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ABSTRACT: 

 

Nowadays, it's hard to imagine life without smartphones. These devices surround us and have become an inseparable part of our daily 

lives, since they provide end-users with unlimited access to information, services, and communication through their multitude of 

sensors and computational capabilities. Through sensor-rich smartphones, it is possible to collect pervasive crowdsourced signatures. 

Manual training approaches to localize these signatures and construct offline radio and magnetic maps required for fingerprinting-

based positioning techniques are time-consuming, labour-exhausted, and restrict the scalability of ubiquitous signals, such as Wi-Fi 

and magnetic field. As an alternative, autonomous localization of pervasive signatures can eliminate human supervision and scalability 

barriers, prompting to development of self-deployable systems. The development of these systems offers unparalleled potential for 

extending the ubiquity of indoor positioning systems (IPS) and makes realizing ubiquitous IPSs one step closer. This study proposes a 

scheme to leverage pervasive crowdsourced data to develop a ubiquitous IPS without the need for external resources. 

 

 

1. INTRODUCTION 

As human life evolves rapidly due to technological 

advancements, the demand for context-awareness services to 

support and ease daily life is increasing to keep up with this pace 

(Mostafa, 2023). Location-based services (LBS) are essential 

context-awareness services with diverse applications, serving 

both life-saving and commercial purposes. Undoubtedly, 

nowadays, LBSs are required at any time and in all environments, 

including indoor and outdoor settings. In clear skies outdoors, the 

maturity of global navigation satellite systems (GNSS), which 

rely on precise timing from multiple satellites, has greatly 

improved outdoor LBSs. In contrast, building walls tend to 

disrupt or block GNSS signals in indoor environments, resulting 

in significant localization errors or complete unavailability. 

However, accurate indoor LBS is essential for many reasons, 

given that most people spend most of their time indoors, where 

IoT scenarios and LBSs are used. Also, because of urbanization, 

indoor spaces have become larger and more complex, which has 

created navigation challenges and a need for precise positioning 

inside. GNSS signals have therefore been replaced or augmented 

by alternative positioning technologies, such as inertial sensors, 

Wi-Fi, and Bluetooth.  

 

Since sensors are embedded in smartphones today, different 

localization methods are no longer limited by the cost of end-user 

devices. For example, off-the-shelf inertial sensors embedded in 

smartphones enable motion tracking and navigation through 

either Inertial Navigation (INS) or Dead Reckoning (DR) 

systems. These systems can be used as an infrastructure-free 

solution to fill the outage of wireless localization systems. 

However, both inertial solutions can only provide short-term 

accuracy and are highly prone to accuracy degradation over time 
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owing to low-grade sensors’ bias and thermal drift. Pervasive 

wireless indoor signals can be exploited to provide absolute 

position and update inertial solution. As Wi-Fi chips become 

ubiquitous, wireless localization with pervasive Wi-Fi 

infrastructures in current buildings becomes more feasible. 

Leveraging pervasive Wi-Fi RSSI using fingerprinting-based 

localization approaches is more precise than multi-trilateration 

because the former alleviates multipath effects. Additionally, 

fingerprinting approaches can provide position without prior 

knowledge of the locations of Wi-Fi APs or propagation models, 

thereby have gained substantial attention. However, most 

existing training methods of offline radio and magnetic maps 

required for fingerprinting approaches are human-supervised.  

 

In brief, fingerprinting-based IPSs are ubiquity limited by 

human-supervised offline Radio Map (RM) database training 

methods. Despite performance enhancements that could be 

achieved by multi-sensor integration, the involvement of wireless 

localization techniques in these systems requires considering the 

offline requirements of wireless positioning methods, such as 

training offline databases, as the case for fingerprinting methods, 

or identifying the location and propagation parameters (PP) of the 

anchor nodes (AN), as the case for multi-trilateration methods. 

 

The autonomous generation of offline requirements from 

pervasive resources enables the development of a self-deployable 

system. The dependency on pervasive resources to generate these 

offline requirements can lead to achieving a ubiquitous system. 

Collecting pervasive crowdsourced signatures to generate these 

requirements is more feasible now with the proliferation use of 

smartphones in our life that enables almost unlimited coverage of 

human mobility. IPSs involving crowdsourcing take advantage 

of the historical data of the users, even if they only contribute 
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their data without any participation. As shown in Figure 1, IPSs 

can generally be divided into two types based on users' roles, 

interactions, and participation: those that are based on a single 

user and those that include multiple users.  Crowdsourcing-based 

IPSs, or the systems that leverage the power of multiple users’ 

data to generate offline RMs. 

 

 
 

Figure 1. Classification of IPSs based on the user role or 

interaction 

 

This work proposes a novel scheme to leverage pervasive 

crowdsourced data to develop a ubiquitous IPS. The key 

contributions of this scheme are as follows:  

 

1. Proposing a crowdsourced data collection strategy to 

manage the real-time data collection and reduce data 

collection impact on the user smartphones, encourage 

consumers to participate in, and ensure widespread 

adoption of crowdsourcing-based IPSs.  

2. Without the dependency on external resources, this work 

introduces criteria to qualify and select inertial 

measurements that relied principally on the features of the 

off-the-shelf measurements to maintain ubiquity. 

3. Toward reducing the significant errors anticipated while 

using GNSS data to localize crowdsourced fingerprints in 

multistorey buildings and buildings enclosed by GNSS-

denied areas, this study proposes an intelligent location to 

deploy low-cost AN. This location is inside the building 

elevators. deploying one anchor node per elevator is a 

cost-effective solution to maintain high localization 

accuracy for all floors in a building. This approach 

minimizes costs and effort by a factor of N:1, where N 

represents the number of floors in the building.  

4. This study takes advantage of the accumulation of 

crowdsourced traces over time to infer the information of 

internal and pervasive anchor nodes, such as fixed Wi-Fi 

Access Points (APs), and obviate to install auxiliary 

anchors at each floor. This helps to reduce the heading 

drift of long traces and widen the spatial coverage of the 

offline fingerprint maps. 

 

Throughout the rest of this paper, we follow the following 

organization. Section 1 reviews related works. Section 2 

discusses the proposed method, the experiments, and the 

achieved results, followed by the conclusion in Section 3. 

 

2. CHALLENGES OF CROWDSOURCSING-BASED 

INDOOR POSITIONING SYSTEMS 

Table 1 presents a summary of the challenges associated with the 

development of IPSs based on crowdsourced data, including the 

data collection process, the selection of qualified data to 

contribute, and the localization adjustment and calibration 

method. It also outlines the proposed methods in related literature 

to overcome these challenges, as well as their limitations. 

Crowdsourcing-based systems face various challenges, including 

the data collection process, selection of inertial data, and 

calibration and adjustment of selected traces for localization. 

However, existing studies in crowdsourcing often overlook the 

costs incurred by user devices during voluntary data collection, 

despite the crucial role users play in these systems. Previous 

research on indoor positioning-based crowdsourcing fails to fully 

consider the overarching goal of harnessing crowdsourcing. 

 

Existing methods encounter limitations that impede the 

achievement of system ubiquity. Firstly, the criteria used to select 

data for autonomous tracing and localization improvement are 

often insufficient. While a few studies, such as (Zhang et al., 

2018), have established factors to judge data quality based on the 

availability of external resources, the general practice has been to 

consider all collected data eligible for contribution. This 

approach may negatively impact the quality of database 

generation. Secondly, the sources used to adjust trace 

localizations can hinder the implementation of a truly ubiquitous 

system. These challenges necessitate further exploration and 

innovative solutions to ensure the effectiveness and ubiquity of 

crowdsourcing-based systems. Specific studies (Lee et al., 2020; 

Lohan et al., 2017; Santos et al., 2021) have considered active 

and experienced user participation. Some systems ((Gu et al., 

2020; Rai et al., 2012; Santos et al., 2021) assume the availability 

of floor plans to facilitate the correction of collected traces. In 

contrast, other systems (Zhang et al., 2018) heavily rely on 

internal anchor nodes (IANs) placed densely within each floor, 

rather than leveraging pervasive resources. Additionally, certain 

systems (Li et al., 2019) solely depend on accurate Global 

Navigation Satellite System (GNSS) data, which may result in 

significant localization errors, particularly in areas where GNSS 

signals are unreliable or blocked (LUO et al., 2021).  

 

 

Table 1. Crowdsourcing-IPSs challenges, the methods of the 

existing studies to address these challenges, and their 

limitations. 

 

3. METHODOLOGY, EXPERIMENTS, AND RESULTS 

This section presents the research methodology proposed to 

develop self-deployable and ubiquitous IPS based on 

crowdsourced data. 

 

3.1 Overview 

Figure 2 summarizes the process of the proposed scheme to 

autonomously generate offline RMs from crowdsourced data 

collected by free-moving users and heterogenous smartphones. It 

started by introducing a strategy to manage the real-time data 

collection by confining it to indoor areas only. This was 

conducted by introducing an automatic indoor-outdoor detection 

approach. The strategy also observed the user static and walking 

intervals and the database availability of the occupied area to 
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control the collection sampling rate. The collected data were then 

qualified using the proposed inertial data selection criteria. The 

traces that satisfied these criteria only contributed where a DR 

method was used to generate these traces. After that, the traces 

bounded by OANs (refer to Figure 6) were only included in the 

initial generation stage. These traces were combined after 

aligning their locations and the RMs grids were obtained. The 

consistency of the signatures included in each grid was checked 

and grids with consistent signatures were only converted to 

fingerprints and included in the initial RM. This RM was used to 

infer IAN (i.e., the fixed Wi-Fi APs with fingerprints with highly 

consistent signatures). The inferred IANs and OANs (refer to 

Figure 6) were used to align the qualified traces in the subsequent 

generation stages to improve the fingerprints’ location estimation 

and widen the spatial coverage of the initial RM.  

 

 

Figure 2. The processes of the proposed scheme for autonomous 

RM generation from crowdsourced data 

 

3.2 Data Collection Strategy 

A crowdsourcing-based indoor positioning system should be 

easily adopted by the public through the user-friendly data 

collection. As a result, universal indoor positioning solutions can 

be promoted. In the proposed system, the collection of 

crowdsourced data was managed by the following factors, see 

Figure 3:  

 

1. Indoor-Outdoor Detection (I/O): With GNSS available 

outdoors, collection of crowdsourced signatures is not 

necessary. On the other hand, crowdsourced signatures 

are required for fingerprint database training in indoor 

areas or when travelling from indoors to outdoors. With 

low power consumption and accurate identification of 

ambient environments, crowdsourced data was restricted 

to areas that needed it to prevent battery drain. This was 

conducted by utilizing the proposed user-friendly I/O 

detection in (Mansour & Chen, 2022).  

2. Initial database generation or updating: Interior 

environments often undergo changes in furniture layouts, 

Wi-Fi AP settings, and network updates. To make the 

database updated, data collection for a specific area 

should not be discontinued, even though the database has 

already been created for that area. It is not necessary to 

collect unnecessary data if the database for a particular 

area has already been created. To update and evaluate the 

existing database, a small amount of data is only needed. 

Thus, sampling rates were lower for the subsequent 

collection. 

3. Static and walking mode: The identification of static and 

walking modes can be helpful in managing data collection 

and reducing excessive collections in a static mode. 

Dynamic collection extends access to spatial databases by 

covering different locations. In static intervals, when a 

user remains in a fixed point, continuously collecting 

signatures for that location does not expand the spatial 

database coverage. As a result, there is no requirement for 

extensive data collection, and a lower collection rate 

suffices. 

 

 

Figure 3. Crowdsourced data collection management 

 

 

 

Figure 4. All collected crowdsourced data before filtering.  

 

Based on the data collection strategy described above, an 

Android application was developed to gather user data. 

Volunteers participated in crowdsourcing data collection, which 

took place over a span of twelve days on a large campus floor 

measuring approximately 7200 m2. The collected data 

encompassed various components and included raw 

measurements from inertial sensors, information from Wi-Fi 

scans (such as APs' BSSIDs and RSSI), data from BLE scans, 

GNSS data, magnetic readings, and the measurement timestamp. 

Figure 4 displays the generated tracks of all collected traces 

before handling. 
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3.3 Inertial Data Selection and Track Generation  

When aiming for a ubiquitous system, pervasive resources should 

only be used. Thus, the selection of data should also depend only 

on pervasive resources. The proposed scheme operates under the 

following concept: PDR-based methods rely on measuring 

horizontal attitude angles assuming that there is no external 

acceleration, except for the walking acceleration affecting the 

device. However, when gathering inertial data from users in 

unrestricted motion, external acceleration becomes prominent. 

As a consequence, the attitude angles are susceptible to notable 

distortions, leading to generated traces that deviate from the 

actual ones. To maintain ubiquity, selection criteria that are 

independent of external resources are necessary. 

 

To ascertain the data that can best represent traces with higher 

geometric similarity (GS), an examination was conducted to 

understand the relationship between GS and the characteristics of 

inertial data. An empirical test was conducted, involving 

approximately 65 tracks between two OANs. The test 

encompassed different users, walking velocities, and smartphone 

postures (holding, calling, swinging, and pocket). By comparing 

the results with a reference track as the ground truth, both GS and 

RMSE were calculated. For further details on the empirical test 

procedures, results, and the inferred selection criteria, refer to 

(Mansour et al., 2022). Table 2 summarizes the selection criteria.  

Figure 5 shows the tracks satisfied the selection criteria. After 

applying the selection criteria to the inertial data, the collected 

traces that met the criteria were deemed qualified for further 

steps. The Pedestrian Dead Reckoning (PDR) method was 

employed to estimate the position of the steps taken and 

signatures collected within the selected traces. For further details, 

please refer to (Mansour et al., 2022). 

 

Criteria  Threshold 

Max differences between the successive 

steps extremes (peaks/valleys) 

< 3.0 m/s2 

Max acceleration variances of sliding 

windows  

< 7 m2/s4 

Max angular velocity variances of sliding 

windows  

< 0.25 deg2/s2 

Table 2. Inertial selection criteria 

 

 

Figure 5. Tracks collected with qualified inertial data. 

 

Figure 6. The stages of RM generation and the localization 

adjustment resources used for each stage. 

 

3.4 Initial Radio Map Generation 

3.4.1 Outer Anchor Node (OAN) Detection: During the 

initial stage of database generation, we identified GNSS data that 

met the criteria of having a position accuracy higher than 5.0 m 

and HDOP less than 20 to serve as qualified OANs for aligning 

the collected traces. In the case of elevator OANs, BLE RSSI 

measurements often display significant fluctuations. To address 

this, we applied an average filter to smoothen the raw RSSI data 

and utilized a sliding window technique to detect the peak RSSI 

when the user entered the coverage area of the beacon. Once the 

RSSI peak exceeded a specific threshold, it indicated the user's 

proximity to the identified OAN, enabling us to update the 

position of the BLE OAN (i.e., elevator location) to align with 

the user's location. Figure 6 (left) visually depicts the utilization 

of outer nodes to correct and calibrate the selected traces during 

the initial stage. 

 

3.4.2 Trace Aligning and Combining: Once the number and 

positions of the detected OANs within segments containing 

qualified inertial data were determined, the segments were 

categorized accordingly to closed (with two or more ANs) and 

opened (with less than two ANs). To align the measured locations 

within each closed segment, the reference locations of the 

detected ANs bounding the segment were employed. This 

alignment process involved estimating translation, rotation, and 

scaling parameters that minimized the root mean square error 

(RMSE) between two sets of pairs: the measured locations and 

the reference locations of the ANs. Figure 7 presents two 

examples of closed traces aligned by OANs. The aligned closed 

traces were merged and divided into small square grids, 

measuring 1.0×1.0 m² for RMs. It's worth mentioning that grids 

with a low number of steps (less than 10% compared to the grid 

with the highest step count) were excluded. This filtering process 

aimed to retain only the grids with dense signatures, ensuring 

higher quality and accuracy. 

 

 
 

Figure 7. Samples of traces aligned by OANs. 
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3.4.3 Signature Data Selection and Consistency Check: 

The following checks were conducted to ensure consistent 

signature at each grid to convert it to RP:  

 

a. Wi-Fi access points (APs) with weak received signal 

strength (RSSI), such as values below -90 dBm, were 

excluded from consideration. 

b. Within each grid, APs with sparse signatures were 

discarded. 

c. Grids containing fewer than five unique APs were also 

discarded.  

d. Outlier filtering was applied to grids with data 

exceeding a specific threshold. The RSSI values for AP 

higher than 𝑄3 + 1.5 𝐼𝑄𝑅  or lower than  𝑄1 −
1.5 𝐼𝑄𝑅 were filtered out. 

 

Figure 8 (left) depicts the closed traces that have been aligned 

using OANs. Figure 8 (right) showcases the grids generated from 

the aligned traces shown in Figure 8 (left). These grids are 

utilized to create the RM during the initial generation stage. Each 

grid represents a specific area and contains the relevant radio 

frequency (RF) data collected from the aligned traces. Together, 

Figure 8 (left) and (right) demonstrate that there are certain 

limitations when relying solely on OANs to achieve ubiquitous 

systems. These limitations include: 

 

1. Long traces are prone to experiencing significant heading 

drift. 

2. Many traces with qualified inertial data were opened 

without enough number of OANs. 

3. The generated databases may not provide complete 

coverage of the entire floor area. 

 

 
 

Figure 8. Initial database generation: (left) combining of traces 

aligned by OANs, and (right) initial RM grids. 

 

3.5 Subsequent Radio Map Generation 

3.5.1 Inferring Internal Wi-Fi Anchor Nodes: To overcome 

the limitations of the initial database generation, we sought to 

determine the locations of anchor Wi-Fi APs that could serve as 

IANs within the floor. Figure 6 (right) summarizes the concept 

of IANs inference. It was crucial to accurately estimate the 

positions of these fixed APs. We leveraged the RM created from 

the closed segments aligned by the outer ANs to infer the 

qualified reference points (RPs). 

For each fixed AP, we assessed the signatures of its associated 

RPs using the following criteria: 

 

1. An RP was considered suitable for estimating the AP's 

location if it contained dense signatures for that AP 

from different traces, along with minimal signature 

variation. 

2. Only APs with more than fifty qualified RPs. 

3. There is presence of strong RSSI than -50 dBm. 

If the qualified RPs for a fixed AP satisfied the aforementioned 

conditions, we deemed it qualified to serve as an anchor node 

(AN). The location and propagation information of this AP were 

estimated using the least-squares estimation method based on the 

path-loss propagation model, as described in (Munoz et al., 

2009). Figure 9 shows an example of inferring the location of 

fixed Wi-Fi AP that satisfied the signature consistency criteria 

for acting as AN. 

 

 
 

Figure 9. Inferring the location of fixed Wi-Fi AP that satisfied 

the signature consistency criteria for acting as AN  

 

3.5.2 Aligning Traces Using Outer and Internal ANs: In 

order to align the collected traces using the inferred Wi-Fi IANs, 

a smoothing process was applied to the Wi-Fi RSSI data. This 

involved using an average filter for each detected Wi-Fi AN 

within the trace data, allowing for the identification of RSSI 

peaks. If the RSSI value of a peak was equal to or higher than the 

estimated RSSI at a distance of 1 meter for that particular AP, the 

location of that peak was considered the measured AN location. 

It was then added to a vector containing the measured locations 

of the detected ANs. A vector containing the reference locations 

of identified ANs was updated with the estimated reference 

location for that AN. Using these two vectors, the transformation 

parameters were determined to align the trace with the inferred 

ANs. Figure 10 showcases examples of traces aligned by OANs 

and Wi-Fi IANs 

 

 
 

Figure 10. Traces aligned by OANs and Wi-Fi IANs. 

 

Figure 11 (left) showcases the grids generated during the 

subsequent generation, which exhibit extended spatial coverage 

compared to the initial generation. Moreover, compared to the 
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initial generation, the grids in Figure 11 (left) demonstrate a 

decrease in heading drift, resulting in improved alignment and 

accuracy of the collected data. Figure 11 (right) depicts a RM 

generated for Wi-Fi AP from the subsequent generation. 

 

 
 

Figure 11. Subsequent database generation: (left) the generated 

grids from the subsequent generation; and (right) a 

RM generated for Wi-Fi AP from the subsequent 

generation. 

 

 

3.6 Online Positioning Results 

To evaluate the performance of the generated database, a long 

track was utilized. Figure 12 shows the positioning performance 

of the different techniques. The fingerprinting solution 

demonstrated excellent performance, achieving an average error 

of approximately 2.30 m. Furthermore, the 90% error was 

consistently below 4.00 m. In comparison, the PDR solution 

yielded a mean error of around 3.6 m, with a 90% error reaching 

approximately 5.1 m. By fusing both solutions using the 

Extended Kalman Filter (EKF), refer to (Mansour & Chen, 

2022), remarkable results were obtained. The mean error was 

reduced to 2.10 m, with 90% errors below 2.90 m.  

 

 
Figure 12. The positioning results of the fingerprinting, GNSS, 

PDR, and EKF. 

 

4. CONCLUSIONS 

Crowdsourced signatures are becoming increasingly prevalent 

due to smartphones' extensive coverage of human mobility. As a 

result, pervasive signatures can be leveraged to create a self-

deployable and ubiquitous Indoor Positioning System (IPS). To 

achieve that, firstly we proposed user-friendly data collection 

strategy to encourage users to participate and ensure widespread 

adoption. Moreover, we proposed inertial data selection criteria 

that depended only on the collected data characteristic and have 

proven to be valuable in achieving better trace localization and 

consistent signatures per fingerprint. The proposed approach 

involves proposing to deploy a single Outer Anchor Node (OAN) 

in a strategic location (inside the elevators). This has been shown 

to maintain high localization accuracy, while minimizing the 

deployment cost and effort. Meanwhile, exploiting the data 

increasing over time helps to infer internal and IAN. The mean 

and maximum root mean square errors (RMSEs) of the estimated 

positions of the inferred Wi-Fi IAN were about 1.1 and 1.9 m, 

respectively. The online fingerprinting solution achieved an 

average accuracy of 2.10 m. In conclusion, the proposed scheme 

has the promise to foster the development of ubiquitous indoor 

positioning systems for buildings, regardless of whether they are 

located in areas with an unobstructed sky view or GNSS-denied 

regions. 
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