhanced 

variant of NSW, to improve the efficiency of ANN searching. 

HNSW was used by Liu et al. (2022) to substitute KD-Tree, and 

it enhances the efficiency of image retrieval. 

 

3. EVALUATION METRICS AND DATASETS 

3.1 Evaluation Metrics 

The accuracy of image retrieval is important for view graph 

construction. It is calculated by the retrieval results and the 

ground truth derived from the reconstruction results based on 

sufficient matching pairs. The definition of the accuracy is 

shown in formula (6), where 𝑁(∗)  indicates the number of 

image pairs in the set ∗, 𝐺𝑇 is the set of ground truth and 𝐼𝑅 is 

the set of image retrieval results. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁(𝐼𝑅⋂𝐺𝑇)

𝑁(𝐺𝑇)
          (6) 
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It is also significant to evaluate the efficiency as we aim to 

shorten the time consumption of image retrieval to speed up 

feature matching. The efficiency is given in formula (7), where 

𝑇vec  denotes the elapsed time of obtaining image vector 

representations and 𝑇nns  denotes the elapsed time of NN 

searching. 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑇vec + 𝑇nns  (7) 

 

Some statistical metrics of the reconstruction model also reflect 

the quality of the view graph constructed with different image 

retrieval methods. The number of registered images and points 

indicates the completeness of the model, while the mean 

reprojection error indicates the precision of the model. As the 

final task is the reconstruction of UAV images, it is necessary to 

consider these metrics. 

 

3.2 Datasets 

The performance of the image retrieval methods is evaluated by 

three different scale UAV datasets, Campus, SZU, and 2W, 

which were captured at China University of Geosciences, 

Shenzhen University, and a township area, respectively. Details 

of the datasets are presented in Table 1, and Figure 2 shows a 

sample image of each dataset. Among Table 1, the most 

influential on the retrieval performance is the number of images 

and the image size. 

 

Item Campus SZU 2W 

UAV type multi-rotor multi-rotor multi-rotor 

Flight 

height(m) 
80 - 87.1 

Camera 

mode 

DJI 

FC6310R 

DJI 

Zenmuse P1 

SONY 

ILCE 7R 

Number of 

cameras 
1 1 5 

Focal 

length(mm) 
24 35 35 

Camera 

angle(°) 
0 - 

Nadir: 0; 

oblique: 

45/-45 

Number of 

images 
3,743 4,030 21,654 

Image 

size(pixel) 
5472×3648 8192×5460 6000×4000 

GSD(cm) 2.6 1.2 1.21 

Table 1.  Details of the three datasets. 

 

   
(a) (b) (c) 

Figure 2. Sample images of the three datasets: (a) Campus; (b) 

SZU; (c) 2W. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the evaluation experiments of image retrieval 

methods are performed on the three datasets described in 

Section 3. Then the optimal method is applied for view graph 

construction and reconstruction of the datasets. 

 

4.1 Evaluation of Image Retrieval 

There are three image vector representation methods BoW, 

VLAD, NetVLAD, and four searching methods Brute-force, 

KD-Tree, LSH, and HNSW in our experiments. The efficiency 

and accuracy of these approaches are shown in Table 2 and 

Table 3, respectively. In the tables, the first column lists the 

vector representation approaches, the second column lists the 

searching approaches, and the final three columns show the 

results on the three datasets. 

The local features used in experiments BoW and VLAD are 

128-dimension SIFT descriptors extracted from feature 

extraction in SfM. The network model used in experiments 

NetVLAD is VGG16 and is fine-tuned with dataset Pitts30k. 

The number of clustering centers in experiments BoW, 

VLAD64, VLAD256, and NetVLAD is 256 ×  256, 64, 256, and 

64, respectively. In experiments HNSW10, there are 10 

connections for each node, which decreases accuracy on dataset 

2W. Therefore, we changed the number of connections to 64 

and performed the HNSW64 experiments. The following is a 

discussion and conclusion of the results. 

In the results of experiments BoW and VLAD64, the high 

accuracy of BoW is mainly because the number of cluster 

centers is much larger than that of VLAD64, which also leads to 

lower efficiency. Despite the highest efficiency of LSH, it 

makes the accuracy drop a lot. While ensuring accuracy, 

HNSW10 increases the searching efficiency and is only slightly 

less efficient than LSH. VLAD64 with HNSW10 is 

approximately 120 times faster than BoW, and the accuracy is 

within 0.07 lower than BoW. We raised the number of VLAD 

cluster centers to improve accuracy, the accuracy was 

significantly enhanced and even surpassed BoW, as shown in 

VLAD256 in Table 2. As the number of cluster centers grows, 

efficiency inevitably decreases, but VLAD256 with HNSW10 

or HNSW64 is still roughly 100 times faster than BoW and also 

faster than NetVLAD. 

 

Vector Searching Campus SZU 2W 

BoW KD-Tree 84.29 78.54 80.08 

VLAD 

64 

Brute-

force 
80.10 71.78 76.54 

KD-Tree 80.10 71.78 76.54 

LSH 76.21 69.20 73.54 

HNSW10 81.71 72.85 75.56 

HNSW64 - - 77.05 

VLAD

256 

Brute-

force 
86.30 77.44 82.11 

KD-Tree 86.30 77.44 82.11 

LSH 80.45 71.88 76.89 

HNSW10 87.30 77.99 78.68 

HNSW64 - - 82.18 

Net 

VLAD 

Brute-

force 
78.93 75.99 76.99 

KD-Tree 78.93 75.99 76.99 

LSH 76.87 74.58 75.42 

HNSW10 79.52 75.99 75.33 

HNSW64 - - 77.05 

Table 2. Accuracy comparison of combinations of vector 

representation and nearest neighbor searching methods on the 

three datasets. The bold indicates the highest accuracy on each 

dataset. 
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Then comes the learning-based NetVLAD, which is less than 

the accuracy of BoW but higher than the VLAD64 with the 

same number of cluster centers on dataset SZU and 2W. It is 

about 8 times more efficient than BoW. The main reason why 

the efficiency of NetVLAD is not as good as VLAD is that 

while VLAD utilizes local features extracted in the previous 

step, NetVLAD must extract deep features as local features 

individually. Furthermore, the resolution of an image is also a 

significant factor affecting the efficiency of NetVLAD. The 

deep feature extraction of a larger resolution image takes more 

time. For instance, dataset SZU has 287 more images than 

dataset Campus but takes twice as long as dataset Campus. 

Although NetVLAD does not perform as well as VLAD256, it 

is significantly more efficient than BoW and outperforms 

VLAD64 with the same number of cluster centers in terms of 

accuracy. 

 

Vector Searching Campus SZU 2W 

BoW KD-Tree 5476.24 5838.51 74141.48 

VLAD 

64 

Brute-

force 
154.35 177.74 4062.51 

KD-Tree 124.27 143.31 3548.91 

LSH 43.14 49.16 257.28 

HNSW10 44.02 50.14 262.99 

HNSW64 - - 289.24 

VLAD

256 

Brute-

force 
556.89 663.76 9523.80 

KD-Tree 390.93 402.69 13886.88 

LSH 55.47 69.52 451.52 

HNSW10 59.97 74.62 478.23 

HNSW64 - - 526.91 

Net 

VLAD 

Brute-

force 
426.15 766.40 5746.23 

KD-Tree 385.22 717.62 4348.38 

LSH 342.07 668.07 2833.54 

HNSW10 342.41 668.45 2835.14 

HNSW64 - - 2839.65 

Table 3. Efficiency comparison of combinations of vector 

representation and nearest neighbor searching methods on the 

three datasets. The bold indicates the most efficient method (in 

seconds) on each dataset. 

 

(a) 

 

(b) 

 
Figure 3. A retrieval instance of VLAD256 with HNSW on 

dataset SZU. (a) query image; (b) retrieved images. 

 

As a result, the optimal vector representation approach in our 

experiments is VLAD256, which has the highest or second-

highest accuracy and is only less efficient than VLAD64. The 

best searching approach is HNSW, which is comparable to the 

fastest LSH in terms of efficiency and without decreasing the 

retrieval accuracy as long as the parameter is properly adjusted. 

Figure 3 shows a retrieval instance of the optimal methods on 

dataset SZU. Afterward, we used VLAD256 with HNSW to 

obtain matching candidate subsets for constructing view graphs 

that guided the reconstructions of the three datasets. 

 

4.2 View Graph Construction and SfM Reconstruction 

The range of feature matching can be restricted via the matching 

candidate subset from image retrieval. Then a view graph was 

constructed for each dataset based on the feature matching 

results. Figure 4 shows the view graph of dataset SZU, where 

the red dots indicate the nodes and the gray lines indicate the 

connections. All the images are added to the view graph, and 

67787 matching pairs are retained. 

 
Figure 4. The view graph of dataset SZU. 

 

Before reconstruction, the view graph was partitioned into small 

clusters with strong connections intra-clusters and weak 

connections inter-clusters by the normalized cut algorithm. The 

partitioned view graph is composed of 9 clusters, and the 

maximum number of images in each cluster is 500, as in Figure 

5, where one color represents one cluster. 

 
Figure 5. The partitioned view graph of dataset SZU.  

 

We performed incremental reconstruction for the clusters in 

parallel. Then, the cluster reconstructions were merged to obtain 

the complete reconstruction model. Figure 6 presents the 

reconstruction model of dataset SZU and the statistics of the 

reconstruction model of the three datasets are given in Table 4. 

The mean reprojection error, which manifests the precision of 

the model, is 0.702 for Campus, 0.802 for SZU, and 0.954 for 
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2W. The number of registered images and the number of 

reconstructed 3D points reflect the completeness of the model, 

and almost all the images are registered for each dataset. It 

follows that the optimal methods can construct a robust view 

graph to accomplish reconstruction. 

 

 Campus SZU 2W 

Registered 

images 
3737 4029 21642 

Points 978395 1504264 8943192 

Mean 

reprojection 

error(pixel) 

0.702 0.802 0.954 

Table 4. Reconstruction model statistics of the three datasets. 

 
Figure 6. The reconstruction model of dataset SZU. 

 

5. CONCLUSIONS AND FUTURE STUDIES  

In this paper, we compared different image vector 

representation methods, both the traditional VLAD descriptor 

and the learning-based NetVLAD descriptor outperform the 

vocabulary tree approach in existing SfM systems in terms of 

efficiency. For accuracy, NetVLAD and VLAD descriptors with 

64 cluster centers are lower than the vocabulary tree approach, 

but the VLAD descriptor with 256 cluster centers outperforms it. 

We also compared different NN searching and ANN searching 

methods, and graph-based HNSW significantly outperforms the 

other methods. Utilizing the optimal scheme VLAD256 with 

HNSW to select a matching candidate subset for view graph 

construction, large-scale UAV images can be reconstructed 

efficiently and accurately. The experiment results demonstrate 

that the optimal scheme can accelerate the matching candidate 

subset searching approximately 100 times and also improve the 

efficiency of SfM reconstruction. 

The local features used in this study are hand-crafted descriptors, 

which can be replaced with powerful learning-based descriptors 

in future studies. Besides, as more capable deep learning models 

are proposed, embedding NetVLAD into them and training 

them for the task of 3D reconstruction may improve accuracy 

and efficiency. 
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