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ABSTRACT: 

 

Kalman filters, recognized as a traditional and effective inference algorithm based on state space models (SSM), have been 

extensively applied in the fields of navigation and mapping. However, their performance will degrade when facing model assumption 

mismatches, such as non-linear dynamics and non-Gaussian correlated noises. The model-based deep learning methods overcome 

these mismatches by combining the domain knowledge of the model-based methods and the expressiveness of the data-driven deep 

learning methods, and thus can provide a promising solution for addressing high-dimensional and nonlinear challenges. This paper 

presents a succinct overview of the principles, inference model, and training methodology employed in model-based deep learning 

methods, with particular focus on the KalmanNet and the Dynamical Variational Autoencoder (DVAE). Furthermore, it implements 

KalmanNet on robust and high-precision navigation and positioning problem. The experimental results substantiate the feasibility of 

achieving navigation and positioning accuracy comparable to that of the Extended Kalman Filter (EKF), while simultaneously 

exhibiting enhanced robustness, albeit at the cost of some computational overhead. 
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1. INTRODUCTION 

The Kalman filter is extensively employed in aerospace, 

navigation, and precise guidance domains, prized for its 

capability to real-time fuse multi-sensor information. Among 

them, the filter based on the combination of global navigation 

satellite system (GNSS) and inertial navigation system (INS), 

holds particularly widespread application (Proletary, 2019, 

Seleznev et al., 2019). In the context of INS correction, 

different estimation algorithms are typically employed. For 

instance, a nonlinear Kalman filter is often utilized (Zheng et 

al., 2018, Simon, 2006, Julier, 1997). In order to establish a 

dependable and comprehensive model, concepts from the 

federated Kalman filter and model construction methodologies 

were incorporated (Yang et al., 2020, Antonito R, 2005, Kondo 

T, 1998). Built upon state space models (SSM), this variant of 

the Kalman filter relies on conventional signal processing 

techniques, which heavily depend on manually designed simple 

mathematical models derived from domain expertise and 

assume Gaussian characteristics in the random models 

(Shlezinger, 2023). While the Kalman filter offers advantages 

like a compact footprint, minimal delay, and low power 

consumption, it encounters challenges when dealing with 

nonlinear state models and non-Gaussian random models (Yan 

et al., 2022, Das et al., 2015, Saha et al., 2022).  

In recent years, parameterized deep neural network models 

have seen widespread and successful applications in various 

domains, including computer vision (LeCun et al., 2015, He et 

al., 2015), and complex games like Go (Silver et al., 2017) and 

Starcraft (Vinyl’s et al., 2019). This potent nonlinear function 

approximator has gradually emerged as a novel and more 

efficient approach to signal processing. Data-driven methods 

like DNNs offer two advantages over model-based approaches. 

Firstly, purely data-driven techniques operate without relying 

on analytical approximations, allowing them to function even 

when analytical models are unknown. Secondly, for complex 

systems, data-driven algorithms can extract the necessary 

features for inference from observed data (Bengio, 2009). DNN-

based data-driven methods leverage autoregressive exploration 

within extensive data containing both inherent knowledge and 

noise, extracting hidden structural and model information. 

While these methods are powerful tools, they also exhibit 

challenges such as heavy data dependency, significant 

computational requirements, convergence difficulties, and the 

opaque nature of the model. Consequently, deep learning has 

not yet attained the interpretability, flexibility, versatility, and 

reliability that model-based methods provide (Chen and Ran, 

2019). 

SSM and deep learning offer complementary strengths. By 

leveraging conditional independence encoded in the 

probabilistic graphical representation and inference techniques 

along with partial domain knowledge, it's possible to construct 

modularly designed deep neural networks to replace unknown 

nonlinear function models and high-dimensional, highly 

correlated models. This holds the potential to synergize the 

strengths of both approaches in signal processing, leading to 

more effective processing methods (Shlezinger, 2023, Girin et 

al., 2020). This article is mainly informed by the 

groundbreaking contributions of Nir Shlezinger et al. 

(Shlezinger, 2023) and Laurent Girin et al. (Girin et al., 2020). 

It offers a succinct introduction to the Model-Based Deep 

Learning approach method and the Dynamical Variational 

Autoencoder, analyzing their fundamental conceptual 

frameworks and applicable domains. Furthermore, it seeks to 

integrate this efficient and novel modern signal processing 

approach into the domain of navigation. 
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2. DISCUSSIONS 

Traditional outdoor navigation primarily relies on GNSS, RTK 

(Real-time kinematic) and INS, utilizing Kalman filters to 

combine the positional observations from GNSS or RTK with 

the state updates from INS. For handling nonlinear models, 

approaches often involve linearized Extended Kalman Filter 

(EKF) models or methods like the federated Kalman filter. In 

the context of indoor navigation or autonomous driving 

scenarios, incorporating multi-modal information such as RGB 

vision, depth maps, and even sound for data feature extraction 

and fusion represents a wise, feasible, and promising 

technological approach with broad prospects. However, 

combining the richness of high-dimensional sensor data like 

vision with the integration of low-dimensional sensor data such 

as INS and GNSS naturally presents two primary challenges: 

first, dealing with the nonlinearity of function modeling and 

non-Gaussian characteristics of random modeling; and second, 

efficiently extracting features to map high-dimensional, 

information-rich data to low-dimensional target information. 

Model-Based Deep Learning and Dynamical Variational 

Autoencoders can each propose solutions for the two challenges 

mentioned above. 

 

2.1 Model-Based Deep Learning 

Model-Based Deep Learning (MB-DL) is an approach that 

combines prescribed data models such as state space model 

(SSM) and deep neural networks to compensate for mismatches 

in the data models due to complex dynamics and intricate 

random distributions that are challenging to analytically 

describe. Through parameterized networks, this approach 

embeds these learnable but previously unknown aspects into the 

DNN via data-driven "learning". This integration ensures the 

fusion of domain knowledge with data-driven DNN techniques. 

By merging the strengths of DNNs and SSMs, this approach 

equips the MB-DL method with enhanced precision, efficiency, 

and robustness. In this context, the term "efficiency" might be 

slightly ambiguous. From our perspective, "efficiency" refers to 

the synergy achieved by blending the strengths of DNNs and 

SSMs in the MB-DL method. This integration allows for a more 

accurate and robust approach to handling complex data 

relationships. 

    Figure 1 provides a comparison between MB-DL and data-

driven DNNs. From the diagram, it is evident that the so-called 

MB-DL combines the strengths of SSM and DNN, and it is 

divided into two main categories based on domain knowledge 

or data-driven foundation: model-aided networks and DNN-

aided inference. Figure 2 illustrates Nir Shlezinger's 

comprehensive categorization of MB-DL, along with several 

prominent methods within each category (Shlezinger, 2023). 

 

 
Figure 1. Model-based versus Data-driven approaches 

(Shlezinger, 2023) 

 

 
Figure 2. Taxonomy of model-based deep learning approaches 

(Shlezinger, 2023). 

 

As discussed above, the MB-DL method essentially leverages 

pre-trained parameterized DNN models with richer high-value 

data to compensate for the limitations of existing SSM methods, 

such as Kalman filtering. KalmanNet is a real-time state 

estimator that integrates deep learning with the Kalman filtering 

model, serving as an effective solution to address nonlinearity 

and model mismatch in dynamic environments. By synergizing 

the model-based Extended Kalman Filter (EKF) algorithm with 

recurrent neural networks from the realm of deep learning, 

KalmanNet excels in providing accurate and reliable estimates 

of the underlying state variables, even in scenarios where noise 

statistical properties remain unknown. This innovative approach 

not only enhances state estimation precision in the presence of 

uncertainties, but also showcases the potential for harmonizing 

traditional estimation techniques with modern machine learning 

paradigms (Revach et al., 2022). 

However, its essence remains rooted in the SSM model. In 

comparison to traditional domain-knowledge-based methods, 

the MB-DL approach introduces an additional "learning" step, 

thus compensating for the absence of prior domain knowledge. 

This implies that it has two drawbacks: (1) It requires a 

substantial amount of high-value data for pre-training the DNN, 

and it's well-known that such data often comes at a higher cost. 

(2) The intricate architecture of deep neural networks can make 

it challenging to fully grasp how the model arrives at its 

decisions. This limitation can hinder transparency and clarity, 

especially in applications where comprehending the decision-

making process is crucial. In simpler terms, due to the complex 

nature of the neural network's inner workings, it becomes harder 

to explain the reasoning behind its choices. This can pose a 

problem in fields where understanding the 'why' is essential. 

The MB-DL method inherently assumes that domain 

knowledge and intricate unknown random distributions can be 

effectively approximated by parameterized DNN networks. 

Although Nir Shlezinger does not explicitly mention this, the 

premise remains unavoidable. However, we hold an optimistic 

view on this matter. We firmly believe in the potent expressive 

capabilities of DNNs, even though, in certain applications, the 

goal of DNN approximation might not strictly be categorized as 

a functional one. Additionally, it's noteworthy that training the 

DNN in MB-DL is predominantly based on supervised learning 

methods. As of now, more effective unsupervised learning, 

imitation learning, and reinforcement learning techniques have 

not been seamlessly integrated into this framework. Utilizing 

supervised learning for training necessitates explicit inputs and 

outputs for the network, as well as high-quality data, all of 

which pose limitations on the applicability of MB-DL. 

Nonetheless, MB-DL remains an impressive achievement. It 

enables inexpensive sensors to achieve accuracy levels 

comparable to expensive sensors through the effective 

utilization of substantial prior information. 
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2.2 Dynamical Variational Autoencoders 

As another member of the model-based deep learning family, 

the Dynamical Variational Autoencoder (DVAE) can be viewed 

as the combination of the directed probabilistic graphical model 

and the variational autoencoder training methodology. 

Compared with KalmanNet, the DVAE is more closely related 

to the probabilistic generative model and can be employed as an 

alternative method to deal with the model mismatching problem. 

 

 
Figure 3. Autoencoders (AE), Variational Autoencoders (VAE) 

and Dynamical Variational Autoencoders (DVAE) in the 

taxonomy of generative models (Girin et al., 2020). 

 

To introduce DVAE, it's helpful to first understand 

Autoencoders (AE) and Variational Autoencoders (VAE). 

Autoencoders (AE) are neural network architectures designed 

for unsupervised learning. They consist of an encoder and a 

decoder. The encoder compresses the input data into a lower-

dimensional representation called the "latent space," and the 

decoder tries to reconstruct the original input data from this 

latent representation. The AE's primary aim is to learn an 

efficient data representation. Variational Autoencoders (VAE) 

are an extension of AE that brings in probabilistic modeling. 

VAEs introduce a probabilistic interpretation to the latent 

space, allowing the model to generate new data samples by 

sampling from the latent space distribution. The VAE 

framework employs a loss function that encourages the learned 

latent space to follow a specific probability distribution, 

typically a Gaussian distribution. This results in a continuous 

and smooth latent space, making it useful for data generation 

and interpolation. Dynamical Variational Autoencoders 

(DVAE) are a further development that introduces the concept 

of temporal dynamics. They aim to capture the temporal 

dependencies present in sequential data. By incorporating 

recurrent neural networks (RNNs) into the VAE framework 

following the conditional dependencies implied by probabilistic 

graphical models, DVAEs can model time-evolvement of the 

latent representation and more diverse dependencies between 

the external control, hidden states, and observational variables. 

This makes DVAEs particularly suited for tasks involving 

complex time-series data or sequential data, such as speech data 

and video frames over time. Figure 3 illustrates the placement 

of Autoencoders (AE), Variational Autoencoders (VAE), and 

Dynamical Variational Autoencoders (DVAE) within the 

framework of probabilistic generative models (Girin et al., 

2020). 

In essence, the goal of an Autoencoder (AE) is to map high-

dimensional, sparse, and structured data to low-dimensional 

feature vectors using an encoding-decoding structure. This 

process avoids supervised training and directly maps the data to 

hidden states. Variational Autoencoder (VAE) extends this by 

introducing probabilistic encoding which ensures better 

generalization ability of the model. Dynamical Variational 

Autoencoder (DVAE) further extends VAE by introducing 

probabilistic dependencies across time. This is imposed by the 

probabilistic graphical structure of the model and can extend the 

first-order Markovian assumption in SSM to more complex 

conditional dependencies, as shown in Figure 4. 

In Figure 4, the classical SSM (left) assumes that the 

evolution of hidden variables z obeys the first-order Markov 

property, and observational variables x provide no effective 

information for inferring z. In DVAE, however, we can model 

more flexible probabilistic dependencies between variables and 

hence higher-order Markov property, which will enhance the 

representational capability of the model. For instance, in the 

right subfigure of Figure 4, direct dependencies between hidden 

variables are replaced by indirect dependencies via 

observational variables, which additionally obey the second-

order Markov property. 

 

 
Figure 4. Graphical illustration of SSM (left) and an instance of 

DVAE (right) (Girin et al., 2020). 

 

    These complex probabilistic dependencies can be 

implemented by different architectures of DNNs, particularly 

Recurrent Neural Networks (RNNs) which can memorize the 

accumulated past information and is theoretical guaranteed to 

approximate any dynamical system. The Deep Kalman Filter 

(DKF) (Krishnan, 2021) is an instance of a DVAE model. In 

DKF, the linear state transition and observation models of the 

Kalman Filter are replaced by DNNs to model more intricate 

probabilistic dependencies across time. These DNNs can 

capture complex and nonlinear dynamical relationships and 

factors of variations in the data. DKF combines the recursive 

filtering and smoothing operations of Kalman Filters with the 

powerful representation learning capacity of DNNs, making it 

suitable for handling complex, nonlinear, and high-dimensional 

data. It effectively learns the system's dynamics from data, thus 

providing more accurate state estimates and predictions 

compared to traditional Kalman Filters in scenarios with 

nonlinearities and non-Gaussian correlated noise. 

The primary challenge with DVAE is its difficulty in training 

and ensuring the correctness and effectiveness of the encoded 

information within DNNs. In practice, DVAE represents a 

typical deep neural network model. Despite its utilization of the 

more expressive probabilistic graphical model, it lacks the 

interpretability advantages of traditional SSM models and the 

MB-DL framework. However, to introduce images and true 

semantics (beyond instance segmentation) into navigation, 

achieving genuine semantics (which is inherently one-to-many 

and not strictly a function) – for instance, considering "cat" as 

an abstract category encompassing various depictions, even 

cartoons – requires a deeper network model based on 

probabilistic graphical dependencies. This approach holds 
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greater promise for achieving biologically inspired navigation 

resembling heuristic brain processes. 

 

3. EXPERIMENTS AND RESULTS 

In this section, we will employ a simulation environment to 

conduct a brief efficacy assessment of the MB-DL (KalmanNet) 

approach.  

(a) In our first experimental study, the constant acceleration 

model is used to compare KalmanNet to the MB KF which is 

known to minimize the MSE in such a setup. 

(b) We next evaluate the filtering performance of KalmanNet 

within the context of the Lorenz attractor model and to compare 

it against the Extended Kalman Filter (EKF) methodology.  

 

3.1 Experimental Setting 

In our experimental setup, we introduce two distinct technical 

terms to describe the nonlinear model: "full information" and 

"partial information" (Revach et al., 2022). 

Full information: KalmanNet operates with complete 

knowledge of the dynamical and observational functions f(·) and 

h( ·), but no access to the noise covariance matrix Q and R, 

whereas its model-based counterpart operates with exact 

knowledge of the matrices. 

Partial information: The operation of KalmanNet and its 

model-based counterparts involves a certain degree of model 

mismatch. This will be elaborated upon in detail in the 

subsequent experiments. 

The performance evaluation metric utilized is Mean Squared 

Error (MSE) in [dB], with the Adam optimizer employed. 

 

3.2 Result 

3.2.1 Linear State Space Model 

 

In order to demonstrate the applicability of KalmanNet to 

various linear systems, we set the dimension of the system to 2 

× 2, the sequence length of the training set is 20, but the test set 

has trajectories of different lengths {50, 100, 200}. Figure 5, 

Figure 6, and Figure 7 show the tracking effect of KalmanNet 

and Kalman Filter on position when R=0.01. 

 

      
Figure 5. T=50, R=0.01  

 

 
   Figure 6. T=100, R=0.01 

     
Figure 7. T=200, R=0.01 

 

We compare the filtering performance of KalmanNet and 

Kalman Filter from three aspects. MSE LOSS most directly 

reflects the quality of filtering, the standard deviation (STD) 

reflects the stability of filtering, and finally, the inference time 

reflects the timeliness of filtering. Table 1, Table 2, and Table 3 

provides a comprehensive presentation of the test results. we 

can clearly observe that KalmanNet achieves the MMSE of the 

MB KF. And KalmanNet shows better stability and shorter 

inference time. 

 

 MSE LOSS STD Inference Time 

KF -34.7239      2.6657 1.6261 

KNet -41.2537      0.9151 0.1432 

Table 1. T=50, R=0.01 

   

 MSE LOSS STD Inference Time 

KF -33.7196      2.5504 1.5860 

KNet -40.3052      0.9678 0.1555 

Table 2. T=100, R=0.01 

 

 MSE LOSS STD Inference Time 

KF -33.2109      2.8877 1.5588 

KNet -39.0541      1.8400 0.4156 

  Table 3. T=200, R=0.01 

 

3.2.2 Non-Linear Model 

The Lorenz attractor represents a three-dimensional chaotic 

solution within the continuous-time Lorenz system of ordinary 

differential equations. This synthetically generated system 

serves to illustrate the task of dynamically tracking a profoundly 

nonlinear trajectory in an online fashion. Additionally, it 

addresses a practical challenge encountered in the real world, 

involving the management of disparities arising from the 

discretization of continuous-time signals into discrete-time 

samples. 
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Noisy state observations: The observed outcomes are 

versions of the true state corrupted by noise. With a training 

sequence length of T=100 and a testing sequence length of 

T=1000, Table 4 and Table 5 provides a comprehensive 

presentation of the test results. Under the condition of training 

with relatively shorter sequence lengths, KalmanNet achieves 

comparable MSE performance to the Extended Kalman Filter 

(EKF), but with longer filtering time 

 
1/r2[dB] 0 10 20 30 40 

EKF -10.3642 -20.4102 -30.3726 -40.2716 -49.9020 

KNet -9.3863 -18.9256 -29.3419 -38.1881 -45.1282  

Table 4.  MSE [dB]-Noisy state observations  

 
1/r2[dB] 0 10 20 30 40 

EKF 170.34 169.16 170.37  170.55 174.10 

KNet 220.92 231.76 233.46 224.95 227.02 

Table 5. Inference Time -Noisy state observations 

 

Noisy non-linear observations: The observations are 

generated through a nonlinear function of the current state, with 

h set to represent the transformation from Cartesian coordinates 

to spherical coordinates. From the results reported in Table 6 

we observe that the Extended Kalman Filter (EKF) experiences 

a complete degradation in filtering performance, whereas 

KalmanNet is capable of maintaining relatively favorable 

performance. 

 
1/r2[dB] -10 0 10 20 30 

EKF nan nan nan 31.7123 31.5218 

KNet 13.2830 6.0234 -4.7157 -10.6565 -14.4138 

Table 6.  MSE [dB]-noisy non-linear observations 

 

State-evolution mismatch: The data generation involves 

extending the Taylor expansion series to J=5, whereas both 

KalmanNet and the Model-Based (MB) algorithm operate with 

coarse approximations (J=2). From the results reported in Table 

7 and Table 8 we observe that in the presence of state-evolution 

mismatch, KNet effectively mitigates this discrepancy, 

exhibiting filtering performance that remains closely aligned 

with that achieved under full information conditions. Similarly, 

the Extended Kalman Filter (EKF) demonstrates the ability to 

overcome such mismatch when 1/r^2 is within the range of 10-

20. However, the ability of EKF to address the mismatch 

significantly deteriorates when 1/r^2 exceeds the range of 30-

40. Kalman filter once again showed better timeliness than 

KalmanNet. 

 
1/r2 [dB] 10 20 30 40 

EKF -19.5333 -25.4125 -26.8325 -28.6127 

KNet -19.0504 -26.4003 -34.4143 -41.2624 

Table 7.  MSE [dB]-State-evolution mismatch 

 

1/r2 [dB] 10 20 30 40 

EKF 159.10 162.19 162.08 162.99 

KNet 199.25 192.90 195.53 201.83 

Table 8.  Inference Time-State-evolution mismatch  

 

State-observation rotation mismatch: Data generated by 

utilizing the identity matrix with only a 1° rotation (θ = 1°) is 

employed to simulate the mismatch present in the observation 

model. The results reported in Table 9 and Table 10 clearly 

demonstrate that under the condition of state-observation 

rotation mismatch, KalmanNet effectively overcomes this 

mismatch within the range of 1/r^2 from 0 to 20, exhibiting 

filtering performance that remains closely aligned with that 

achieved under full information conditions. However, as 1/r^2 

reaches 30, there is a moderate decrease in its ability to handle 

this mismatch. Similarly, the Extended Kalman Filter (EKF) 

demonstrates the ability to address this mismatch within the 

range of 1/r^2 from 0 to 10. Nevertheless, as 1/r^2 ranges from 

20 to 30, there is a substantial decline in its capability to 

mitigate the mismatch.  

 
1/r2 [dB] 0 10  20     30 

EKF -9.5291 -15.3676 -16.8803     -16.8965      

KNet -9.5543 -19.2013 -28.1989     -33.2600 

Table 9.  MSE [dB]-State-observation rotation mismatch  

 
1/r2 [dB] 0 10  20     30 

EKF 84.09 84.33 85.62    85.38   

KNet 110.28 113.31 111.13    110.85 

Table 10. Inference Time -State-observation rotation mismatch 

 

4. CONCLUSION 

This paper introduces two novel modern data processing 

methods: KalmanNet and Dynamical Variational Autoencoder 

(DVAE), which can be unified in the framework of Model-

based Deep Learning (MB-DL). It explores the principles, 

advantages, applicable domains, and how to effectively apply 

them to navigation tasks. MB-DL is essentially a information 

processing method that combines the advantage of domain 

knowledge implied by assumed models and the expressiveness 

of the DNNs. It exhibits higher interpretability and efficiency 

while maintaining a certain level of robustness compared to 

pure data-driven DNNs. It is particularly effective in traditional 

navigation filtering algorithms, showcasing its prowess. 

However, it demands more expensive data support, such as 

high-precision "truth" obtained through more accurate sensors 

or measurement methods. With access to this data, MB-DL can 

achieve results closely approximating those obtained from 

costlier measurement techniques. In our experiments, the MB-

DL (KalmanNet) method showed comparable performance to 

Kalman Filter on linear models, but with shorter inference time. 

In nonlinear models, it outperformed EKF in the face of model 

mismatch, demonstrating the benefit of incorporating data-

driven RNN into the model-based filtering method. However, 

MB-DL may struggle with feature extraction and processing 

high-dimensional semantic information. It can be effectively 

utilized after an efficient feature extractor. Interestingly, DVAE 

conveniently addresses this limitation. The application of 

DVAE extends beyond just positioning and trajectory 

estimation; it represents a promising approach for achieving 

intelligent navigation. It holds a natural advantage over MB-DL 

in processing high-dimensional semantic information. By 

combining probabilistic graphical representation and the VAE 

methodology for training DNNs, DVAEs utilize neural 

networks to describe prior information that is challenging to 

represent mathematically. This approach offers greater 

flexibility and effectiveness. However, it inherits the common 

shortcomings of DNNs: difficulty in training, lack of 

interpretability, and challenges in generalization. However, the 

integration and application of both MB-DL and DVAE methods 

could potentially bring limitless new possibilities to intelligent 

navigation tasks. 
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