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ABSTRACT: 

The availability of Global Positioning System (GPS), or more in general of Global Navigation Satellite Systems (GNSS), and the 

development of smart mobile devices, able to exploit the geospatial information provided by GPS/GNSS and integrate their use within 

many applications, have had a dramatic impact on the everyday life of most of the World population. While GNSS allows for real-time 

positioning in a wide range of scenarios, there are many challenging environments, such as tunnels and urban canyons, where GNSS-

based solutions are inaccurate, unreliable, or even unavailable. The enormous interest in applications requiring ubiquitous positioning 

(e.g., self-driving vehicles) has been motivating the development of alternative positioning systems to support or substitute GNSS when 

operating in challenging scenarios. Alternative positioning systems to GNSS are usually developed by employing several sensors, such 

as radio-based, vision, LiDAR (Light Detection and Ranging), and RADAR (Radio Detection and Ranging). Furthermore, a 

collaborative approach can also be developed to increase the robustness of the navigation solution of inter-connected vehicles. To 

support research in this area, we are presenting the CONTEST (Collaborative pOsitioning and NavigaTion bEtween ground and uaS 

plaTforms) dataset, aiming at providing multiple data streams to test collaborative positioning approaches, involving both terrestrial 

and aerial platforms, based on the use of several sensors, such as Ultra-Wide Band (UWB) transceivers, cameras, LiDARs, GNSS. 

Data are described and some initial results presented.  

 

 

1. INTRODUCTION 

Recently, we have witnessed rapid developments of positioning 

solutions and their applications, such as GNSS (Global 

Navigation satellite System), autonomous vehicle (AV) and 

Unmanned Aerial Systems (UAS) technologies. This is calling 

for appropriate solutions to ensure safe and reliable positioning 

and navigation of such autonomous platforms in any operational 

environment and condition, including situations where air and 

ground platforms share the same space or when GNSS is not 

available. 

GNSS allows positioning and navigation of ground and aerial 

platforms almost everywhere and has been widely used in a large 

variety of devices and applications, including mapping. But, 

despite developments in hardware technologies and Radio-

Frequency (RF) signal processing, GNSS cannot be available or 

reliable in certain environments, such as dense forestry, tunnels, 

urban canyons or when RF interference is present (Humphreys, 

2017), such as spoofing or jamming (Ruegamer and Kowalewski, 

2015; Zidan et al., 2016). 

Therefore, alternative positioning approaches have been studied 

(Raquet, 2013; Schmidt, 2015; Grejner-Brzezinska et al., 2016; 

Vitan et al., 2018; Liang et al., 2022). One of the applicable 

techniques is the use of collaborative navigation (CN), where 

platforms (often called agents) navigating in close vicinity can 

share position and navigation information (vehicle-to-

infrastructure - V2I and vehicle-to-vehicle - V2V 

communications) and a joint navigation solution can potentially 

provide better results for all platforms with respect to individual 

ones (Mu et al., 2011; Kealy et al., 2016; Fan et al., 2019; 

Pascacio et al., 2021; Icking and Schon, 2022).  

As vehicles are normally equipped with multiple instruments, on-

board sensors are often used to create an integrated system or a 

sensor network, shown in Fig. 1. This can (i) compensate for the 

unreliability of GNSS when necessary and (ii) ensure safety by 

detecting vehicles, people and other objects in the neighbourhood 

area in real-time.  

 
Figure 1: Convergence in sensor integration approaches. 

 

Vision has already been extensively used for positioning 

purposes; for instance, in real-time SLAM (Simultaneous 

Localization and Mapping) or VO (Visual Odometry) approaches 

as well as offline SfM (Structure from Motion) methods to 

reconstruct the object space, including sensor trajectory recovery 

from overlapping image sequences (Taketomi et al., 2017; Zou 

et al., 2019; Menna et al., 2022). Thanks to major advancements 

in data analytics, particularly in deep learning, detecting objects 

and people has become feasible and already widely used in 

practice. Given the affordable cost of cameras and the huge 

amount of information acquired, vision is ideal to support a 

variety of object recognition and positioning tasks, including 

collision avoidance, scene labeling, relative and absolute 

positioning, object tracking, etc.  Information obtained from 

these processing steps, such as distance (if scale is known) and 

view angles of an object with respect to the platform can support 

collaborative navigation (Masiero et al., 2021), as besides this 

data, only inter-platform communication is needed.  
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Similarly to GNSS, cameras may not be effective in all 

environments; for instance, in low light conditions, blinded by 

the sun, strong shadows, inclement weather, featureless 

environments, repetitive patterns, etc. For this reason, LiDAR 

(Light Detection and Ranging) as well as Ultra-Wide-Band 

(UWB) ranging sensors (Gabela et al., 2019) and, if available, 

odometers from the vehicle (e.g., wheel odometers) or step sensor 

of wearable devices are considered good alternatives (or 

complementary) to cameras for positioning purposes by 

exploiting LiDAR odometry, UWB trilateration. etc. 

 

1.1 Paper objective 

The provision of GNSS-based alternative and complementary 

positioning solutions has been of high interest for a long while 

(Bonenberg et al., 2023). Since reliable GNSS signal reception 

cannot be guaranteed in urban and vegetated areas as well as 

when signals are subject to unintentional and intentional 

interferences, collaborative positioning solutions are of high 

interest. Urged by this new R&D need, the goal of the work is 

twofold: 

• to present the CONTEST (Collaborative pOsitioning and 

NavigaTion bEtween ground and uaS plaTforms) dataset 

to support the development, testing and comparison of the 

individual or integrated use of imaging data, LiDAR and 

UWB ranging for collaborative positioning and navigation 

purposes, including the possibility to execute and validate 

visual and LiDAR odometry or SLAM approaches, hybrid 

adjustment and UWB trilateration algorithms, etc. To 

ensure reliable validation results, accurate GNSS-based 

reference solutions are provided for all the platforms. 

• to report initial results achieved with the CONTEST dataset 

and open the scene to further analyses and performance 

validation. A unique aspect of the dataset is that, for the 

first time, various observations in a 3D environment are 

provided, allowing the combination of ground (connected 

vehicles) and air (swarm of drones) platforms for 

collaborative navigation approaches. 

 

2. COLLABORATIVE NAVIGATION 

The concept of collaborative navigation (CN) represents the next 

level of generalization of sensor integration by integrating 

sensors deployed on multiple platforms (Lee et al., 2012; Buehrer 

et al., 2018). The two fundamental conditions of CN are the 

availability of inter-platform range and/or angular measurements 

and then communication to allow data sharing in real-time.  

There are several variations of the concept as well as their 

implementations. In general, the key idea is that the platforms 

(i.e., nodes or agents) form a geodetic network and, using the 

inter-platform measurements, the relative positions can be 

estimated. Therefore, a platform can be positioned in an arbitrary 

local coordinate system based on the observations of other 

platforms in the same scene. The strength of the geometry of the 

network can be exploited in several ways, such as distributing 

accurate position information to nodes that have no GNSS data, 

detecting anomalies of individual node navigation solutions 

(Wang et al., 2022) or degraded range measurements, e.g., non-

line-of-sight (Wang and Jiang, 2021). 

A basic CN solution uses only inter-nodal range measurements 

either with or without other sensor data. In the former case, the 

ranges are used in the navigation filters, providing additional 

constraints. In the second case, the ranges are used to create the 

geodetic network (Ladai and Toth, 2022) and then the relative 

position information can be used as input to the individual or joint 

(federated) navigation filter. The main methods to solve this 

problem include: 

• Static geodetic approaches, such as ordinary least squares 

(OLS), weighted least squares (WLS), etc.  

• Sequential estimators, such as conventional navigation 

filters (extended Kalman filters, particle filters, multiple 

mode filters, etc.), batch approaches (least squares “fitting” 

methods, solvers, SLAM, etc.). 

 

3. THE CONTEST DATASET 

3.1 Set-up and platforms 

For field testing, an area of approximately 50 m × 50 m was 

chosen at the Ohio State University West Campus, see Fig.2a. 

The data acquisition platforms and sensors, shown in Fig. 2c-d 

included: static and mobile UWB transceivers, cameras, 

LiDARs, GNSSs and IMUs. The moving platforms included : 

UASs (4), vehicles (4), cyclists (2), and pedestrians (2), see Fig. 

2b. The two cyclists and two pedestrians wore bicycle helmets, 

which had a Topcon GNSS receiver and a Pozyx UWB 

transceiver attached, as shown in Fig 2c. The vehicles carried 

multiple sensors, see the CyberCar in Fig.2d whereas the UASs 

used their built-in cameras). 13 precisely surveyed targets were 

deployed on the ground to provide ground control for the 

imagery. 12 UWB transceivers (anchors) were mounted on 

tripods over the targets, see Fig. 3a. 

The setup and data acquisition lasted 8 days between 8-16 May 

2022 and included deployment and surveying of ground targets, 

setting up UWB networks, ground vehicle data collection 

sessions, UAS rehearsal flights, combined ground/air data 

acquisitions and a few repeat tests. 

 

 

a)  b)  c)  d)  

Figure 2: The field test OSU campus area for the CONTEST data collection (a). Moving agents (cyclists, pedestrians and vehicles; 

flying UAS not visible) and static anchors on tripods (b). GNSS receiver and UWB transmitter installed on a helmet (c). Sensors 

installed on top of a vehicle (d). 
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Static Infrastructure  Sensor Collected Data Shared Data 

 12 UWB Pozyx  - reference positions 

 LiDAR: Velodyne VLP16 raw profiles raw profiles with timestamp 

Agents “Onboard” Sensor Collected Data Shared Data 

UAS1  
(DJI Phantom 4Pro RTK) 

UWB: Pozyx ranges ranges wrt static and moving 
agents 

embedded GNSS  positions reference trajectory 

embedded camera images images  

UAS2  

(DJI Phantom 4Pro) 

UWB: Pozyx ranges ranges wrt static and moving 

agents 

GNSS: Emlid M2 positions reference trajectory 

embedded camera images images  

UAS3  

(DJI Phantom 4Pro) 

UWB: Pozyx ranges ranges wrt static and moving 

agents 

GNSS: Emlid M2 positions reference trajectory 

embedded camera images, videos images, videos  

UAS4  

(DJI Matrice 210) 

UWB: Pozyx ranges ranges wrt static and moving 

agents 

embedded GNSS  positions reference trajectory 

Camera: DJI FC6310S Images, videos images, videos 

Car 0  

(GPSVan) 

UWB: Pozyx ranges ranges wrt static and moving 

agents 

GNSS: Leica GS25, Septentrio 

PolRx5 

positions reference trajectory from GNSS 

and IMU integration and 

correction IMU: Honeywell H764G inertial information 

LiDAR Velodyne VLP16 raw profiles  raw profiles with timestamp 

Car 1  

(Honda CRV) 

UWB: Pozyx ranges ranges wrt static and moving 

agents 

GNSS: Topcon Hyper VR, 

Novatel PwrPak7  

positions reference trajectory from GNSS 

and IMU integration and 
correction IMU: SPAN-IGM-S1 inertial information 

LiDAR Velodyne VLP16 raw profiles  raw profiles with timestamp 

Camera: Sony Alpha 6000 video video 

Car 2  
(Honda Pilot) 

UWB: Pozyx (anchor) - ranges wrt moving agents 

GNSS: 1 Topcon Hyper VR, 1 

Novatel PwrPak7   

positions reference trajectory from GNSS 

and IMU integration and 

correction IMU: Epson G320 MEMS (built-

in) 

inertial information 

LiDAR: Velodyne VLP16 raw profiles  raw profiles with timestamp 

Camera: GoPro HERO5  video video 

Car 3 

(CyberCar) 

UWB: Pozyx ranges ranges wrt static and moving 

agents 

GNSS: Topcon Hyper VR, 

Novatel PwrPak7 

positions reference trajectory from GNSS 

and IMU integration and 
correction IMU: Epson G320 MEMS (built-

in) 

inertial information 

LiDAR: Velodyne VLP16 raw profiles  raw profiles with timestamp 

Camera: GoPro HERO5 video video 

Pedestrian 1 GNSS: Topcon Hyper VR positions reference trajectory 

Pedestrian 2 GNSS: Topcon Hyper VR  positions reference trajectory 

Cyclist 1 GNSS: Topcon Hyper VR  positions reference trajectory 

Cyclist 2 GNSS: Topcon Hyper VR  positions reference trajectory 

Table 1: Summary of the platforms and sensors used during the data acquisition campaign, of the collected data and of those shared in 

the CONTEST dataset (available at https://github.com/3DOM-FBK/Collaborative_Navigation). 
 

 

a)  b)  

Figure 3: Target and static UWB anchor for the V2I network 

(a). Reference GNSS-based trajectories of the four UASs and 

four ground vehicles (b). 
 

The main objective of the field work was to acquire test data to 

support research on the integration of camera/LiDAR/UWB in a 

scalable collaborative positioning system involving both ground 

and aerial vehicles, representing a fairly unique 3D test scenario. 

 

3.2 Ground truth data / control and reference solution 

A key aspect of the campaign was to obtain highly accurate 

GNSS-based target locations and platform trajectory data, which 

can be used as reference and then for various simulation 

scenarios. The targets were GNSS-surveyed by RTK with 1-2 cm 

horizontal and 2-3 cm vertical accuracy. The ground platforms 

and drones primarily moved/flew predefined trajectories and rich 

sensor data was collected together with GNSS-based trajectories, 
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see Fig.3b. The general pattern was to simulate traffic in a typical 

intersection area, where about 50% of traffic accidents happen.   

 

3.3 Acquired data 

Table 1 summarizes the platforms and sensors used during the 

data acquisition campaign and lists the data shared in the 

CONTEST dataset as well. Data are available for download at the 

following link: 

https://github.com/3DOM-FBK/Collaborative_Navigation  

Note that shared data have been created from raw data through 

some basic pre-processing and formatting operations, mostly 

aiming at improving the data usability.  

 

 

4. DATA PROCESSING  

Given the large variety of deployed platforms and sensors as well 

as the multiple data streams acquired, there are many scenarios 

where the performance of collaborative navigation can be tested 

and evaluated. First initial tests were performed to assess UWB-

based collaborative navigation solutions for four ground 

vehicles. 

 

4.1 UWB assessment 

UWB ranging measurements were measured based on 

transceivers installed on ground vehicles and UASs as well as at 

the 12 targets. An example is shown in Fig. 4 which reports range 

measurements acquired for one and half hours by an UWB 

transceiver installed on a car. The horizontal lines indicate that 

there was no motion (no changes in the ranges). On the other 

hand, the areas with changing ranges represent three data 

collection sessions. In both static and moving states, there are 

outlier ranges, which can be filtered, for example, within a least 

squares estimation. 

Fig. 5 shows an example of ranges collected by 4 cars and 4 

UASs over a 40 s time interval. From the figure it is quite clear 

that ground vehicles collected more ranges, on average, with the 

only exception of Car2, which, differently from the others, was 

provided of an UWB anchor, hence it was only involved in V2V 

ranging. 

 

 

Figure 4: Range measurements (V2I and V2V) from UWB 

installed on a ground vehicle. 
 

 

 

Figure 5: Range measurements of four cars and four UASs in 

a 40-s time interval. 
 

Table 2 shows the distribution of the collected UWB ranges in 

terms of V2I and V2V measurements and, distinguishing whether 

the measurements where collected from ground vehicles to 

infrastructure (G2I), aerial platforms vs infrastructure (A2I), or, 

in the V2V case, among the different combinations of ground (G) 

and aerial (A) platforms. 

Table 3 reports the UWB statistics for what concerns the 4 cars 

and 4 UASs on a 1500-s time interval (the first part of the test). 

A more comprehensive visualization of the number of 

measurements per second is shown in Fig. 6. Excluding Car 2, 

ground vehicles collected around 2.5 V2I ranges per second, 

whereas aerial platforms averaged only ~1 measurement per 

second. Instead, the average number of V2V ranges per second 

was approximately constant for all platforms (approximately 2). 

 

Ranging category # of range meas. 

[%] 

 G2I 42.7 

V2I A2I 19.5 

 V2I total 62.2 

 G2G 9.1 

 A2A 9.5 

V2V G2A 6.8 

 A2G 12.4 

 V2V total 37.8 

 

Table 2: UWB ranging (percentage with respect to the total 

number of UWB measurements). 

 

Platform Mean Std.dev. Max 

UAS1 2.4 1.9 12 

UAS2 2.4 1.7 12 

UAS3 3.4 2.5 14 

UAS4 3.8 2.4 15 

Car 0 4.7 2.5 15 

Car 1 4.9 2.5 15 

Car 2 1.4 1.2 8 

Car 3 5.5 2.9 19 
 

Table 3: UWB ranging statistics: number of measurements per 

second. 
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Figure 6: Comparison of the number V2I and V2V UWB 

measurements per second on the cars and UASs. 
 

 

Figure 7: Distribution of the collected V2I ranges among the 

anchors. 

 

While the V2V ranges are quite homogeneously distributed, the 

inhomogeneous distribution of the V2I shall be investigated more 

in depth. The distribution of the collected V2I ranges among the 

anchors is shown in Fig. 7. From Fig.7 it is quite clear that certain 

anchors have a much lower contribution to the collected ranges 

(e.g., the one on the top-left of the figure). However, according 

to the heat map of the ground vehicle locations, shown in Fig. 8, 

this is probably simply due to the fewer vehicle trajectories close 

to such anchors. Furthermore, the lower amount of V2I ranges 

for the aerial platforms with respect to the ground ones shall be 

explained by the average distance of such platforms from the 

anchors. Indeed, it is well known that the UWB ranging success 

rate decreases with the distance between the involved devices 

(Masiero et al., 2021) and, comparing the ground and aerial 

platform heat maps, shown in Figs. 8 and 9, respectively, it is 

quite clear that on average UASs flew at larger distances from 

the anchors than the ground vehicles. This is also confirmed by a 

comparison between UAS4 and the other UASs, as differently 

from the others, UAS4 flew at a higher altitude (~40 m from the 

ground vs ~20 m for the others) but at an almost constant 

horizontal location, approximately in the middle of the regions 

covered by the anchors (white spot approximately in the center 

of Fig. 9). This led to a higher V2I ranging success rate with 

respect to the other UASs, as shown in Figure 7. 

 

 

Figure 8: Heat map showing the common ground vehicle 

tracks during the first part of the test (1500-s time interval). 

Color visualization is saturated to the largest value in the color 

bar. UWB anchors are represented as blue disks. 

 

 

Figure 9: Heat map showing the common UAS tracks during 

the first part of the test (1500-s time interval). Color 

visualization is saturated to the largest value in the color bar. 

UWB anchors are represented as blue disks. 

 

4.2 LiDAR data 

Ground vehicles were provided of Velodyne VLP16 LiDARs, 

collecting up to 300K points per second. Azimuthal angular 

resolution was 0.2° during the tests. 

Fig. 10 shows two views, oblique (a) and from the top (b), of a 

scene scanned by a Velodyne LiDAR mounted on Car 1. Fig. 10b 

clearly shows that, depending on where the LiDAR is mounted 

on the vehicle, a portion of the scene can be obstructed. 

Nevertheless, most of the time LiDAR can be used to detect the 

other vehicles/objects in the neighborhood of the sensor, e.g 

detected vehicles are shown with red boxes in Fig. 10b.  

In addition to the possible obstructions, objects at longer 

distances are described by a lower number of points, hence 

reducing the chances of properly detecting them and determining 

their orientation. In accordance with this observation, Fig. 11 

shows as an example the angular width distribution of vehicles 

from Car 1 in a 1500s long time interval. 
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(a) 

 

 
(b) 

 

Figure 10: Example of oblique and top view of a LiDAR 

acquisition. The figure shows off-ground (green), ground 

points (violet) and the detected cars (red boxes). 

 

4.3 UWB-based CN solution 

The four ground vehicles were simultaneously moving in the 

considered area. UWB ranges were acquired between the 

vehicles (V2V) and, at the same time, all vehicles obtained range 

data with respect to the static UWB transceivers (V2I). Fig. 12 

shows some localization solutions for a vehicle (Car 1) using the 

ranging and LiDAR data from the three other moving vehicles 

(Car 0, 2, 3) and from the anchor UWB transceivers. Black and 

red circles show the available (used) V2I and V2V UWB range 

measurements involving Car 1. Fig. 12a shows Car 1 outside of 

the UWB network, where despite the fact that there are six 

circles, they intersect at small angles, so the positioning accuracy 

is not good. Fig. 12b shows the vehicle along the boundary of the 

UWB network with only three circles and the three vehicles are 

inside, since they are almost along a line, so the accuracy is still 

not good. Fig. 12c shows a good case when all vehicles are inside 

the UWB network and there are six circles with several near 

perpendicular intersections, resulting in an accurate position. 

These initial results, based only on UWB ranges for ground 

vehicles, show an acceptable solution for collaborative 

navigation. Further investigations on collaborative navigation 

tested on the CONTEST dataset will be considered in future 

works. 

 

 

 

 

Figure 11: Angular width distribution of vehicles from Car 1 

in a 1500s long time interval. 
 

5. CONCLUSIONS  

The development of an alternative positioning system, able to 

compensate unreliability and/or unavailability GNSS signal in 

certain scenarios (e.g. urban canyons and tunnels), can have 

remarkable positive impact on a large number of applications, for 

instance self-driving vehicles or indoor navigation, just to 

mention a few. 

 

 

a)  b)  c)  

 

Figure 12: UWB-based collaborative solution at different epochs. V2I and V2V UWB ranges involving Car 1 (red disk) are shown 

as circles, black and red, respectively. Blue segments show the positions of the vehicle positions as visible from LiDAR of Car 1. 
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An alternative positioning system shall be based on the 

integration of the information provided by different sensors, in 

order to ensure a robust and reliable solution in a wide variety of 

working conditions. In addition, exploiting information provided 

by other vehicles, in a collaborative approach, can be useful as 

well.  

This paper presented a dataset, aiming at providing a common 

benchmark to research groups interested in this topic, and thus, 

support testing and comparative performance evaluation of the 

developed collaborative multi-sensor positioning approaches. 

The presented benchmark dataset is based on measurements 

acquired from platforms that were jointly moving in 2D and 3D, 

which makes this benchmark unique and extremely useful. More 

specifically, the dataset contains data collected by both ground 

and aerial vehicles, acquiring reference (GNSS-based) 

trajectories, visual data, either as images or videos, LiDAR 

measurements and UWB ranges, both V2I and V2V. 

In addition to a description of the data collection campaign and 

main characteristics of the dataset, some initial positioning and 

processing results are provided. A more comprehensive 

investigation on collaborative navigation using the collected 

dataset will be considered in future investigations.  
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