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ABSTRACT: 

 

Integration of information from multi-sensor can provide navigation systems with reliable estimates of their own states, which 

overcomes shortage of standalone sensors. State estimation approaches, which can be categorized into filtering-based and optimization-

based methods, provide the means to fuse information from various sensors with different principles to estimate the system's position, 

orientation, and other navigation parameters accurately. Recent researches have shown that optimization-based frameworks outperform 

filtering-based ones in terms of accuracy. However, both methods are based on maximum likelihood estimation (MLE) and, assuming 

Gaussian noise, should be theoretically equivalent. In this paper, we comprehensively and theoretically analyse the differences between 

the two methods, including algorithms and strategies. Our simulated experiments based on visual odometry (VO) indicate that filtering-

based approaches are equal to optimization-based ones in accuracy when employing the same strategies and under the premise of the 

same measurements and observation model. Therefore, future research on sensor-fusion navigation problems should concentrate on 

strategies rather than state estimation methods. 

 

 

1. INTRODUCTION 

Multi-sensor fusion, which combines sensors with different 

principles, is widely used due to the complementary advantages 

of their measurements, providing seamless, reliable, and high-

precision positioning with emerging applications, such as 

autonomous vehicles and mobile mapping, where standalone 

sensors are insufficient. By appropriately modelling the 

observations of each sensor, multi-sensor fusion tasks are 

reduced to a state estimation problem that can be classified into 

two methods: filtering-based and optimization-based (Strasdat et 

al., 2010). 

 

In the early ages, filtering-based approaches are widely used due 

to its high efficiency, since Kalman filter (KF) updates states with 

measurements sequentially inputting. Its real-time applications in 

sensor fusion of GNSS (Global Navigation Satellite System) and 

IMU (Inertial Measurements Unit) can be traced back to 90s 

(Grejner-Brzezinska et al., 1998). Furthermore, many excellent 

frameworks concentrating on SLAM (Simultaneous Localization 

And Mapping) have been proposed based on KF. MonoSLAM 

(Davison et al., 2007), which is the earliest visual SLAM that 

performs in real-time, estimates camera frames and landmarks by 

an extended Kalman filter (EKF). Gmapping adopts a particle 

filter to localize and map in unknown environments using a 2D 

lidar (Grisetti et al., 2007). Then, multi-state constrained Kalman 

filter (MSCKF), a benchmark of sliding window filter (SWF), 

was proposed to integrate camera and IMU, which maintains 

historic camera poses in the state vector to construct constraints 

by using measurements of the same landmarks across multiple 

cameras (Mourikis and Roumeliotis, 2007). The idea of multi-

state constraints is still applied in nowadays multi-sensor fusion 

which integrates camera, lidar, IMU, and GNSS (Li et al., 2023).  

 

Meanwhile, optimization-based, or graph-based, approaches 

optimize all measurements by solving a nonlinear least square 

(NLS) problem, which is time-consuming compared with 

filtering-based ones (Leutenegger et al., 2013). To bound 

computational complexity, one common strategy is to maintain a 

bounded-size window and marginalize out past states and 

measurements (Sibley et al., 2010; Yang et al., 2017), which is 

so-called sliding window optimization (SWO). However, 

marginalization corrupts sparsity in the system which has an 

adverse effect on efficiency. Thus, efforts are made on node 

removal strategies and sparsification to avoid densifying when 

marginalize (Eckenhoff et al., 2016; Mazuran et al., 2014; Vial et 

al., 2011). On the other hand, incremental smoothing using a 

Bayes tree has been proposed to accelerate states estimation 

(Kaess et al., 2011). Based on these strategies, research show that 

optimization-based frameworks can also operate in real-time, 

whether using a computer or a mobile phone (Campos et al., 2021; 

Qin et al., 2018; Shan et al., 2020), and perform better than 

filtering-based ones, where the same sensors are used (Strasdat et 

al., 2010). Therefore, optimization-based approaches are 

preferred in recent research due to the better performance in 

accuracy (Cao et al., 2021; Huang, 2019; Niu et al., 2023).  

 

However, despite strategies and graph representations used in 

optimization-based methods, system states are estimated by NLS. 

It is important to note that, both NLS and EKF can be derived 

from MLE by assuming Gaussian noise. Furthermore, by 

modelling observations from sensor equivalently, EKF can be 

derived from NLS without additional assumptions, which 

indicates that EKF should be equivalent to NLS in terms of 

accuracy (Bell and Cathey, 1993). Thus, filtering-based 

approaches should achieve the same performance with 

optimization-based ones. Differences between the both state 

estimation methods are caused by different strategies rather than 

state estimation approaches.  

 

In this paper, we comprehensively and theoretically analyse the 

differences between both the filtering-based approach and the 

optimization-based one from three aspects: theory, Jacobi, and 

strategies, which covers all factors that may affect estimation 

results. Meanwhile, simulated visual odometry experiments are 

conducted to evaluate estimating results between the two state 

estimation results. Specifically, the main contributions of this 

work include:  
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1. We analytically show that, when system states contain all 

frames and landmarks in the whole trajectory, reasons 

caused differences between the two estimators lie in 

linearization points. And by applying the same linearization 

points, both estimators achieve the same results in accuracy. 

2. We show that, with sliding window applied in real-time 

operation, both linearization points and prior knowledge 

corrupts accuracy consistency of SWF and SWO due to 

different strategies used when window slides. Due to 

utilization of observations, SWO performs better than SWF. 

But by a three-step modification on SWF, the modified SWF 

is equal to SWO in accuracy.  

3. Marginalization in SWO, which operates on information 

matrix, equals to deleting covariance in SWF if the same 

observations are utilized. Both strategies convey constraints 

to the next window without information loss. 

 

The rest of this paper is structured as follows. In Section 2, we 

firstly review that NLS can be derived from MLE, and EKF can 

be derived from NLS. Then, Jacobian matrix and common 

strategies used in optimization-based and filtering-based 

methods are theoretically analysed. In Section 3, strategies used 

in SWO are applied in SWF by a 3-step modification. Section 4 

validates our analysis based on simulation experiments. Finally, 

Section 5 concludes the paper and outline future works. 

 

2. THEORETICAL ANALYSIS OF FILTERING-BASED 

AND OPTIMIZATION-BASED APPROACHES 

In this section, three aspects are analysed theoretically. We first 

derive the formula of optimization and EKF from MLE. Then, 

differences in the Jacobian matrix caused by linearization points 

are analysed. Lastly, strategies that are most commonly used in 

real-time operations are analysed for both filtering-based and 

optimization-based approaches. Without loss of generality, all 

these analyses are based on visual odometry (VO).  

 

2.1 Derivation from MLE to Optimization and KF 

VO recovers camera pose ,f jx  by matched features in camera 

frames, which includes 3-DOF rotation and 3-DOF translation at 

time jt . Observations can be modelled as follow:  

 

 ( ), ,,i i f j l k i= +z h x x   (1) 

 
Where ih  maps the k-th landmark ,l kx  into measurements iz  

on image plane. ( ),i i0N d  is zero-mean white Gaussian 

noise. With stacked measurements, camera poses can be 

estimated by maximum likelihood estimation: 

 

 ( ), ,

1 ,1

ˆ arg max | ;i f j l k

j n k m
i

p
   



= 
X

S

X z x x
 (2) 

 
Where, n and m are number of camera poses and landmarks 

respectively. S  is the set containing all observations. For priori 

information pX , it can be treated as virtual measurements with 
( ),p p0N D :  

 

 p p p= +z X   (3) 

 

Due to the assumption of Gaussian noise, the NLS, which is 

generally utilized in optimization methods, can be derived from 

MLE:  

 

 

( )

( )

1 1 1

1 1

1

ˆ
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,

T T

p p p

T T
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= =

diag i

− − −+ = +
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D J D J X D X J D L

J J J L l l

D d d S



 (4) 

 
Where, iJ  is the Jacobian matrix of mapping function ih  

evaluated at the initial state 0X . i i i= −l z h  represents residuals. 

And the estimating error-state vector ˆX  is defined as:  

 

 ,1 , ,1 ,
ˆ ˆ ˆ ˆ ˆ

T
T T T T

f f n l l m
 =  X x x x x      (5) 

 

Then, the full-state vector can be derived by compensating the 

estimated error-state vector: 

 

 
,1 , ,1 ,

0

ˆ ˆ ˆ ˆ ˆ

ˆ

T
T T T T

f f n l l m
 =  

=

X x x x x

X X
 (6) 

 
Where  corresponds to operation on updating states 

including rotation and translation. Furthermore, by consideration 

of posterior covariance 
1 1 1ˆ T

p

− − −= +D D J D J , Eq.(4) can be 

rewritten:  

 

 ( )1ˆ ˆ+ T

p p

−= −X X DJ D L JX  (7) 

 
Since parameters are compensated once the error state ˆX  is 

estimated, the priori pX  is set to 0. Therefore, Eq.(7) is equal 

to EKF update, which shows when select the same observation 

model and measurements, both optimization-based and filtering-

based methods are equivalent in terms of accuracy by stacking all 

measurements. 

 

 1ˆ ˆ T −=X DJ D L  (8) 

 

2.2 Analysis on Jacobi consistency 

Note that estimating state X contains all camera poses and 

positions of landmarks in the whole trajectory, which is hard to 

realize in real-time operation. However, to avoid effects caused 

by other strategies, state X is kept in this section for analysis. 

Meanwhile, strategies applied in real-time operation will be 

discussed in section 2.3. 

 

In optimization approaches, stacked measurements are used to 

update X, which makes the most of information in observations. 

For s-th iteration, Jacobian matrix of optimization has the form:  

 

 
( )

( )

( )
( )

( )
( )1 1 11ˆ ˆ ˆs s s

T
s s T s T

O i| = | |− − −
= = =

 
 X X X X X X

J J J  (9) 

 

Where the Jacobian matrix is evaluated at estimating results of 

previous iteration, which is consistent due to the same accuracy 

of linearization points, as shown in Figure 1. Then, the linearized 

form of observation model in optimization can be written as: 

 

 ( ) ( )ˆs s

O O=Z J X  (10) 

 

However, EKF updates estimating states X using all observations 

by inputting them epoch by epoch instead of stacking. 

Linearization points for each update should be derived from 

states of previous update. Then stack Jacobi in each update, the 

whole Jacobian matrix can be written as: 
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0 1

ˆ1
i

T
T T

KF i= | |
−

= =
 
 X X X X

J J J  (11) 

 

On the contrary, the Jacobian matrix of KF is inconsistent due to 

the different linearization point, as shown in Figure 1. Similarly, 

the linearized form of observation model in KF is: 

 

 ( )( ) ( )( )

ˆ

ˆ

KF KF

s s

O O

=

= +  + 

Z J X

J J X X
 (12) 

Where J  and X  are different part of Jacobi and wrongly 

estimated states due to different linearization points respectively. 

Then, wrongly estimated part of states X  can be derived by: 

 

 

 

Figure 1. Jacobian matrix of optimization and EKF.  

 

 
Figure 2. Modified Jacobian matrix of EKF. 

 

 
( )( ) ( )ˆ

g
s s

O O

−

 = − +  X J J JX  (13) 

 
Where -g is the pseudo-inverse of matrix. Since J  is 

proportional to the degree of non-linearity, Eq.(13) indicates that 

the difference between optimization and KF depends on degree 

of nonlinearity of the observation model. So, the linearization 

points are essential to problems with high degree of nonlinearity.  

 
Thus, instead of correcting ˆX  to full states after each update 

in EKF, full states are to be updated when all measurements are 

utilized, which ensures the same linearization points at each 

filtering. After all measurements are used, update the full states 

X. Then, as shown in Figure 2, do iterations which has the same 

number of the optimization. Note that, error states should be 

estimated by Eq.(7) since ˆX  is not updated. As a result, the 

Jacobian matrix during the s-th iteration of EKF can be expressed 

as:  

 

 
( ) ( ) ( )

1 1
ˆ ˆ ˆ1

s s s

T
s s T s T

KF i| = | |
− −= = =

 
 X X X X X X

J J J  (14) 

 

Eq.(14) indicates that, with appropriately chosen linearization 

point, both estimators can achieve equivalent estimating results 

 
1 Strategies are simplified for discussion. 

in terms of accuracy when state vector contains all variables in 

the whole trajectory.  

 

2.3 Analysis on strategies 

In practical applications, the real-time performance of navigation 

systems is a primary concern, leading to the frequent use of 

sliding windows to balance efficiency and accuracy. In this 

section, the visual strategies employed by two representative 

methods: MSCKF (Mourikis and Roumeliotis, 2007) and VINS-

mono (Qin et al., 2018), which respectively belongs to sliding 

window filter (SWF) and sliding window optimization (SWO), 

will be analysed. These strategies can be categorized into three 

aspects: utilization of observations, nodes removing strategy, as 

well as constraints transmission. And comparisons between SWF 

and SWO can be referred to Figure 3. 

 

2.3.1 Strategies in MSCKF 

 

A. utilization of observations 

For MSCKF update, landmarks will be used if one of those 

conditions are satisfied1: 

 

1. Landmarks are no longer observed by latest frame; 

2. Landmarks are observed by three frames. 
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This strategy makes full use of observations and tracks landmarks 

as long as possible. Therefore, as shown in Figure 3, only ,1lx  is 

used to filter in first window, since it is not observed by the latest 

frame. In the next window, ,2lx  and ,3lx  are landmarks not 

observed by the latest frame, and ,4lx  is observed for three 

frames. Thus, three landmarks are used to update states in this 

window.  

 

B. nodes removing strategy 

The oldest frame is to be removed from window to bound 

computational complexity. Meanwhile, landmarks no longer 

observed by frames in the window and all used landmarks should 

also be removed in order to avoid repeatedly using. In other 

words, observations are used only once in SWF.  

 

 

Figure 3. Comparison of SWF and SWO methods based on MSCKF and VINS-mono. 

Where,   represents covariance operation: ( ) ( ) ( ) ( )
1

1 1
−

− −    =   
 

. 

 
Thus, after first window finishes filtering, the oldest frame, ,1fx , 

and landmarks have been utilized as well as their observations in 

the window, ,1lx , will be removed. Then in the second window, 

,2lx , ,3lx , ,4lx  are utilized so that the oldest frame ,2fx  as well 

as landmarks with their observations should be removed. 

 

C. constraints transmission 

In the first window, due to lack of prior knowledge of each state, 

diagonal elements of covariance are set to infinity and non-

diagonal elements are set to 0, which represents high uncertainty 

of each state and there is no correlation between estimating states.  

 
After ,1lx  is used in the first window, covariance of ,1lx  and its 

connected states will be updated. However, to bound window 

size when window slides, the oldest frame, ,1fx , and landmarks 

no longer observed by frames in the window, ,1lx , will be 

removed. Thus, covariance of removed states is to be directly 

deleted and only ,2fx  has its posterior covariance. Then in the 

second window, ,2fx  can be constrained by posteriori produced 

in previous window, and other estimating states remain uncertain. 

Likewise, after observations connected to ,2lx , ,3lx , ,4lx  are 

used to filter, oldest frame and no longer used landmarks are 

removed from window. Therefore, ,3fx  and ,4fx  will be 

constrained in the next filtering. 

 

2.3.2 Strategies in VINS-mono 

 

A. utilization of observations 
In optimization-based methods, all tracked landmarks, observed 

by at least two frames, with their connected observations can be 

utilized to estimate. Therefore, all landmarks except ,5lx , which 

is only observed by ,3fx , with their observations are used. 

Likewise, in the second window, all landmarks but ,6lx  are used. 

 

B. nodes removing strategy 
Similarly to SWF, the oldest frame and its corresponding 

observations are always removed from the sliding window. 

However, landmarks will only be eliminated when they are no 

longer observed by any frames in the window.  

 

Therefore, after states estimated in the first window, oldest frame, 

,1fx , with its observation, connected to ,1lx , are removed. All 

landmarks will remain as they are connected to frames that still 

exist within the window. Similarly, ,2fx  with its observations 

as well as ,1lx  which is no longer observed by any remaining 

frames, are removed in the second window. 

 

C. constraints transmission 
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Instead of covariance matrix, the information matrix, which 

represents the weights of each estimated state and is the inverse 

of covariance, is utilized to constrain the estimation of states in 

SWO. Without priori in the first window, the information matrix 

of first window is set to 0. After estimation, posterior information 

is obtained. And then marginalization strategy is applied when 

window slides. 

 

There are three steps in marginalization. Firstly, solve posteriori. 

The posterior information is the sum of a priori and information 

matrix of observation which can be derived by Jacobi 
T

SWO SWO=N J J . And then, select elements of to be removed nodes 

and their connections in the posterior information matrix. In the 

first window, ,1fx  is to be removed and ,1lx  is connected to it, 

so that selected matrix is consisted of nodes ,1fx  and ,1lx . 

Finally, marginalize nodes to be removed. We denote nodes that 

will be removed as mx , and rest nodes in the selected 

information matrix as rx . According to Eq.(4), we have:  

 

 m mmm mr

T
r rmr rr

     
=     

    

x bN N

x bN N
 (15) 

 

 
Figure 4. Workflow of modified SWF for once update. 

 

The posterior information matrix of rx  can be easily obtained 

by Schur complement: 

 

 T

r mm mr rr mr= −N N N N N  (16) 

 

Where, 
T

mr rr mrN N N  contains information of removed nodes. 

Thus, rx  is constrained by rN  in the next window without 

information loss. As illustrated in Figure 3, elements of ,1lx  in 

prior information matrix is set to rN  and others remain 0 in the 

second window. After estimation, since ,2fx , ,1lx  are to be 

removed from window, both nodes and their connections are 

selected to construct information matrix as in Eq.(15). Then, 

constraints on ,2lx , ,3lx , and ,4lx  in the next window is 

generated by Eq.(16). 

 

It is important to note that, due to the strategies of nodes 

removing and marginalization, observations in SWO can be 

repeatedly using since only removed observations contribute to 

posteriori, which makes full use of observations to re-linearize. 

On the other hand, information matrix is the inverse of 

covariance matrix. We have: 

 

 
( )
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1
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1
1

T
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T
T T

mr rr
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information
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−
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−
−
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N N N N CN N

N N C N N N N

 

 

When mx  is removed, SWF deletes covariance of mx  directly, 

while SWO applies marginalization. Then the information and 

covariance matrix of rx  have the relationship of: 

 

 ( )
1

1 1T

r rr mr mm mr r

−
− −= − =D N N N N N  (17) 

 

Where rD  is the covariance matrix of rx . Eq.(17) indicates 

that deleting covariance in SWF equals to marginalization in 

SWO, if use the same priori and observations. 

 

Figure 5. Simulated trajectory and landmarks. 

 

Image width 1920 

Image height 1080 

xf  1960.422 

yf  1960.422 

xc  947.492 

yc  450.813 

b  801.853 

Table 1. Stereo camera settings in simulated experiments. 
 

Based on analyses in Section 2.3, we show that when sliding 

window is applied in both optimization-based and filtering-based 

methods, SWO should perform better in accuracy, since 

observations are utilized more than once, which overcomes 

effects of non-linearity. And differences between SWO and SWF 

are caused by prior constraints, measurements utilization, and 

linearization points, which can be corrected by applying the same 

strategies in SWF.  

 

3. MODIFIED SLIDING WINDOW FILTER 

Based on previous analysis on theories, Jacobi, and strategies, 

SWF should be equal to SWO theoretically. However, different 

linearization points and strategies applied in both methods lead 

to different results of SWF and SWO. Thus, by using the same 

linearization points and strategies in SWO, SWF can achieve the 

same accuracy. 

 
As shown in Figure 4, there are three steps for modified SWF. 

First, same as SWO all landmarks tracked by two frames at least 

are used to update instead of using ones which satisfy conditions 

illustrated in Section 2.3.1. And then, output estimating results. 

Second, while SWF removes all used observations and oldest 

frames, the modified version selects observations connected to 

Step 1: Estimate all states for output

Output results

Step 2: Pass posterior constraints

,1fx ,2fx ,3fx

,1lx ,2lx ,3lx ,4lx ,5lx

T=N J J
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removing nodes to form Jacobian matrix, MSWFJ , where it is 

evaluated at linearization points which is not updated. Then 

derive information matrix, T

MSWF MSWF MSWF=N J J , and do once 

filtering to acquire posterior covariance matrix, which equals to 

marginalization. After this, remove observations connected to 

oldest frame. Thirdly, constrain nodes, rx , by covariance matrix 

in the next window, and repeat the same three steps. 

 

By following these three steps, the same observations and priori 

will be utilized in both SWO and SWF. Consequently, once the 

Jacobian matrix is evaluated at identical points, the modified 

SWF will equal SWO in each step, resulting in equivalent 

estimation outcomes. 

 

Therefore, the initial values of states in the first window can be 

manually set to be identical. With an equivalent number of 

iterations and window size, both SWO and modified SWF will 

yield identical estimation results in the first window since all 

input information and strategies are equivalent. Based on this, the 

subsequent windows can also achieve consistent results. 

 

4. EXPERIMENTAL RESULTS 

In this section, we present three sets of experiments to validate 

our analysis. First, we compare estimating results of filter and 

optimization at different linearization points, with states 

containing all frames and landmarks in the whole trajectory. We 

then examine accuray of SWF and SWO based on strategies of 

MSCKF and VINS-mono respectively. Lastly, estimating results 

of SWO and the modfied SWF are analysed. Meanwhile, all three 

experiments are conducted with simulated stereo visual data, 

which ensures the same observations. An 8-turn trajectory is 

firstly generated, and then landmarks are simulated uniformly 

and randomly in space as shown in Figure 5. Stereo camera 

settings can be referred to in Table 1.  

 

4.1 Linearization points 

To prevent interference with other strategies, the estimation 

states include all frames and landmarks in the entire 8-turn 

trajectory. The Jacobian matrix is then evaluated at different 

linearization points. Initially, manual values are given to both 

estimators for each measurement, which are then stacked and 

updated using an optimization-based method with a specific 

number of iterations. Meanwhile, the filtering-based approach 

updates states epoch by epoch and applies the same number of 

iterations in each update. As the filtering-based method updates 

states at each epoch, the linearization points are altered in the 

subsequent epoch, resulting in discrepancies between the 

filtering-based and optimization-based approaches, as illustrated 

in Figure 6.  

 
(a) 

 
(b) 

Figure 6. Residuals of position (left) and attitude (right) based on 

optimization (a) and filtering (b) evaluating at different points. 

 

Subsequently, the Jacobian matrix is evaluated at the ground truth, 

revealing that both estimators yield comparable accuracy in 

estimation. This suggests that the choice of linearization points 

has a significant impact on estimating results, and selecting 

identical linearization points enables both estimators to achieve 

equivalent accuracy in estimation.  

 
(a) 

 
(b) 

 
(c) 

Figure 7. Residuals of position (left) and attitude (right) based on 

optimization (a) and filtering (b) evaluating at ground truth. 

(Where, (c) shows differences of estimating results between 

filtering and optimization.) 

 

Lastly, instead of performing iterations at each epoch, iterate only 

once per epoch in filtering-based method. Additionally, when 

utilizing observations during each epoch, estimated error states 

should not be corrected. In other words, the state estimation 

should utilize Eq.(7), as it currently operates as an open-loop 

system. Once all observations have been utilized, update the 

states using estimated error states and then set them to 0 before 

proceeding with the next iteration linearized at updated states. 

With the same number of iterations, both estimation approaches 

can achieve the same accuracy as shown in Figure 8, since all 

linearization points are identical. 

 
(a) 

 
(b) 
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(c) 

Figure 8. Residuals of position (left) and attitude (right) based on 

optimization (a) and filtering (b) evaluating at the same points. 

 

4.2 SWF vs. SWO 

Since impact of linearization points have already analysed, 

linearization points keep the same in both SWF and SWO. We 

set the size of window to 20 frames, and initial values and 

uncertainties are manually set the same. In each window, iterate 

only once. Residuals of both methods can be referred to Figure 9, 

and root mean square (RMS) can be referred to Table 2.  

 
(a) 

 
(b) 

Figure 9. Residuals of position (left) and attitude (right) based on 

SWO (a) and SWF (b). 

 

With analysis of root mean square (RMS), SWO slightly 

performs better than SWF when strategies are not modified in 

SWF, due to repeated use of observations. Since input 

information of both approaches are equivalent, differences are 

caused by strategies analysed in section 2.3. 

 

RMS 
Position (m) Attitude (deg) 

R F U Y P R 

SWO 0.027 0.026 0.029 0.019 0.022 0.021 

SWF 0.026 0.036 0.031 0.023 0.024 0.031 

Table 2. RMS of SWO and SWF. 

 

4.3 Modified SWF 

We further follow the three steps of strategies to modify SWF as 

analysed in section 3, and all the input information is given the 

same, which ensures input information in each window of 

modified SWF and SWO is identical. Eventually, modified SWF 

achieves the same estimating results compared with SWO as 

shown in Figure 10. However, since covariance of unconstrained 

states are set to infinity, there exists slight differences between 

SWO and modified SWF due to numerical instability.  

 

5. CONCLUSIONS AND FUTURE WORKs 

In this paper, we have comprehensively and theoretically 

analysed from three aspects: formula derivation, Jacobi analysis, 

and strategies. With validated by stereo visual odometry 

simulation, we conclude that differences between optimization-

based and filtering-based approaches are caused by linearization 

points and strategies. By inputting the same measurements, prior 

information, and applying the same strategies, both filtering-

based and optimization-based approaches are equivalent in terms 

of accuracy once the same linearization points and strategies are 

applied in both estimators, under the assumption of Gaussian 

noise and the same observation model. Since strategies, rather 

than estimators, impact estimating results significantly, future 

research on multi-sensor fusion should concentrate on strategies 

instead of state estimation methods. 

 

 

 
(a) 

 
(b) 

 

(c) 

Figure 10. Residuals of position (left) and attitude (right) based on 

SWO (a) and modified SWF (b). 
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