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ABSTRACT:

Landslides are natural hazards that can cause severe damage and loss of life. Optical cameras are a low-cost and high-resolution
alternative among many monitoring systems, as their size and capabilities can vary, allowing for flexible implementation and loca-
tion. Computer vision is a branch of artificial intelligence that can analyze and understand optical images, using techniques such as
optical flow, image correlation and machine learning. The application of such techniques can estimate the motion vectors, displace-
ment fields, providing valuable information for landslide detection, monitoring and prediction. However, computer vision also faces
some challenges such as illumination changes, occlusions, image quality, and computational complexity. In this work, a computer
vision approach based on Lucas-Kanade optical dense flow was applied to estimate the motion vectors between consecutive images
obtained during landslide simulations in a laboratory environment. The approach is applied to two experiments that vary in their
illumination and setup parameters to test its applicability. We also discuss the application of this methodology to images from
Sentinel-2 satellite optical sensors for landslide monitoring in real-world scenarios.

1. INTRODUCTION

Landslides are widespread natural hazards that can cause sig-
nificant damage to infrastructure, property, and human life.
Therefore, it is essential to monitor landslide-prone areas to
detect early warning signs and mitigate the risk of landslides.
However, traditional landslide monitoring techniques involve
the use of sensors and instruments, which can be expensive and
challenging to maintain in remote or inaccessible areas (Casagli
et al., 2023, Lissak et al., 2020).

Optical cameras offer a promising alternative for monitoring
landslides due to their ease of installation, low cost, and high-
resolution imaging capabilities. Moreover, they can capture im-
ages of the slope before, during, and after a landslide event,
providing valuable data for analysis and modelling (Auflič et
al., 2023). Several studies have applied optical cameras for
landslide detection, monitoring and prediction using various
methods such as photogrammetry, image correlation, optical
flow and machine learning (Hermle et al., 2021).

Computer vision is a branch of artificial intelligence that deals
with the analysis and understanding of images/videos and has
been increasingly applied for landslide monitoring, as it can
provide high-resolution and near-real-time information on the
slope dynamics and deformation (Casagli et al., 2023). Some
of the computer vision techniques that have been used for land-
slide monitoring include optical flow, image correlation, im-
age differencing, machine learning (Muhammad et al., 2022).
These techniques can estimate the motion vectors, displacement
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fields, similarity indices, and classification labels of the images
captured by optical cameras. Computer vision can also com-
plement other remote sensing techniques such as InSAR and
LiDAR, by overcoming some of their limitations as line-of-
sight constraints, temporal decorrelation, and atmospheric ef-
fects (Muhammad et al., 2022). However, there are some chal-
lenges such as sensitivity to illumination changes, occlusions,
image quality, and computational complexity (Hermle et al.,
2022). There is still room for improvement and innovation in
developing landslide monitoring techniques using images from
optical sensors (Mazzanti et al., 2020, Yordanov et al., 2023).
Therefore, computer vision requires careful calibration, valida-
tion, and integration with other methods to achieve reliable and
robust results for landslide monitoring.

In this work, we adopt a computer vision approach based on
Lucas-Kanade implementation of optical dense flow (Lucas et
al., 1981) for estimating the motion vectors between consecut-
ive images obtained during landslide simulations in a laborat-
ory environment. By estimating the magnitude and direction
of the movement this technique allows one to track the move-
ment of terrain and detect any signs of slope instability or de-
formation. We also discuss the advantages and challenges of
using the proposed methodology applied to images from satel-
lite optical sensors onboard Sentinel-2 for landslide monitoring
in real-world scenarios. Our work efforts are to contribute to
improving our understanding of landslide mechanisms and be-
haviour, enhancing early warning systems, and facilitating ef-
fective decision-making in landslide-prone areas.
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2. SETUP

2.1 Landslide simulator

Physical landslide simulators that are used in a controlled labor-
atory environment are allowing scholars to mimic real-world
slope conditions and simulate various landslide scenarios by
applying various conditions. In particular, these experiments
represent a good strategy to better analyse the influence of the
different triggering and predisposing factors to land sliding,
such as precipitation intensity and slope. In this study, the
authors considered two rainfall-induced landslide simulations
performed with a custom-built simulator where the reclinable
surface hosting the material for tests has a size of 2 x 0.8 meters
and can be inclined up to 45° (Figure 1). A geogrid installed
on the bottom of the flume ensures a grip between the landslide
material and the inclined surface. The structure includes a sys-
tem of six sprinklers capable of simulating rainfalls of different
intensities up to the maximum of 20.6 mm/h per nozzle. The
sprinklers are disposed on the top of the structure at a height
of 0.6 m along two parallel rows, set in order to supply rainfall
spray homogeneously. Their discharge is controlled through a
pressure reduction valve and rainfall intensity can be estimated
through the pressure-discharge characteristic curve provided by
the manufacturer. Please refer to (Ivanov et al., 2020, Longoni
et al., 2022) for the full description of the landslide simulator.

Figure 1. Landslide simulator setup.

2.2 Experiments

As in (Ivanov et al., 2020, Ivanov et al., 2021, Longoni et al.,
2022, Panzeri et al., 2022), the landslide bodies of the present
work experiments were both composed of homogeneous me-
dium sand (d50 = 0.35 mm, uniformity coefficient Cu = 1.75,
internal friction ϕ = 34°). The sand was disposed in the flume in
three steps, laying and compacting three subsequent sand layers
in order to achieve a uniform compaction for a total thickness
of 15 cm. The degree of sand compaction was derived from a
relationship between the volume of each layer and the mass of
the material.

The final porosity of both the landslide bodies was then around
50%. In addition, the initial soil moisture content was set to

a predefined value at the beginning of the experiments. In the
second experiment, the volumetric water content (VWC) was
monitored with a time step of 1 minute by a time-domain re-
flectometer (TDR) inserted within the soil at mid-slope. Three
tensiometers were also employed for the evaluation of suction
and they were located at the top, in the middle and at the bot-
tom of the slope. All the probes were placed at mid-depth of
the soil, in order to minimize the effect of boundaries.

In order to validate the Lucas-Kanade optical dense flow
method, the optical cameras and the abovementioned traditional
monitoring system were coupled with consecutive electrical
resistivity tomography (ERT) surveys. The ERT gave con-
tinuous information on water saturation throughout the whole
duration of the tests. Moreover, the ERT survey is capable of
detecting seepage zones and the development of failure. The
ERT procedure, its configuration and the data post-processing
are described in (Hojat et al., 2019). After the terrain and the
monitoring system had been settled, the upper platform was
lifted and rainfall was initiated. In the current work, images
from two experiments were used featuring a similar setting
with the exception of rainfall simulation. In the first experiment
(denoted Test 1), rainfall was simulated as a constant for the
first 10 minutes, then it was paused for 10 minutes and finally it
was again constant with a different intensity until failure. In the
second experiment (Test 2), rainfall was constant and continu-
ous all over the experiment, but it was concentrated only in the
upper part of the slope. The summary of the two experiment
settings is in Table 1.

Test I [mm/h] V w [l] n [-] θ [-] Sr [-] α [°] ks [m/s] tf [min]
1 48.5 and 82 0.056 0.50 0.10 0.20 35 5.2 E-04 44.5
2 72 0.040 0.51 0.11 0.22 35 5.6 E-04 21

Table 1. Experiment settings summary; I is rainfall intensity,
V w is volume of water, n is porosity, θ is Volumetric Water
Content, Sr is saturation degree, α is slope, ks is saturated

hydraulic conductivity, tf is time of failure. The two values of
rainfall intensity of Test 1 are referred to the constant rainfall set

before and after the pause of 10 minutes.

2.3 Cameras

Among various geophysical and traditional instruments, the
simulator incorporates imaging tools to document experiments
and apply remote sensing techniques. Specifically, this study
utilizes GoPro action cams, namely Hero Session and Black 4,
known for their ability to capture high-resolution photos and
videos while remaining lightweight and robust (Scaioni et al.,
2018). The GoPro Hero Session is a compact, waterproof ac-
tion camera equipped with a 10-megapixel sensor, a 123° Field
of View (FOV), and a fixed focal length of 16.8 mm. Sim-
ilarly, the GoPro Hero Black 4 is also an action camera with
a 12-megapixel sensor, a wide FOV of 118.2 degrees, and a
fixed focal length of 15mm. Both cameras feature a time-lapse
photo mode that allows for controlling the image acquisition
time-step based on the experimental requirements. In the cur-
rent experiments, the cameras were positioned differently in
relation to the landslide body, specifically at two distinct points
labelled as P1 and P2 (refer to Figure 1). In Test 1, only the
GoPro Hero Session placed at P1 was used, providing an ob-
lique view of the landslide body. The camera was set to take
photos every 30 seconds. In the second experiment (Test 2), the
Hero Black 4 was placed at P2, capturing a nadir view of the
slope. In this case, the images were acquired at a much faster
rate, every 2 seconds.
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3. METHODOLOGY

3.1 Preprocessing

Four preprocessing steps are needed before directly using the
imagery.

3.1.1 Camera calibration - In order to correct the geomet-
ric and optical distortions caused by the wide camera lens (Fig-
ure 2a) a traditional camera calibration approach was imple-
mented. A chessboard pattern was used as a reference object
and multiple images from different viewpoints were captured.
Then, through the OpenCV library (Bradski, 2000) the corners
of the chessboard were detected to compute the camera matrix
and the distortion coefficients. By having the intrinsic prop-
erties of the camera, such as focal length, optical center, and
distortion level the captured images from the experiments were
undistorted, and the results were rectified images (e.g., Figure
2b).

3.1.2 Masking – To focus the processing only on the land-
slide body itself, the images were masked with experiment-
specific regions of interest. We cropped the images to the areas
that contained the landslide area, which reduced the number of
pixels and features that needed to be processed. This action
further sped up the computation and saved memory.

3.1.3 Ground Sampling Distance - using the sensors’
parameters and the distance between the landslide body and
camera sensor it was possible to compute the GSD which
represents the distance between two consecutive pixel centres
measured on the ground, i.e. the spatial resolution of the image.
The GSD was computed according to the following formula:

GSD =
H × S

F × I
, (1)

where H is the height,
S is the sensor size,
F is the focal length,
I is the image size.

However, it should be highlighted the fact that Formula 1 could
be used directly in Test 2 (e.g., Figure 2c) as the camera was at
nadir position P2. For the setup from Test 1, an additional step
was needed to compute the resolution.

3.1.4 Distance Gradient - as the camera location in Test 1
was obliquely placed towards the landslide body, it was needed
to estimate a distance gradient for the camera’s sensor in re-
lation to the landslide crown and toe. The resulting gradient
(Figure 2d) was used in the previous Formula 1 to compute the
apparent GSD along the slope.

3.2 Optical dense flow

In this work, the Lucas-Kanade (LK) optical flow algorithm
(Lucas et al., 1981) was employed for estimating displacement
using time-series images from a landslide simulator. It is a clas-
sic technique in computer vision for estimating apparent mo-
tion between consecutive images or frames (Horn and Schunck,
1981). It is based on the assumption of local brightness con-
stancy, which states that the intensity of a pixel should remain
constant as it moves within a small neighbourhood over time.

Figure 2. a) Raw image, b) Undistorted image, c) Masked GSD
and d) Masked distance gradient.

The method assumes that the flow is constant in a local neigh-
bourhood of the pixel under consideration and solves the op-
tical flow equation for all the pixels in that neighbourhood, by
the least squares criterion. By solving the system of equa-
tions for each window, the algorithm computes a dense optical
flow field, providing a detailed representation of the apparent
motion across the entire image. To optimize computational
efficiency, the LK algorithm incorporates an inverse pyramid
strategy known as a coarse-to-fine window search. This strategy
involves performing the optical flow estimation process iterat-
ively, starting with a downsampled version of the image and
gradually refining the estimation at higher resolution levels. By
using this pyramid approach, the algorithm progressively re-
fines the optical flow estimation and reduces the computational
burden associated with dense estimation on high-resolution im-
ages.

The LK algorithm has been widely used in classical computer
vision applications (Kollnig et al., 1994, Pantilie et al., 2010)
and in the Earth Observation domain (Vogel et al., 2012, Len-
zano et al., 2018). Its effectiveness in tracking small, dense
image motion over time makes it particularly well-suited for
analysing subtle changes in the landscape, such as those indic-
ative of slope instability or deformation.

The method implementation was using the Scikit-image library
(Walt et al., 2014), which provided us with the necessary tools
to analyse the time-series images from the landslide simulator.
By leveraging the functionalities of the library, we were able
to estimate the displacement of some selected points of interest
(POIs) over time (e.g., Figure 3), enabling us to track and un-
derstand the movement patterns within the simulated landslide.
In the current setups, those locations are selected in areas of
crack formations.
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Figure 3. Example of points of interest chosen for sampling
strategy to track and measure displacement over time.

3.3 Comparison with a traditional monitoring system

In order to evaluate the performance of the proposed method,
a comparison was carried out with the data gained from the
monitoring system of Test 2. The traditional monitoring sys-
tem installed on the landslide simulator was chosen based on
the typical characteristic of shallow landslides to be induced by
rainfall (Baum et al., 2010), and therefore by the propagation
of the wetting front propagation from the soil surface. As men-
tioned in Section 2.2, the authors considered 4 punctual meas-
urements, performed by one TDR probe and by three tensiomet-
ers, and consecutive longitudinal ERT profiles. The TDR meas-
ures the Volumetric Water Content [%], which is related to soil
saturation (for the present test setting, VWC = 40% corresponds
almost to complete saturation). On the other hand, tensiometers
measure pressure [kPa] and temperature [°C]. In order to eval-
uate soil suction, porous heads full of water were installed on
the tensiometers, therefore the pressure measured by the ten-
siometers was the negative pressure of water flowing out of the
porous heads and soil saturation is reached when the measured
value is zero (Kandelous et al., 2015, Wu et al., 2015, Panzeri
et al., 2022). As regards the ERT profiles, the measurements
taken every 3-4 minutes show the variation of soil resistivity,
which is related to the increase/decrease of water content (Ho-
jat et al., 2019, Ivanov et al., 2020). When failure occurred,
starting from the toe of the slope, either the electrodes or the
bottom tensiometer resulted exposed and their recording ended.

3.4 Proof-of-concept application

To validate our approach to a realistic scenario, we evalu-
ated it on optical satellite images, especially from the ESA’s
Sentinel-2 mission. The adopted landslide case study is the
Ruinon landslide in Northern Italy, which was active in the
period 2019-2021 and thoroughly studied by using ground-,
air- and spaceborne means (Del Ventisette et al., 2012, Carlà
et al., 2021, Amici et al., 2022, Yordanov et al., 2023). This
application offers a more challenging and practical setting, as
Sentinel-2 (SE2) images have a much lower spatial resolution
(10 m/pix) compared to the submillimetre level of the simu-
lator setup. Moreover, external factors such as cloud cover,
vegetation seasonality and uncontrolled image acquisition can

introduce more variability and complexity in the data. This
case study follows the already defined SE2 yearly application
scheme used by (Amici et al., 2022) for the application of local
Maximum Cross-Correlation (MCC) analysis, i.e. the applic-
ability of LK dense flow for displacement estimation was tested
on one image per year for the period 2015 to 2020.

4. RESULTS

The initial implementations of the approach for the surveys
depicted very promising results, in terms of accuracy and ro-
bustness. Moreover, the approach managed to highlight areas
that tend to move at a millimetre level before actually a formed
crack. Further, tunning of the optical flow parameters was
needed to result in a more precise outcome which will allow
the detection of the collapse signatures. The findings from each
experiment are discussed below.

Figure 4. a) and c) Images at epochs 87 and 89. b) and d)
Magnitude and vector field from the estimated displacements at
epochs 87 and 89. e) and f) Images at epochs 103 and 104. g)
Magnitude and vector field from the estimated displacement

between epochs 103 and 104.

4.1 Displacement estimation from Lucas-Kande dense
flow

4.1.1 Test 1 The overall setup of the experiment, in terms
of constant and diffused light conditions without any strong
shadows, allowed easy parameter tuning for the optical flow
computation, where the final results were obtained by using a
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searching radius = 16 pix and nuw wrap = 2. The higher win-
dows search values were needed due to the higher time-step
between two images and the relatively lower sensor resolution
of the GoPro Hero Session camera. Overall, few false displace-
ments were mapped, with the exception of two mid-body round
clusters that were detected (e.g., Figure 4b). Upon visual in-
spection, it was determined that those areas were the result of
sprinkle drips that were oversaturating them and locally displa-
cing sand particles.

Figure 5. Averaged profile sampled values with highlighted the
first collapse.

In Test 1, the first crack was formed at the toe of the landslide
body (Profile 2 at Figure 3). Unfortunately, during the current
setup, there were no additional tools that could determine the
exact time of the collapse. However, as pointed out in Table
1 and upon visual evaluation, the crack appeared between 44
and 44.5 min (epoch 88 and 89, Figure 4). From the optical
flow computation and the results of displacement magnitudes
and vectors computation, the first signals of slope collapse can
be noted at 43.5 mins (epoch 87) both from the magnitude field
(Figure 4b) and the summary of the extracted values (Figure
5). The maximum displacement was computed at 5.47 cm on
Profile 2 at 49.5 min.

4.1.2 Test 2 In terms of parameter tuning, it was decided to
keep the same window size and number of wraps as in the first
setup. However, except for the processing parameters, the over-
all test setup differed in many aspects from Test 1. Starting from
the camera, GoPro Hero Black 4 exhibited better sensor para-
meters compared to Hero Session, therefore the higher GSD =
0.036 cm. Moreover, due to the nadir position the GSD was
constant over the whole landslide body. Moreover, the higher
GSD and higher image acquisition step of 2 seconds allowed
much better overall simulation documentation and greater de-
tail when optical flow estimation was applied. In contrast to the
diffused lighting conditions during the first experiment, during
Test 2 the conditions were different with a bright sun casting
strong shadows on the landslide body, resulting in varying pixel
intensity on the landslide body. If the camera timelapse set-
tings had been kept as in the previous iteration (30 secs) and
considering the duration of around 1 hour in total for the whole
experiment, this would have yielded false results, as the casted
shadows would have eventually moved from their initial posi-
tions. However, the faster image acquisition in the current setup
mitigated this issue as in the span of 2 seconds the shadows
could be considered static and there was no rapid pixel intens-
ity change. Nevertheless, the oblique sunlight raised another
issue - the water drops from the sprinkler systems were visible
and actually appeared as moving between two epochs. To re-
duce the effect of the resulting noise, an additional processing

filter was applied to the vector field to disregard any apparent
motions if they were not in the slope-moving direction (i.e. to-
wards the local south). However, it was further observed that
a consistent spatial field in terms of magnitude and movement
direction was a signal for a true displacement.

Figure 6. Averaged profile sampled values with highlighted the
first and second collapses.

Overall, two crack formations of the landslide body appeared
during the experiment, where the first one was in the upper part
(Figure 3 Test 2, Profile 1) and the subsequent one collapsed
towards the toe (Figure 3 Test 2, Profile 2). By overlaying
the displacements from both of the profiles (Figure 6 we were
able to clearly define the timing of the first and second collapse.
Collapse 1 was determined at epoch 609 (20.3 min), while the
second one was at epoch 741 (24.7 min). Everything prior to
those timings was considered as erroneous noise mainly due to
the fact that the estimated movements were not consistent in
both profiles. The following higher displacements rates in Pro-
file 2 are mainly due to the continuous slide of the detached
sand block. However, the spike before the crack formation can
be assumed as an indication of the failure development. Sim-
ilarly, Profile 1 exhibited increased magnitude rates until the
complete collapse in that area and no further movement was
detected. There is a notable difference between the displace-
ment rates between Test 1 and Test 2, where for Test 2 much
lower magnitudes were estimated at each epoch. This is a dir-
ect consequence of the higher image acquisition rate.

Figure 7. Magnitude and vector fields at the crack formation
moments. The red dash line highlights the formed cracks.

Side-by-side comparison of the displacement plots with the
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magnitude and vector fields (Figure 7) further confirms the
initial moving time. In both of the epochs are present consist-
ent fields with a moving direction downslope and their upper
bounds are clearly defining the crack locations.

4.1.3 Sentinel-2 yearly application Except for the applic-
ation of the proposed approach on a landslide simulator in a
controlled environment, we have applied the Lukas-Kanade
dense optical flow using Sentinel-2 multispectral images for
landslide monitoring in the period 2015-2020. Obviously, such
implementation restricts the usable images as the area of in-
terest is in a mountainous area with frequent and complete
cloud cover, which in certain periods can lead to one usable im-
age per month. However, another difference with the laboratory
setup is that the real application offers a higher variety of fea-
tures with variable intensities that should ensure better feature
detection and subsequent displacement field. As for the com-
putation parameters of the optical flow they had to be adjusted
accordingly to the available SE2 resolution of 10 m/pix, thus a
searching window of 7 pixels was determined to be suitable for
clipped imagery with a size of 119x108 pixels. The number of
wraps was kept the same, two, as the experimental setups.

Figure 8. Magnitude and vector fields from the yearly analysis
of Sentinel-2 images.

Overall, the results depict accurate estimated displacement
fields and movement directions which are in line with the ones
reported in previous studies (Amici et al., 2022). The estimated
magnitudes range from a few meters to more than 20 meters
between two acquisitions. The direction of the movement
is also correctly estimated as South-West downhill direction.
However, as a notable drawback of the current implementa-
tion, it could be pointed out that the images are acquired with
a high temporal difference between them. Even though the
landslide developed over a period of years, it had significant
reactivations, particularly intensive in the summer months of
each year. Therefore, such dynamic phenomena would lead
to highly displaced features or those totally absent in a con-
secutive acquisition, which results in decorrelated areas in the
estimated magnitude fields. Such an example can be noted
in the 2019-2020 (Figure 8) image analysis where there is a
significant gap between uphill and downhill fields. Different
errors are noted in the period 2017-2018, where false positive
displacements are computed for stable areas. This effect is due
to the difference in the vegetation phase leading to inconsistent
feature intensity. Therefore, it is suggested to apply the pro-
posed approach with a balanced acquisition rate according to
the expected displacements.

4.2 Validation

As fully described by (Ivanov et al., 2020) after the analysis of
20 similar downscaled landslide simulations, the failure of the

present work tests developed through the opening of a series
of cracks from the surface of the sand body, induced by the
propagation of the wetting front. In Table 1, the first crack open-
ing times are reported. Commonly, failure starts from the toe of
the slope and spread towards the top of the flume in a retrogress-
ive way in this type of setting. In Test 2, the first crack occurred
at mid-slope, and then failure propagation concentrated at the
toe. According to this visual interpretation of the collapse, the
monitoring system of Test 2 registered an increase in soil wa-
ter saturation (Figure 9). The tensiometers, located in the three
different sectors of the flume, recorded at different timing the
increase of pore water pressure. As rainfall was concentrated in
the upper part of the slope, the bottom tensiometer registered it
later than the others. The first crack occurred when VWC was
almost 30%, which corresponds to Sr =60%, and suction was
about -0.7 kPa. These values stabilized until the occurrence of
the complete collapse four minutes later. Cracks developing are
also shown by the ERT profiles in Figure 9. After the end of the
test, the simulator was rotated back to the horizontal position
without stopping the rainfall for the complete saturation of the
sand, which is again recorded by the instruments in Figure 9.

Figure 9. Traditional monitoring system results: volumetric
water content registered by a TDR probe located at mid-slope,

suction registered by three tensiometers located in the three
slope sectors (top, middle, bottom of the slope) and ERT

longitudinal profiles surveyed along the whole slope (upslope is
on the right and downslope to the left of the profiles). The four

probes record the increase of water content that drove the
instability and ERT profiles show the developing of cracks from

the sand surface inside the landslide body.

5. CONCLUSION

In this work, a computer vision approach based on optical dense
flow for landslide monitoring using images from optical cam-
eras was applied. The methodology was tested on two rainfall-
induced landslide simulations performed in a laboratory envir-
onment, using portable action cameras, and on a real-world
case study of the Ruinon landslide in Italy, using spaceborne
multispectral images. The approach was able to estimate the
motion vectors, displacement fields, and movement directions
of the slope before, during, and after the landslide events. Fur-
ther, the results from the simulator were compared with tradi-
tional monitoring systems such as volumetric water content and
electrical resistivity tomography. We found that our approach
can provide high-resolution and near-real-time information on
slope dynamics and deformation, as well as detect early warn-
ing signs of slope failure.
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We also discussed the advantages and challenges of using op-
tical cameras and computer vision for landslide monitoring,
such as the high-resolution imaging capabilities, sensitivity to
illumination changes, occlusions and image quality. It can be
concluded that the computer vision approach based on optical
dense flow has several advantages over traditional landslide
monitoring techniques that rely on sensors and instruments.
First, it can capture images of the slope at high spatial and
temporal resolutions, which can reveal subtle changes and
movements that might otherwise go unnoticed. Secondly, it can
estimate the motion vectors and displacement fields of the slope
without requiring any prior knowledge or assumptions about
the landslide geometry or mechanics. Third, it can provide
near-real-time information on slope dynamics and deformation,
which can be useful for early warning systems and decision-
making. Our results from the laboratory experiments and the
real-world case study demonstrate the potential and feasibility
of our approach to be implemented for landslide monitoring.
We were able to detect the crack formations and slope fail-
ures in both scenarios. In addition, good agreement was found
between our results and the ones obtained from other traditional
monitoring systems.

Naturally, further improvements are possible in the proposed
methodology by addressing some of the limitations and chal-
lenges we encountered. More sophisticated image processing
and filtering techniques can be applied to reduce the noise and
artefacts caused by water drops, shadows, and vegetation. In
addition, further testing can be carried out on real-world land-
slide monitoring cameras. Such computer vision requires care-
ful calibration, validation, and integration with other methods
to achieve reliable and robust results for landslide monitoring.
However, the proposed approach can complement traditional
monitoring systems by providing additional information on the
slope surface and motion.
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