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ABSTRACT: 

 

High accuracy positioning is crucial for various applications that require accurate and reliable positioning data, such as autonomous 

vehicles (AVs), agriculture, and intelligent transportation. Global Positioning System (GPS) is widely used in integration with 

Inertial Measurement Unit (IMU) and Visual Odometry (VO) to implement an accurate and robust navigation system. However, the 

performance of the integrated system can be severely degraded in urban environments due to non-line-of-sight (NLOS) reception and 

multipath interference. To overcome these challenges, a novel Fault Detection and Exclusion (FDE) algorithm aided with IMU and 

VO measurements is proposed to identify and isolate the contaminated satellite signals. The algorithm utilizes instantaneous 

measurements from IMU and VO to predict the current vehicle position, enabling the estimation of pseudorange errors in GPS 

measurements. A FDE algorithm based on Hierarchical clustering is then developed to identify GPS signals with significant errors 

based on the predicted pseudorange error. An experimental field test was conducted using a land vehicle to evaluate the effectiveness 

of the proposed algorithm. The results show that the GPS/IMU/VO integrated navigation system with the proposed FDE algorithm 

has significantly improved the positioning accuracy and reliability compared to the traditional system. The proposed algorithm 

achieves a positioning accuracy with a 3D Root Mean Square Error (RMSE) of 11.18m in urban environment, making an 

improvement of 68.2% over the traditional GPS/IMU/VO integrated navigation system. 

 

 

1. INTRODUCTION 

Autonomous vehicles (AVs) have emerged as key contributors 

to enhancing passenger safety and reducing overall operating 

costs (Fagnant and Kockelman, 2015). However, the 

implementation of AVs also brings significant challenges, 

particularly in terms of providing accurate, continuous, and 

reliable vehicle positioning information. The global navigation 

satellite systems (GNSS), such as global positioning system 

(GPS), can provide long-term absolute positioning information 

in open sky environments, often integrated with other sensors, 

such as inertial measurement units (IMU) and vision sensors for 

vehicle positioning. However, GNSS signals are easily blocked, 

diffracted or reflected by tall buildings in harsh urban 

environments, resulting in non-line-of-sight (NLOS) reception 

and multipath interference (MI) (Chen et al., 2020). Notably, 

NLOS reception can cause significant pseudorange errors, 

impacting the positioning accuracy and reliability of GNSS and 

the integrated navigation system (MacGougan et al., 2002). 

Therefore, fault detection and exclusion (FDE) is crucial for 

AVs to achieve high levels of positioning accuracy and 

reliability in urban environments. 

One of the most representative FDE algorithms is the Receiver 

Autonomous Integrity Monitoring (RAIM) algorithm (Feng et 

al., 2006). The classic RAIM algorithm is aimed to ensure the 

integrity of GNSS positioning solution by checking the 

consistency of GNSS measurements, identifying and excluding 

faulty satellite measurements. The conventional RAIM 

algorithms include the pseudorange comparison method (Lee, 

1986), the least squares residual method (Parkinson and Axelrad, 

1988), and the parity vector method (Sturza, 1988). These three 

algorithms have been proved equivalent, when the noise follows 

a Gaussian distribution. But they only perform effective FDE 

performance in single-fault situations. With the rapid 

developments of multi-constellation GNSS technology, the 

possibility of multiple satellites malfunctioning simultaneously 

is also increasing. Blanch et al. proposed an advanced RAIM 

(ARAIM) method based on multiple hypothesis solution 

separation to detect multiple faults (Blanch et al., 2012). 

However, the methods exist substantial computational burden 

when assessing the consistency across numerous subsets. These 

RAIM algorithms can work well in aviation settings where exist 

measurement redundancy. However, the algorithms are difficult 

to directly transferable to dynamic applications in urban areas 

due to the limited satellite availability and poor satellite 

geometrical configurations. Moreover, RAIM is susceptible to 

errors in the initial position estimation, as inaccurate or biased 

estimates can result in incorrect fault detection and exclusion, 

thereby compromising the reliability of the FDE process.  

Moreover, to mitigate pseudorange measurement errors in 

GNSS positioning, machine learning methods have also been 

employed to identify and exclude NLOS/multipath signals by 

considering the factors that influence measurement errors such 

as the carrier to noise ratio, elevation angle, pseudorange 

residuals, and other derivatives or their combinations. Hsu 

trained a classifier using support vector machine (SVM) to 

classify GNSS signal types into three categories, LOS, 

multipath interference and NLOS (Hsu, 2017). The features he 

selected include carrier to noise ratio, change rate of carrier to 

noise ratio, pseudorange residue, difference between delta 

pseudorange and pseudorange rate. The experiment result shows 

that the proposed algorithm can achieve a classification 

accuracy of 75%. GUERMAH et al. exploited the potential of 

right-hand circular polarized (RHCP) and left-hand circular 

polarized (LHCD) for signal processing and proposed an 

improved GNSS signal classifier using information provided by 
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RHCP and LHCP antennas (C/N0-R-L and satellite elevation) 

and Decision Trees technique (GUERMAH et al. 2018). The 

results show that the proposed algorithm can give an accuracy 

of 99%. Sun et al. tested the classification algorithm based on 

gradient boosting decision tree (GBDT), decision tree, distance 

weighted k-nearest neighbour (KNN) and adaptive network-

based fuzzy inference system (ANFIS), using the features of 

C/N0, pseudorange residuals and satellite elevation angle (Sun 

et al., 2020). The results show that the GBDT based algorithm 

achieves the best classification accuracy. The proposed GBDT 

algorithm with NLOS detection and exclusion can provide a 

positioning accuracy improvement of 34.1% compared to the 

traditional method. These algorithms all belong to the 

supervised learning methods and the classification accuracy is 

closely related to the accuracy of the labelled training sets. 

However, it is difficult and costly to obtain accurate labelled 

training sets. 

Multi sensor fusion methods have also been proposed to 

improve the positioning accuracy by detecting and eliminating 

faulty GNSS signals. Meguro et al. proposed a precise 

positioning technique that utilizes an omnidirectional infrared 

camera to eliminate invisible satellites (Meguro et al., 2009). 

The effectiveness of this technique was evaluated through static 

and kinematic experiments, and the results confirmed its 

effectiveness. However, the high cost associated with this 

approach limits its widespread use. Peyraud employed a 3D 

urban model to predict visible satellites and then eliminated 

potential faulty satellites to mitigate multipath effects (Pevraud 

et al., 2013). While this algorithm improves positioning 

accuracy, it is computationally complex and cannot achieve 

real-time processing. Additionally, Sun et al. proposed a FDE 

algorithm that utilizes a sliding window and a detector (Sun et 

al., 2021). This algorithm is based on pseudorange comparison 

using IMU data and GNSS pseudorange measurements. 

Experimental results demonstrate that the proposed algorithm 

enhances positioning accuracy compared to scenarios without 

fault exclusion, particularly in mid and urban canyons.  

As discussed above, although several methods have 

demonstrated effectiveness in mitigating multipath effects, they 

also have some limitations. Additionally, these FDE methods 

may degrade satellite geometric distribution and may not be 

suitable for low-visibility areas. IMU provides high short 

precision and is unaffected by the external environments. It can 

be integrated with GNSS to complement each other and achieve 

enhanced accuracy and robustness. However, during extended 

GNSS signal outages, positioning accuracy can deteriorate 

rapidly. To overcome these challenges, we design a novel GPS 

FDE algorithm that utilizes IMU and Visual Odometry (VO) 

data to improve the vehicle navigation performance in urban 

environments. The algorithm predicts pseudorange errors based 

on current IMU and VO measurements and employs 

Hierarchical Clustering method to identify faulty satellite 

signals considering the predicted pseudorange errors. 

The remainder of this paper is organized as follows: Section 2 

introduces the proposed algorithm, Section 3 provides 

experimental verification, and finally, Section 4 concludes the 

paper.  

 

2. ALGORITHM DESIGN 

2.1 Algorithm Framework 

The framework of the proposed GPS FDE algorithm, aided by 

IMU and VO data for vehicle integrated navigation in urban 

environments, is depicted in Figure 1. In the first step, the 

current vehicle velocities are estimated using camera and IMU 

data, respectively. Based on the previous vehicle position 

estimated by the loosely integrated GPS/IMU/VO navigation 

system, we can predict the current vehicle position. Next, 

utilizing the predicted vehicle position and GPS observations, 

we can estimate pseudorange errors. Considering these 

predicted pseudorange errors, we employ the Hierarchical 

Clustering algorithm to identify GPS signals that exhibit 

consistency, thereby excluding inconsistent satellite signals. 

This process facilitates the estimation of position and velocity 

using the remaining reliable GPS measurements. Finally, we 

obtain the loosely integrated navigation solution by combining 

the estimates from the GPS measurements with the information 

derived from the IMU and VO data. This integrated system can 

offer a more robust estimation of the vehicle's position and 

velocity in urban environments. 

 

 

Figure 1. The algorithm framework of the proposed method 

 

2.2 IMU and VO Data Based Vehicle Position Prediction  

GPS signals are easily contaminated by external factors, such as 

interference, noise, which can compromise the accuracy and 

reliability of GPS positioning results. Consequently, incorrect 

FDE may occur. Fortunately, we can enhance the accuracy and 

reliability of position estimation by utilizing the IMU and VO 

data.  

The IMU provides instantaneous measurements of linear 

acceleration and angular velocity, making it immune to external 

interference. By applying a mechanical arrangement algorithm, 
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we can utilize these measurements to calculate the vehicle 

velocity 
_

b

IMU kv . 

In addition, the camera used in the VO system can capture a 

larger number of features in urban environments, offering 

valuable visual information for position estimation. Through 

techniques such as feature extraction, feature matching, and VO, 

we can determine the vehicle position in the camera frame. To 

integrate this information with the IMU data, we then convert 

the position to the body frame. 

 

 
_ _

b b c b

raw VO c raw VO c t C t t  (1) 

 

where, 
_

c

raw VOt and 
_

b

raw VOt  are raw vehicle position calculated by 

VO in the camera frame and body frame, respectively. b

cC  is 

the rotation matrix from the camera frame to the body frame 

obtained by calibration. b

ct  is the translation vector from the 

camera frame to the body frame. 

To estimate the vehicle velocity, a Kalman filter (KF) with a 

constant acceleration model is designed. The velocity estimation 

takes into account the non-holonomic Constraint (NHC) (Yang 

et al. 2016), which considers the vehicle stability in both lateral 

and vertical directions. 

 

 

_

_ 0

0

bx

VO k

b

VO k

v 
 

  
 
 

v  (2) 

 

where, 
_

b

VO kv  is the vehicle velocity calculated by VO at time 

epoch k with NHC. 
_

bx

VO kv  represents the vehicle forward 

velocity component in the body frame calculated by the KF. 

By integrating the estimated velocities, we can predict the 

current vehicle position in the Earth-Centered, Earth-Fixed 

(ECEF) frame with the vehicle position calculated by the 

integrated navigation system at the previous epoch. 

 

 _ 1 _ _

1
( )

2

e n b b

pre k k n b VO k IMU k t  r r C C v v  (3) 

 

where _pre kr  is the predicted current vehicle position in the 

ECEF frame, 
1kr  is the previous vehicle position calculated by 

the integrated navigation system, n

bC  is the state transition 

matrix from the body frame to the navigation frame, e

nC  is the 

state transition matrix from the navigation frame to the ECEF 

frame, t  is the time interval between time epoch k-1 to time 

epoch k. 

 

2.3 Pseudorange Errors Prediction  

The pseudorange measured between the user receiver and the 

satellite is: 

 

  u s trop ionor c t t D D        (4) 

 

where, r  is the geometric distance between the satellite and the 

user receiver; c  is the speed of light; 
ut  is the receiver clock 

error; 
st  is the satellite clock error, which can be corrected 

according to the broadcast ephemeris; tropD  and ionoD  is delays 

in the troposphere and ionosphere, which can be corrected by 

the Saastamoinen model and Klobuchar model,   mainly 

contains NLOS and multipath errors. 

The pseudorange observation obtained by the correction of 

satellite clock error, troposphere and ionosphere delay, is: 

 

  c u s trop ionor c t t D D           (5) 

 

where st , tropD , and ionoD  are residuals after correction. 

The pseudorange error can be obtained: 

 

  c u s trop ionor c t t D D              (6) 

 

where,   is pseudorange error.  

To predict the pseudorange error, we calculate the geometric 

distance between the satellite and the user receiver according to 

the vehicle position predicted by IMU and VO data. 

 

      
2 2 2

i e i e i e

pre s pre s pre s prer x x y y z z       (7) 

 

where prer  is the predicted geometric distance between the 

satellite and the vehicle;  , ,i i i

s s sx y z is the coordinate of the i-th 

satellite in the ECEF frame,  , ,e e e

pre pre prex y z is the coordinate of 

the _pre kr . 

Then we can predict the pseudorange error: 

 

  c u s trop iono

pre prer c t t D D              (8) 

 

where, pre  is the predicted pseudorange error. 

 

2.4 FDE Using the Hierarchical Clustering Algorithm 

Regarding the predicted pseudorange errors, the receiver clock 

errors remain consistent across all satellites, while the residual 

errors are generally small when compared to NLOS and 

multipath errors. NLOS signals arise when satellite signals 

encounter reflection during transmission, yielding larger 

predicted pseudorange errors compared to Line-of-Sight (LOS) 

signals. Multipath interference, which encompasses both direct 

and reflected signals, engenders predicted pseudorange errors 

that can exceed or below those of LOS signals. Consequently, 

the predicted pseudorange errors for NLOS and multipath 

signals diverge from those of LOS signals and are contingent 

upon the traits of signal propagation pathways. 

Based on this understanding, we design a Fault Detection and 

Exclusion (FDE) method that incorporates the hierarchical 

clustering (Nielsen, 2016) algorithm to classify satellite signals 

into three clusters. 

In this process, the predicted pseudorange error is chosen as the 

feature, and the Euclidean distance is selected as the distance 

metric. The hierarchical clustering algorithm is applied using 

this distance metric, starting with each satellite signal as an 

individual cluster. Iteratively, the clusters are merged based on 

their similarity until the three clusters are obtained. The cluster 

center of the cluster with the highest number of samples 

represents the predicted pseudorange error without NLOS and 

multipath errors since LOS signals should be consistent. 

Next, we compare all the predicted pseudorange errors with the 

cluster center. If the distance between a predicted pseudorange 

error and the cluster center exceeds a predetermined threshold, 

we identify the corresponding satellite measurement as faulty 
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and exclude it from further processing. Conversely, if the 

distance is within the threshold, we consider the corresponding 

satellite measurement as normal and retain it for further 

calculations. 

Once the faulty measurements are detected and excluded, the 

position and velocity of the receiver can be calculated using the 

remaining measurements. This can be achieved through least 

squares estimation, where the reliable pseudorange 

measurements are used to estimate the vehicle position and 

velocity accurately. 

 

2.5 Loosely Coupled GPS/IMU/VO Fusion scheme 

By combining the GPS, IMU, and VO data, we can provide the 

estimation of the vehicle position, velocity, and attitude. This 

fusion is achieved using a loosely coupled scheme in the 

framework of the Extended Kalman Filter (EKF). 

The state vector for the EKF is defined as follows: 

 

 3 1 3 1 3 1 3 1 3 1 3 1 3 1

T
e e

g a g a      
   X r v φ b b s s    (9) 

 

where X  represents the state vector; 3 1

e

r , 3 1

e

v , and 
3 1φ  

denote the three-dimensional position error vector, velocity 

error vector and attitude error vector of IMU, respectively; 3 1g b  

and 
3 1a b  represent the three-axis bias of the gyroscope and 

accelerometer; 3 1g s  and 
3 1a s  are the three-axis scale factor of 

the gyroscope and accelerometer, respectively. 

The state transition equation for the GPS/IMU/VO Kalman 

filter can be expressed as： 

 

 , 1 1 1k k k k k   X Φ X w  (10) 

 

where, 
1kX  and 

kX  are the  state vectors at time epoch k-1 

and k, respectively; , 1k k Φ  represents the state transition matrix 

from time epoch k-1 to k; 
1kw  represents the process noise at 

time epoch k-1. 

The measurement equation of the system is given by: 

 

 

_ _

_ _

_ _

IMU k GPS k

k IMU k GPS k k k

IMU k VO k

 
 

    
  

p p

Z v v HX η

v v

 (11) 

 

where 
kZ  represents the measurement vector of the time epoch 

k; H  is the measurement mapping matrix; 
kη  denotes the 

measurement noise at time epoch k; _IMU kp  and _IMU kv  

represent the position and velocity derived from the IMU at 

time epoch k, respectively; _GPS kp  and _GPS kv  are the position 

and velocity solutions of GPS after FDE at time epoch k, 

respectively; _VO kv  represents the position derived from the VO 

at time epoch k. 

In the loosely coupled GPS/IMU/VO fusion system, if the 

number of available GPS signals after FDE is less than 4, in 

order to guarantee the performance of the system, we 

incorporate VO data to integrate with IMU. The observation 

equation is expressed as: 

 

 _ _k IMU k VO k k k   Z v v HX η  (12) 

 

After confirming the state transition equation and the 

measurement equation, the state vector can then be estimated 

using the Kalman filter. The Kalman filtering procedure can be 

divided into two stages as follows: 

Prediction stage: 

 

 
, 1 , 1 1

ˆ ˆ
k k k k k  X Φ X  (13) 

 
, 1 , 1 1 , 1 1

T

k k k k k k k k     P Φ P Φ Q  (14) 

 

Update stage: 

 

  
1

, 1 , 1

T T

k k k k k k k k k



  K P H H P H R  (15) 

   , 1k k k k k P I K H P  (16) 

  , 1 , 1
ˆ ˆ ˆ

k k k k k k k k   X X K Z H X  (17) 

 

where, 
1

ˆ
kX  denotes the system state vector estimate at time 

epoch k-1, corresponding to covariance matrix 
1kP ; , 1

ˆ
k kX  

represents the predicted state vector, corresponding to 

covariance matrix , 1k kP ; 
1kQ  is the system noise matrix; 

kK  

is the kalman gain; 
kR  denotes the measurement noise matrix; 

ˆ
kX  represents the system state vector estimate at time epoch k, 

corresponding to covariance matrix 
kP ; I  is an identity matrix. 

Next, the estimated position, velocity and attitude from the IMU 

are corrected using the state vector. This final estimation 

provides an improved estimation of the vehicle position, 

velocity, and attitude. It can be output and utilized to aid in 

predicting the vehicle position in the next epoch. 

 

3. EXPERIMENT AND RESULTS 

To validate the proposed algorithm, a field test was carried out 

in Nanjing, Jiangsu, China. The experimental vehicle and 

equipment are depicted in Figure 2. During the test, raw GNSS 

measurements were collected using a BDStar Navigation C520-

AT GNSS receiver with a sampling rate of 10Hz. The raw IMU 

data were collected using a micro-electro-mechanical system 

(MEMS) IMU, STIM300, with a sampling rate of 125Hz. The 

parameters of the STIM300 are provided in Table 1. Images 

were captured using an Intel RealSense D455 binocular depth 

stereo camera with a resolution of 848 480  and a sampling 

rate of 30Hz. For reference during the dynamic test, a 

Honeywell HGuide n580 satellite/inertial navigation device was 

used. The ground truth was obtained through post-processing in 

the Inertial Explore software, using a tightly coupled integration 

mode. The corresponding IMU parameters are provided in 

Table 2. 

 

Accelerometer 
Bias instability 0.05 mg 

Random walk noise 0.06 m/s/sqrt(hr) 

Gyroscope 
Bias instability 0.5 deg/hr 

Random walk noise 0.15 deg/sqrt(hr) 

Table 1. Parameters of STIM300. 

 

Accelerometer 
Bias instability 0.025 mg 

Random walk noise 0.03 m/s/sqrt(hr) 

Gyroscope 
Bias instability 0.25 deg/hr 

Random walk noise 0.15 deg/sqrt(hr) 

Table 2. Parameters of N580. 
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Figure 2. Experimental vehicle and experimental equipment. 

 

The experiment was conducted in a dense-urban environment 

near Nanjing South Railway Station. The experimental route 

and partial experimental scenes are depicted in Figure 3. As 

illustrated in the figure, there are many obstacles along the 

driving trajectory, including skyscrapers and elevated bridge. 

These obstacles have the potential to block and reflect satellite 

signals, leading to significant GPS outages and multipath effects. 

So it is essential to mitigate the multipath effects to improve the 

navigation performance in these urban environments. 

The number of visible satellites and PDOP value before and 

after FDE are presented in Figure 4. As depicted in the figure, 

our proposed algorithm demonstrates the capability to identify 

multiple faulty satellites and can operate effectively even when 

the number of available satellites is less than 5. After excluding 

the detected faulty satellites, the PDOP value may increase, 

indicating a decrease in the geometric quality of the satellite 

constellation. However, the GPS positioning results will 

become more accurate and reliable without the influence of 

contaminated measurements. 

In order to assess the performance of the proposed 

GPS/IMU/VO integrated navigation system with FDE 

algorithm, the proposed algorithm is compared with the 

traditional GPS/IMU/VO integrated algorithm. Figure. 5 

illustrates the trajectories calculated by the two algorithms. It is 

evident from the figure that the positioning results obtained 

from the proposed algorithm are closer to the reference 

trajectory compared to the traditional algorithm, particularly in 

complex environments.  

The position, velocity and attitude errors, calculated from the 

proposed algorithm and comparison algorithm, are shown in 

 

Figure 3. The experimental route and partial experimental 

scenes. 

 

 

Figure 4. Number of visible satellites and PDOP value before 

and after FDE. 

 

Figure 6-8, respectively. The accuracy of the two algorithms is 

further analyzed using Root Mean Square Error (RMSE), and 

the results are presented in Tables 3-5 for position, velocity, and 

attitude, respectively.  

Based on the results, it is evident that the proposed 

GPS/IMU/VO integration system with FDE algorithm 

significantly improves the vehicle positioning accuracy. The 3D 

positioning RMSE is reduced to 11.18m, representing a 

substantial improvement compared to the traditional 

GPS/IMU/VO fusion with an RMSE of 35.18 m. The 
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positioning accuracies in the north, east, and down directions 

are greatly enhanced by 74.1%, 75.1%, and 19.8%, respectively. 

The improvement in positioning accuracy in the down direction 

is relatively small due to the utilization of NHC in the 

traditional GPS/IMU/VO fusion. Moreover, a significant 

enhancement is observed in the overall 3D Root Mean Square 

Error (RMSE) of velocity, showcasing an improvement of 

approximately 60.0% when contrasting the proposed solutions 

with the conventional integration approach. This demonstrates 

the superior accuracy and reliability of the proposed algorithm 

in velocity estimation. Regarding attitude estimation, the 

proposed GPS/IMU/VO integration outperforms the traditional 

algorithm, particularly in heading estimation. The estimated 

heading accuracy of the proposed algorithm is 1.855 degrees, 

representing a substantial 79.1% improvement compared to the 

traditional GPS/IMU/VO integration solution, which has an 

estimated heading accuracy of 8.888 degrees. These 

improvements demonstrate the effectiveness of the proposed 

FDE algorithm in enhancing vehicle navigation performance in 

urban environments, providing more accurate and reliable 

position, velocity, and attitude estimations. 

 

 

Figure 5. Trajectory comparison for traditional integrated 

algorithm and the proposed algorithm. 

 

 

Figure 6. Comparison of position error. 

 

Algorithm 
Position RMSE (m) 

North East Down Horizontal 3D 

EKF 29.75 16.68 8.65 34.1 35.18 

Proposed 

algorithm 
7.72 4.16 6.93 8.77 11.18 

Improvement 74.1% 75.1% 19.8% 74.3% 68.2% 

Table 3. Position RMSE results comparison. 

 

 

Figure 7. Comparison of velocity error. 

 

Algorithm 
Velocity RMSE (m/s) 

North East Down 

EKF 1.45 1.11 0.49 

Proposed algorithm 0.51 0.34 0.44 

Improvement 64.6% 69.2% 11.4% 

Table 4. Velocity and attitude RMSE results comparison. 

 

 

Figure 8. Comparison of attitude error. 
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Algorithm 
Attitude RMSE (degree) 

Pitch Roll Heading 

EKF 0.383 0.556 8.888 

Proposed algorithm 0.310 0.410 1.855 

Improvement 19.0% 26.3% 79.1% 

Table 5. Attitude RMSE results comparison. 

4. CONCLUSION

This paper proposes a novel FDE algorithm for GPS/IMU/VO 

integration in urban environments to enhance vehicle navigation. 

The proposed algorithm utilizes IMU and VO data to predict 

pseudorange errors and incorporates Hierarchical Clustering 

algorithm to identify faulty satellite signals based on the 

predicted pseudorange error. The integration system utilizes 

IMU and VO data not only for fusion with GPS data to provide 

navigation results but also to assist in the FDE process within 

the GPS system. A field test was conducted in a dense urban 

environment to evaluate the performance of the proposed 

algorithm. The experimental results demonstrate that the 

GPS/IMU/VO integration with the proposed FDE algorithm 

significantly improve the navigation accuracy. The RMSEs of 

3D positioning, velocity, and attitude are 11.18m, 0.76m/s, and 

1.925 degrees, respectively. These results represent a 68.2% 

improvement in positioning accuracy, a 60.0% improvement in 

velocity estimation, and a 78.4% improvement in attitude 

estimation compared to the traditional GPS/IMU/VO 

integration approach. These results highlight the effectiveness 

of the proposed algorithm in mitigating NLOS or multipath 

errors and improving the accuracy and reliability of vehicle 

navigation in challenging urban environments.  
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