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ABSTRACT: 
The use of autonomous underwater vehicles (AUVs) for surveying underwater infrastructure presents a potential cost saving in 
comparison to remotely operated vehicles (ROVs). One of the challenges when processing images of underwater structures captured 
by an AUV, is that vast number of images captured during the mission usually do not show the structure. For instance, images 
captured during the dive to the structure or of the sea floor, or of the deep sea facing away from the structure. Too many images 
captured, without relevant information for a 3D reconstruction of the structure, leads to increased processing time and issues during 
the reconstruction process. There are two solutions to reduce the images to only images showing the structure. Firstly, only images of 
the structure are captured in the first place or remove images that are not useful after the capture and before further processing. This 
study developed and evaluated techniques that would enable the first strategy to be applied in an AUV. To apply this strategy in an 
AUV, would require an on-board structure detection system to ensure that they are correctly orientated for capturing useful footage 
during a survey mission. However, the marine environment poses several challenges to image-based object detection. Furthermore, 
small AUVs have limited power and computational resources available while deployed on a mission. To investigate the suitability of 
creating a lightweight structure detection model for the purpose of image evaluation, three computationally efficient image feature 
extraction methods (colour moments, local binary patterns (LBP), and Haar wavelet decomposition) were evaluated for their ability 
to distinguish underwater structures from background areas using unsupervised k-means models. LBP was found to be an effective 
method for identifying underwater structures in open water conditions. For identifying a structure against the seabed, colour 
moments were identified as the most effective method. 
 
 

1. INTRODUCTION 

 
Developments in autonomous underwater vehicles (AUVs) will 
potentially revolutionize surveys and inspections of subsea 
infrastructure in the near future (Rumson, 2021). Small portable 
AUVs will soon be available that can be launched and retrieved 
by a single operator. This will provide a significant reduction in 
cost and complexity in comparison to the current use of 
remotely operated vehicles (ROVs), which require a trained 
pilot and specialized equipment to operate. However, moving 
from a tethered ROV to a self-contained AUV raises a number 
of technical challenges. Firstly, an AUV is limited to its on-
board power supply: It must operate as efficiently as possible to 
extend operating times before it needs to be recharged. 
Secondly, communication with remote underwater electronic 
devices is generally limited to acoustic signals, which have a 
severely constrained transmission bandwidth. Aerial drones can 
utilise 4G or 5G networks to operate in fleets, transfer video 
feeds to human operators, or offload information for near real-
time processing on servers. This is not possible for a wireless 
underwater vehicle, so the AUV must be able to intelligently 
determine if it is capturing useful information during its survey 
mission. If the navigation path has not been set correctly, there 
is a risk that an AUV will complete its mission without 
capturing useful images of the target. To circumvent this risk, a 
possible solution is to equip the AUV with object detection 
capabilities, which would mean that only images of the structure 
are captured. In the context of this paper, we will use the word 
structure as a general term for any parts belonging to a subsea 
infrastructure such as a drilling rig.  
 
Only capturing images of the target structure, has several 
advantages when further processing the images for 3D 

reconstruction. Firstly, the number of images to be processed is 
reduced, which will decrease the processing time. Secondly, the 
risk of false matches of the feature-based matching algorithms, 
which are part of a 3D reconstruction workflow, will be 
decreased. For instance, the potential of mismatches on the 
seafloor are reduced. Finally, the object detection algorithm can 
be used to mask the images of interest within the 3D 
reconstruction processing pipeline.  
 
Image classification and image-based object detection has 
experienced remarkable developments over the past decade. In 
some applications, state of the art algorithms are able to rapidly 
detect and classify objects in images with better accuracy than 
humans (Buetti-Dinh et al., 2019; De Man et al., 2019). The 
best performing models use deep convolutional neural network 
(CNN) architecture (Zaidi et al., 2022). They generally require a 
large amount of labelled data to train for accurate performance 
and have traditionally required powerful computing hardware to 
operate at practically useful speeds (Capra et al., 2020). Recent 
developments have made it easier to incorporate neural 
network-based object detection in lightweight electronics 
devices (Zaidi et al., 2022; Zhao et al., 2020). Some examples 
include object tracking features in unmanned aerial vehicles, 
and advanced autofocus systems for digital cameras 
(Ramachandran and Sangaiah, 2021; Herrmann et al., 2020). 
However, there is a lack of available labelled data for 
underwater imaging applications (Wang et al., 2019), which 
creates a significant barrier to implementing deep neural 
network-based detection methods for AUVs. 
 
Where large, labelled data sets are not available for training 
predictive models, traditional machine learning models can be 
used in conjunction with numerical features extracted from 
images (Tiwari et al., 2013). Studies have shown that manual 
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feature extraction methods can outperform CNN based 
architecture when small training sets are used (Lin et al., 2020). 
This study investigated the classification efficacy of available 
feature detection methods when applied to subsea structure 
detection. 
 
The aim of this study was to identify image feature extraction 
methods that can be utilized to create a lightweight structure 
detection model for use in AUV surveys.  The structure of the 
paper is as follows, Section 2 (Related works) provides a 
summary of notable research that has been completed in the 
field of underwater monocular vision-based object detection and 
describes the contribution of this study. Section 3 outlines the 
candidate feature extraction methods and the clustering method 
used Section 4 presents an evaluation of each candidate feature 
extraction method’s performance, as well as the prediction 
results from the models created. Section 5 contains a discussion 
of the results and potential alternative approaches. Finally, 
Section 6 provides the conclusions of the study and outlines 
future research directions. 
 
 

2. RELATED WORK 

Monocular vision-based object detection in the underwater 
environment remains a challenging task, mainly due to the 
reduced clarity of underwater images. Most of the recent 
developments in object detection have come from deep learning 
methods (Gomes et al., 2020). However, these studies have 
generally been focussed on the detection and classification of 
marine organisms, such as fish and plankton, for which a 
number of labelled datasets are available to train networks 
(Fayaz et al., 2022). Studies concerned with the detection of 
man-made or miscellaneous objects, have generally used 
traditional computer vision approaches to identify regions of 
interest within a frame.  
 
Some of the object detection methods are applied to finding 
moving objects from a static camera. This problem becomes 
complicated in underwater scenes due to the presence of 
moving particulates or seaweed, and the increased sensor noise 
due to low light conditions. (Seese et al., 2016) used a 
combination of a Gaussian mixture model and a Kalman filter to 
estimate the background area of an underwater video scene. The 
method was used to isolate moving fish against complicated 
backgrounds. The initial background segmentation utilised data 
from consecutive video frames to train the Gaussian mixture 
models and Kalman filters, so this approach required significant 
parallelisable computing resources. (Vasamsetti et al., 2018) 
used a combination of colour and texture information across 
three frames of a video to detect moving objects in underwater 
scenes. Texture information is extracted for objects using a 
novel multi-frame triplet feature that compares neighbouring 
pixel intensity values across consecutive frames to segment 
moving objects. Colour information is then used to refine the 
prediction by comparing RGB colour channel intensities of the 
video frames to a temporary background image. The detection 
of moving objects is more suitable for fish detection than 
structure detection. However, given a moving camera, a static 
structure may be interpreted as a moving object if it is captured 
against a uniform featureless background. Therefore, these 
techniques could potentially be used for structure detection 
against a watery background during an AUV survey. 
 
(Hou et al., 2016) used colour information in the YUV colour 
space to extract regions of interest containing man-made 
objects. To overcome the image quality limitations of 

underwater scenes, the images were pre-processed to equalize 
illumination, boost colour contrast and, reduce noise. Once 
regions of interest were detected, shape signals were used to 
identify the basic geometry of the man-made object. The 
identification stage of this method is more suited to simple 
geometries of small man-made objects than larger complex 
structures. However, the initial region of interest detection 
highlights the effectiveness of colour-based background 
segmentation in underwater scenes. 
 
Dark channel information was used by both Zhu et al. (2016) 
and Chen et al. (2017), as part of an imaging pipeline to detect 
regions of interest in underwater scenes. Zhu et al. (2016) used 
the dark channel prior method for initial haze removal of 
underwater images. The refined images were then processed 
with a discriminative regional feature integration algorithm to 
produce a saliency map, and a mean-shift over segmentation 
algorithm to segment the images. The results of both algorithms 
are then combined to show only the segmented regions with 
highly salient objects as the regions of interest in the image. 
Chen et al. (2017) used dark channel information to estimate 
light transmission across an image frame in an underwater 
scene. The contrast in light transmission, combined with colour 
contrast and pixel intensity contrast, is then used to calculate a 
region of interest from the scene. 
 
The use of deep learning methods has become prominent in 
recent underwater object detection research. Villon et al. (2016) 
highlighted the performance benefits of deep learning methods 
by comparing classifications from a convolutional neural 
network (CNN) to a support vector machine (SVM) classifier 
using histogram of gradients (HOG) for image feature 
extraction. The CNN based model returned more accurate 
results and faster detection performance than the SVM model. 
Notable deep learning architectures have also been applied to 
underwater detection; for instance, the performance of Fast-
RCNN, Faster-RCNN, and YOLO-V3 were evaluated by Fayaz 
et el. (2022) for their performance at detecting sea-cucumbers, 
seaurchins, and scallops. The YOLO v3 algorithm was noted for 
its detection accuracy and rapid performance (Fayaz et al., 
2022). Mahmood et al. (2016) applied the VGG network to 
coral classification. Thum et al. (2020) applied transfer learning 
techniques to pre-trained CNN based classification models, in 
order to classify images as either containing or not containing 
underwater cables amongst complicated backgrounds. By 
utilising transfer learning, Thum et al. (2020) were able to 
obtain accurate classification results without the need for 
massive underwater datasets, which are usually required to 
create robust deep learning models. However, this method still 
required the extraction and manual collation of 2000 images. 
 
Deep learning methods have also been used to apply image 
segmentation to underwater datasets (Liu and Fang, 2020; 
Drews Jr et al., 2021; Nezla et al., 2021). However, a lack of 
properly labelled datasets for underwater imaging applications 
has been a notable challenge in this area. To address this 
problem, Drews-Jr et al. (2021) created synthetic images by 
applying contrast reduction and colour adjustments to pre-
labelled images to simulate the colour cast and turbidity of 
underwater environments. The simulated images were then used 
to augment training sets of real underwater images to improve 
the segmentation accuracy of Segnet (Chen et al., 2018) and 
Deeplav3+ (Badrinarayanan et al., 2017) models. 
Unfortunately, the results indicated that augmenting the training 
dataset with simulated images led to a slight reduction in 
accuracy for segmenting underwater scenes. 
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In conclusion, while the difficulties of capturing high-quality 
images in underwater environments, and the subsequent 
challenges of performing image classification and object 
detection in dark, low-contrast scenes are well understood, to 
our knowledge there has been limited research into methods that 
would allow an AUV to autonomously verify when it is 
collecting useful images during a survey mission. Thum et al. 
(2020) suggest that small neural networks designed for edge 
devices, such as the Mobilenet family (Howard et al., 2017), 
could be used to classify images as either containing or not 
containing a structure. However, the transfer learning 
methodology employed, still requires a large amount of manual 
image labelling. Furthermore, the classification models only 
provide a binary present/absent response. It does not account for 
scenarios where the target structure is poorly framed in a small 
margin of the camera’s view. This study introduces a method 
that is computationally lightweight, so it can be run efficiently 
on many sub-sections of the original image to provide coarse 
localization of any detected structures. 
 
 

3. METHODS 

3.1.  Feature Extraction Methods  

Initially the common feature extraction methods (surf, sift, orb) 
have been tested but were excluded due to extremely variable 
results based on how close the structure is. Hence, the three 
candidate feature extraction methods considered as part of the 
study are: colour moments, local binary patterns (LBP), and 
Haar wavelet decomposition. Colour moments were used to 
extract high-level statistical information from the colour 
channels of the video images (Tiwari et al., 2013). Local binary 
patterns and Haar wavelet decomposition were considered for 
texture information extraction because of the reported efficacy 
and low computational cost (Tiwari et al., 2013). 
 
3.1.1  Colour Moments: Colour moments is the term used to 
describe summary statistics of the separate colour channels of 
an image. When used as a feature extraction method for 
machine learning, the first four statistical moments are used i.e. 
mean, standard deviation, skewness, and kurtosis. These values 
are calculated from the distribution of pixel intensity values for 
red, green, and blue colour channel matrices, and then combined 
into a feature vector (Tiwari et al., 2013). The attenuation of 
red-light frequencies in water is much higher than green or blue 
frequencies, so there was no significant red channel information 
in the survey footage (Figure 1). Therefore, the general colour 
moments feature extraction method was modified to only 
include moments from the blue and green image channels. 
 
To extract colour moment features, the original image was split 
into individual colour channels. The blue and green channels 
were then split into 20 x 20 pixel arrays. The mean, standard 
deviation, skewness, and kurtosis of pixel values for both 
channels were then combined to form a 1 x 8 length vector. 
 
3.1.2 Haar Wavelet Decomposition: Haar transform is one 
of the simplest discrete wavelet decomposition methods. It can 
be applied to a two-dimensional array. On larger matrices, each 
of the four decomposition products is a new matrix with both 
height and width dimensions at half the size of the original 
matrix. When the Haar transform is applied to a single channel 
image, the four product matrices can be cast as separate images, 
each a quarter of the size of the original. 
 

The Haar wavelet decomposition can be applied recursively to 
the product of successive transforms. Feature vectors are 
extracted through Haar transforms by calculating the mean and 
standard deviation of the four matrices produced by each 
successive decomposition (Tiwari et al., 2013). The length of 
the feature vector is determined by the number of 
decomposition steps utilized: The total length of the vector for k 
decomposition steps will be k ×6+2.  
 

 
Figure 1. Input images (row 1) with their blue (row 2), green 

(row 3), and red (row 4) channel histograms f. 

 
The feature extraction process was slightly more involved for 
the wavelet extraction method. Each Haar wavelet 
decomposition of an image reduces the size of the resultant 
product matrices by 50% along both its width and height. 
Therefore, the tile sizes had to be modified to produce an 
equivalent number of feature vectors. The entire image was first 
converted to grey-scale, then two consecutive decomposition 
calculations were performed. This produced three 960 x 540 
sized arrays, and four 480 x 270 sized arrays. To maintain 
consistency with the other methods, the mean and standard 
deviation from 10 x 10 pixel-tiles on the larger arrays, and 5 x 5 
pixel-tiles on the smaller arrays were combined into a 1 x 14 
length feature vector. 
 
3.1.3  Local Binary Patterns: Local binary patterns (LBP) 
is a texture-based feature detection method, which has been 
used successfully in various object detection applications (Karis 
et al., 2016). The fundamental concept of LBP is based on 
comparing a given pixel’s intensity value to the intensity value 
of each surrounding pixel in a circular pattern (Figure 2). In the 
simplest implementation, each pixel is compared to its eight 
surrounding pixels, however, a larger radius and circumference 
can also be used. Each pixel in the circular pattern is assigned a 
threshold value of either 0 or 1 based on the difference in 
intensity of the surrounding pixel gp and the intensity of the 
central pixel gc. A single value for the central pixel is then 
calculated by multiplying each threshold value by the weight 
assigned to its position in the circular pattern, then taking the 
sum of all threshold and weight products. 
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Feature vectors are created by forming a histogram from each 
pixel’s LBP values. For a circular pattern with a P of 8 pixels, 
there are 256 unique LBP values that can be set as bins for the 
histogram. However, for image texture analysis, there is a 
subset of LBP values that provide a greater amount of 
information. These are the ”uniform” LBP patterns, where the 
threshold value does not change more than twice when 
traversing the circular pattern. The uniform LBP values 
correspond to edges, corners, and flat areas in the image. When 
P = 8, the LBP values corresponding to uniform patterns can be 
grouped into 58 histogram bins. All the remaining non-uniform 
LBP values are grouped into one extra bin, resulting in a feature 
vector that is 59 values long. 

 
Figure 2. LBP calculation process. 

For LBP features, an LBP value array was calculated from the 
grey-scale conversion of the entire image. Grayscale conversion 
was completed as per CCIR 601 (Y = 0.299R+0.587G+ 
0.114B). The edges of the image were extended by reflection, 
so the calculated LBP array maintained the same dimensions as 
the original image. For each 20 x 20 pixel tile of the LBP array, 
a 59 bin histogram was created, and the counts of each bin were 
stored as 1 x 59 length feature vector. 
 
3.2 K-means Unsupervised Learning 

Unsupervised learning, in the form of k-means clustering, was 
used to evaluate the structure distinguishing efficacy of each 
feature extraction method. The aim of the clustering is to detect 
images which contain structures relevant for 3D reconstruction 
(foreground) compared to images showing ocean or sea floor 
(background). 
 
Traditional clustering methods do not perform well with large 
feature vectors due to the curse of dimensionality. So, the 
candidate methods were each normalized, and then reduced 
through principal component analysis (PCA). The first three 
principal components of the colour moments, LBP, and Haar 
wavelet feature vectors accounted for 73%, 37%, and 67% of 
the respective variances. 
 
Clustering was performed on the first three principal 
components of each candidate method. A k-means algorithm 
was used, with the number of clusters set as two to differentiate 
the background from the structure. The performance of each 
feature extraction method was evaluated by inspecting the 

clustering results on the data. Finally, the k-means models were 
applied to a separate data set from another underwater survey of 
similar structures. 
 
 
4. VALIDATION 

4.1 Datasets 

Dataset 1: The first dataset consisted of video files from an 
ROV survey of one of the two purpose-built artificial reefs on 
the Western Australian (WA) coast, called the Rottnest Island 
fish towers. The fish tower is a large structure designed to act as 
an artificial fish habitat. The tower features a truss-based 
structure with large cylindrical forms enclosed at its corners. It 
is visually similar to underwater infrastructure used in industries 
such as hydrocarbon production or offshore wind power 
generation. The tower is located at an approximate water depth 
of 40 m near Rottnest Island, Western Australia (Mufti et al., 
2019). Footage of the survey was captured by a Sony RX0 
digital camera at a resolution of 1920 x 1080 pixels and a frame 
rate of 50 fps. The survey was completed in fine weather 
conditions and all the footage was captured with natural light 
only. Underwater visibility is very clear, with only a small 
amount of particulate matter present. Three dives were 
performed on the day of the survey; the ROV was able to record 
the structure from short and long range on all sides. 
 
Reference Dataset 1: To evaluate the candidate feature 
extraction methods, a subset of video frames was extracted as 
lossless png images. Each frame was manually chosen from 
across the video timeline so that the subset provided a 
representative sample of the entire survey. Care was taken to 
ensure that the sample dataset included close, medium, and 
long-range views of the structure. Images of the structure in 
shadow, as well as in well-lit conditions were also included. To 
reduce the effect of red channel interference on colour moments 
feature vectors, the footage collected before and after the dive 
was excluded, as were any frames from when the ROV was 
very near the water surface. In total 29 images were extracted. 
 
Each image of the reference datasets was split into a grid of 20 
x 20 pixel-sized tiles for feature extraction The size of 20 x 20 
pixel were found empirically across the used images. At this 
size, a 1920 x 1080 image produces 5184 observations, totalling 
150,336 observations for the 29 image of the reference dataset 
1. 
 
Dataset 2: The second dataset consisted of footage that was 
captured by a GoPro camera mounted on a small ROV for a 
survey of artificial reefs off the coast of Bunbury, Western 
Australia (Rofallski et al., 2020). The artificial reefs are similar 
to the Rottnest fish tower, in that they are a truss like structure 
located on the seabed, but in shallower water. They are covered 
in marine growth and visually distinct from the surrounding 
ocean floor. The artificial reef survey was captured at 4000 x 
3000 pixel resolution, so it contains considerably more detail 
than the 1920 x 1080 pixel footage of the Rottnest fish towers. 
There is a noticeable difference in colour cast between the two 
data sets; the Rottnest fish tower data set has a strong blue cast, 
whereas the artificial reef footage has a stronger green channel. 
Finally, the Rottnest fish tower survey was captured 
predominately from a horizontal camera angle; Whereas the 
Bunbury artificial reefs were captured from an angled vertical 
orientation, which meant the background consisted 
predominately of seabed, not open ocean, in most of the survey 
footage. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1067-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1070



 

Reference Dataset 2: A smaller validation set was also created 
by manually selecting 7 further individual frames from the 
video file. These frames were similarly selected to provide a 
representative subset of the entire survey. Each of the validation 
set images was used to create a ground-truth mask for the 
location of the structure within the frame. The primary interest 
of the study was to segment the background from the rest of the 
image; fish were generally considered to be part of the structure 
creating the ground truth image masks. A 20 x 20 pixel tile was 
determined to be part of the structure if the corresponding 
ground-truth mask contained at least 20% white pixels. 
Otherwise, it was designated as background. 
 
4.2 Evaluation  

4.2.1 Visual Evaluation: Clustering results from the three 
candidate feature extraction methods were visually evaluated by 
inspecting the classes against the images of dataset 1. Figure 3 
shows a representative image with the clustering classes 
overlaid (foreground is highlighted in red). The k-means output 
is naive, but as a binary signal, it is easy to interpret as structure 
and background. 
 
From visual inspection of the overlaid results, LBP appeared 
to provide the most consistent performance across all scenes 
depicted in the images. Colour moment features performed 
well on a selection of the images, with the clustered results 
identifying the almost all the structure in most cases. 
Unfortunately, the colour moments-based segmentation also 
tended to identify darker areas of the background as part of the 
structure Figure 3). 
 

 
Figure 3. K-means Clustering results for a representative image 

using of dataset 1 for different features. Foreground is 
highlighted in red. All other parts belong to the background. 

The features extracted by Haar wavelet decomposition did not 
perform well. The clustering results indicate that the only the 
most detailed sections of the structure were separated from the 
background. The benefit of the Haar based features is that 
there are very few false positive structure detections in the 
background areas. 
 
LBP features led to clustering results that appear to be 
somewhere between the colour moments and Haar 
decomposition methods. The LBP results show generally good 
identification of the pelagic tower, although darker areas of the 
structure are not identified as well as with colour moments. The 
LBP based clustering also resulted in false detections among the 
background areas. These tended to be as random single points, 
possibly triggered by small, suspended particles. 

4.2.2 Numerical Evaluation: Numerical evaluation of the 
candidate methods was performed using dataset 1. 

Classification performance metrics of the clustering of the 
different image processing methods are shown in Table 1, and 
they generally agree with the visual analysis of each feature 
extraction methods performance. The f1 score shown in the 
table is a weighted average of precision and recall value. Using 
LBP, returns the highest accuracy, while also providing a good 
balance between precision and recall. The colour moment 
features show a similar true structure detection rate to LBP, but 
almost four times as many false structure predictions. The Haar 
features have a very low false detection rate (0.99%) for the 
structure, although the overall low number of structural 
predictions leads to significantly lower accuracy and recall 
scores. The only significant difference between the test set and 
validation set is that the colour moment based model did not 
identify more true structure points. This may be due to the 
specific frames selected for the validation set. It highlights the 
fact that the validation set does not provide a true objective 
evaluation of the candidate methods. 
 

Metric Colour 
Moments 

Haar LBP 

Accuracy 0.833 0.767 0.916 
Precision 0.771 0.990 0.933 

Recall 0.856 0.449 0.862 
F1 0.812 0.618 0.895 

Table 1. Performance Metrics for Predictions using dataset 1. 

It is worth noting, it takes significantly longer to process a 
1920 x 1080 video frame with Colour Moments than with 
Haar wavelets or LBP. This is because the Haar and LBP 
methods used a single grayscale array, whereas the Colour 
Moments method accessed the three colour channel arrays. 
 
4.3 Structure Predictions 

4.3.1 Dataset 1: K-means clustering based on the LBP-
derived feature vectors produced the best structure detection 
results (Table 1), so the LBP k-means model was used to 
analyse the entire dataset. The foreground prediction for each 
frame of the video can be cast as a binary image where each 20 
x 20 pixel-tile from the original image is represented as either 
a single black or white pixel in a 96 x 54 pixel binary image. 
Figure 4 shows a selection of video frames with their 
associated prediction images; white being foreground 
(structures predicted) and black being background. The 
prediction images were combined into a video file and the 
playback was observed at the original data-set’s native 50 fps. 
It became apparent that the false positive predictions of the 
structure caused a significant amount of temporal noise in the 
video. It was observed that most of the noise appeared as 
dispersed single white pixels in the black areas of the frame, so 
a simple erosion-dilation convolution was performed to 
denoise the image (Bradski, 2000). This resulted in a 
significant reduction in the temporal noise, along with a minor 
loss of detail in each frame. 
 
To determining whether an underwater structure is visible in 
the frame, preliminary analysis found the most informative 
metric was the total number of tiles that returned a positive 
prediction. Figure 5 placed at the end of the paper shows the 
number of structure predictions for each frame of the video file 
(the chart has been limited to footage from the descent, survey, 
and ascent). Both the raw prediction values and the denoised 
signal track well with manual observations from the video file. 
The ROV’s descent from the surface down to the structure 
(frames 27900 to 33800) at the start of the deployment, and 
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ascent back up at the end of the deployment (frames 133200 to 
141900) were characterized in the dataset by the video frames 
containing predominately background. Therefore, the descent 
and ascent periods were clearly visible as sections of low total 
predictions. 
 

 
Figure 4. Images without (raw prediction) and with noise 

reduction applied. Foreground is shown as white and 
background as black. 

Given that the prediction for each frame was cast as an image, it 
was also possible to provide some basic metrics about the 
location of the structure within the frame. While the structure 
was being surveyed, the number of positive predictions 
generally remained greater than 2000 tiles (approximately 40% 
of the frame area). There were several points during deployment 
where the number of structure predictions dropped below 1000. 
These points correspond to instances where the ROV rotated, 
and the structure was not visible in the camera’s field of view. 
At close examination of these sections of the data set, the 
horizontal and vertical median pixel values of the prediction 
images reflect the location of the structure within the frame. 
Figure 5 provides a detailed view of the structure dropping out 
of the image frame between the 89000th and the 89500th video 
frames. The horizontal and vertical median plots indicate that 
the structure falls out of view as the ROV rotates laterally to the 
right. The structure comes back into view as the ROV then 
banks to the left. 
 

 
Figure 6. Re-trained k-means prediction results applied to 
dataset 2. 
 
4.3.2 Dataset 2: As a final evaluation of the feature extraction 
methods, k-means were applied to dataset 2 (Figure 6). When 
trained on the actual data, the colour moments-based k-means 

model gave good results, with accuracy at 0.89 (Table 2). The 
colour moments model identified the structures cleanly at close 
range, while rejecting almost all the seabed or background. The 
LBP model also showed notable improvements. It produced a 
less noisy prediction image and was slightly better at identifying 
the reefs at medium to short range than the colour moments 
model. However, the LBP based model still tended to identify 
areas of the seabed as part of the structure at close range and the 
overall accuracy remained low at 0.724. The Haar based model 
performance showed little improvement to the pre-trained 
model, with the accuracy dropping slightly from 0.763 to 0.757. 
 

Metric Colour 
Moments 

Haar LBP 

Accuracy 0.890 0.757 0.724 
Precision 0.713 0.391 0.398 

Recall 0.791 0.300 0.633 
F1 0.750 0.340 0.489 

Table 2. Performance Metrics for Re-Trained Models on 
Bunbury Artificial Reef Data 

 
5.  DISCUSSION 

Considering the study was completed with unsupervised 
learning only, both colour moment and LBP based feature 
extraction methods showed very promising performance. The 
k-means model was used mainly as a tool to evaluate the 
candidate methods’ abilities to extract useful feature data. 
However, using k-means data to make predictions on dataset 2 
gave reliably accurate results. In the context of assisting AUV 
missions, a similar approach could be used to determine 
whether the vehicle is collecting useful images during a 
mission. By casting the prediction results as a low-resolution 
image, it is also possible to detect when the structure of 
interest is moving in or out of the camera’s field of view. 
 
Of the three candidate feature extraction methods considered, 
LBP appeared to be the most effective. LBP features gave the 
best predictive performance on dataset 2 showing reasonably 
robust performance when determining structure with water and 
no seafloor in the background. LBP feature extraction 
probably worked well because it is very effective at finding 
areas of low detail. Both underwater surveys used small form 
digital cameras to capture the data. The Sony RXO has a 1-
inch sensor, and the GoPro has a 1/2.3 inch sensor. High ISO 
values are needed to effectively record images in low-light 
underwater settings, so both cameras are likely to produce 
image noise at a pixel level. Therefore, the LBP calculations 
will predominately find non-unform patterns in the areas 
without sufficient texture detail to override the noise patterns. 
In the context of binary separation of a structure from a 
featureless background, this approach works very well. 
However, when a detailed seabed is also visible in the frame, 
the LBP method would need to extract information that is 
specific to the texture of objects. Further work is required to 
determine if LBP can be effectively applied for this 
application. 
 
Colour moments also appeared to be effective feature 
extraction method for the purpose of basic subsea object 
detection. The method was slightly less robust than LBP when 
being applied to different datasets. This may be due, at least in 
part, to the noticeably different colourcast between the two 
datasets. Therefore, colour moments model that was developed 
for a fixed camera system on an AUV would not have that 
challenge. However, different underwater environments can 
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produce natural colour casts, so data would be required from a 
variety of underwater environments to ensure that a robust 
model is produced. During the project, the only significant 
detected fault of the colour moments method was its tendency 
to classify darker areas of purely background frames as 
structure. This was probably an effect of using unsupervised 
learning. It may be possible to distinguish between the dark 
background and dark structure colour channel information 
when using the full feature vector with a supervised learning 
approach. 
 
Based on the observed results, the Haar wavelet decomposition 
feature extraction method was the least effective. Although, 
this may be a consequence of this study’s implementation of 
the method. The image tiles were initially selected at 20 x 20 
pixels, so only two decomposition steps were performed when 
extracting features from images. Any further decompositions 
would have required halving the dimensions of a 5 x 5 pixel 
tile. Therefore, the Haar method was only extracting small-
scale texture information from the images. This was probably 
why the models trained with Haar features only tended to 
identify structure in highly detailed areas of the image 
foregrounds. To better evaluate the Haar method, the study 
could be repeated with a tile size of 32 x 32 pixels, which 
would allow the extraction of texture information from at least 
four scale ranges. Nevertheless, the dimension of the tile also 
depends on the resolution of the camera and further 
investigations are required.  
 
The LBP calculation used in this study is the most basic 
version of the LBP method. Since its inception, there have 
been several modifications proposed that have been found to 
produce improved results in various applications (Liu et al., 
2016). When developing a trained model for application with 
an AUV, a more advanced LBP method, such as median 
robust extended local binary patterns (MRELBP), should be 
considered (Liu et al., 2016). 
 
Deep neural networks were not considered for this project due 
to the large amounts of data required for accurate performance. 
However, in decent visibility conditions, the underwater 
structure identification problem is significantly simpler than 
multi-object classification problems where deep CNN models 
are usually applied. It is possible that a shallow CNN 
architecture could be trained to produce useful results with a 
modestly sized labelled dataset. 
 
 

6. CONCLUSION AND FUTURE WORK 

The results of this investigation indicate that LBP and colour 
moments are effective feature extraction methods for 
identifying structures in underwater survey footage. A simple 
k-means model, trained with three principal components from 
LBP feature vectors was able to reliably detect structures in 
open water surveys at over 90% accuracy. Unfortunately, the 
LBP method was less successful when distinguishing a man-
made structure from the seabed in high-resolution footage. 
This is comparable accuracy to the results from Thum et al. 
(2020), who used CNN-based classifiers to identify man-made 
cables in underwater locations. T 
 
While the models created for evaluating the feature extraction 
methods were simple, their prediction performance confirms 
that lightweight models can be an effective solution for AUV 
surveys. By splitting the image into a grid of tiles and making 
a prediction for each tile, the contents of the image can be 

summarized with a single value metric, which is easily 
communicable to a human operator through acoustic signals. 
Furthermore, it is easy to detect when the structure is moving 
out of the AUV camera’s field of view. The AUV’s control 
system can use this information to adjust its pose or position in 
order to continuously capture high quality survey footage. 
 
While this study showed promising results, several research 
questions require further investigations. This includes defining 
the tiles to calculate the features based on the camera’s 
solution and the approximate distance of the camera to the 
object, which is mostly defined by visibility. Then, the 
investigation of further features such as ORB or LAB as well 
as the combination of features. Finally, a validation using 
ConvNet pretrained on ImageNet is planned. 
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