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ABSTRACT:  
 
Global navigation satellite system (GNSS) can provide global, precise, and continuous positioning in open-sky environments. 
However, urban environments with frequent outliers and cycle slips degrade the traditional Extended Kalman Filter (EKF) 
positioning performance. The susceptibility of EKF to outliers is attributed to its inherent structure. To mitigate, the GNSS 
positioning based on the Factor Graph Optimization (FGO) structure is adopted. FGO can enhance time correlation among 
observations and enable the updating of historical information, thereby improving resistance against outliers. In this study, we 
proposed a single-differenced GNSS-FGO model instead of the double-differenced model to preserve the sparsity of FGO, and 
outlier detection and PAR methods are employed to ensure urban positioning performance. To evaluate the proposed structure, 
experiments are conducted in both urban and open-sky environments. The results demonstrate the improvement of positioning 
accuracy and reliability, compared to EKF. 
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1. INTRODUCTION 

Global navigation satellite system (GNSS) has been widely 
used in various application scenarios to introduce precise, 
global-referenced positions for navigation systems. Generally, 
the Extended Kalman Filter (EKF) is a classic choice for the 
GNSS algorithm, which can provide high-precision positioning 
in open-sky environments (Takasu and Yasuda, 2009). However, 
challenging environments, such as urban canyons, with poor 
data quality due to outliers, non-line-of-sight (NLOS), multipath 
signals, and cycle slips, will largely degrade the reliability and 
accuracy of GNSS positioning. The filtering method relies 
solely on a priori information of the state to reserve historical 
observations via the dynamic model, yet linearization points of 
the historical states will remain constant. Ineffective detection 
of outliers can raise large linearization point errors and, 
consequently, pollute the priori information, threatening GNSS 
positioning accuracy and reliability. On the other hand, the 
factor graph was first proposed by Kschischang (2001) and then 
introduced into the robotics field as an optimal estimation 
method (Dellaert and Kaess, 2006), Factor Graph Optimization 
(FGO). In contrast to EKF, all historical observations can be 
considered simultaneously in FGO estimation, offering several 
theoretical advantages. Firstly, the FGO method enables 
updating the information of previous epochs by current 
observations such as data quality. Secondly, the linearization 
points of historical observations vary through multiple iterations, 
facilitating in dealing nonlinear problem. Additionally, the 
graph optimization structure enhances time correlation across 
epochs, thereby improving resistance against outliers. From the 
perspective of graph optimization, EKF can be roughly seen as 
a sliding-window FGO with a window size of 1. 
 
The study of GNSS positioning based on graph optimization 
was first carried out by Sünderhauf and Protzel (2012). Suzuki 
(2021; 2022) has achieved first place in the consecutive Google 
Smartphone Decimeter Challenge (GSDC) using the factor 
graph optimization model, showcasing the feasibility of 

employing FGO in solving GNSS positioning problems. 
Watson and Gross (2018) have found that the graph 
optimization provided a substantial RSOS positioning error 
reduction during the initial PPP convergence period compared 
to the traditional EKF-PPP. And his another work shows that 
traditional M-Estimators can aid graph optimization in adverse 
environments, proved on pseudorange measurements (Watson 
and Gross, 2017). Wen and Hsu (2021) have constructed a 
factor graph model for RTK positioning based on double-
difference measurements and analyzed the FGO performance 
through the urban canyon dataset by the positioning results. Yan 
et al. (2023) found that FGO had a lower degree of nonlinearity 
than EKF. And time difference carrier phase (TDCP) is utilized 
to enhance time correlation (Bai et al., 2022; Jiang et al., 2022). 
There are also works on tight integration of GNSS with other 
sensors based on FGO (Cao et al., 2022; Li et al., 2023; Niu et 
al., 2023).  
 
Among the various models of GNSS-FGO, real-time kinematic 
(RTK) positioning is the most prevalent in engineering 
applications, due to its effectiveness in eliminating most GNSS 
errors through the double-difference (DD) model. However, the 
current FGO-RTK structures primarily rely on DD 
measurements, the correlation of which can hinder the sparsity 
of FGO and present difficulty in implementation. Moreover, 
there is limited research addressing the outlier detection 
procedure in FGO, a critical aspect for accurate positioning in 
urban environments. To address this issue, this paper presents 
an FGO-GNSS structure based on the single-differenced model 
with fixed solutions to improve GNSS positioning performance 
in urban environments, as shown in Figure 1. The contributions 
of this paper are listed as follows: 

1) An FGO-GNSS structure based on the SD model is 
developed, leveraging pseudorange and carrier phase 
measurements. 

2) To ensure the positioning performance of urban 
environments, an outlier detection procedure is 
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implemented and the partial ambiguity resolution 
method is adopted. 

3) The proposed structure is evaluated in urban and open-
sky environments datasets and the quality of ambiguity 
resolution is examined in detail. 
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Figure 1. Algorithm architecture 

 
 

2. METHODOLOGY 

2.1 Factor Graph Optimization 

As a probabilistic graphical model, factor graph represents the 
optimization problem concisely. Factor graph is an undirected 
bipartite graph, consisting of two types of nodes: the variable 
node X  encoding state to be estimated and the factor node 
( )Xφ  encoding measurements cost function, with edge 

connecting correlated nodes. The maximum a posterior (MAP) 
problem comes down to maximizing the product of all factor 
nodes(Dellaert and Kaess, 2017): 
 
 ( ) ( )

X X
X X XMAP

i i
i

argmax argmaxφ φ= = ∏  (1) 

 
where ( )Xφ  stands for the probability density of the 

corresponding measurement zi . However, it is difficult to 
obtain the true probability density in practical application, for 
which ( )Xφ  is always assumed normally distributed: 
 
 ( )( )~ , iz X Σi i ihN  (2) 

 
where ( )Xi ih  denotes the measurement model of zi . iΣ  
denotes the measurement covariance. Thus, equation (1) can be 
transformed into minimizing the sum of nonlinear least-squares: 
 

 ( ) 2

iΣX
X z XMAP

i i i
i

argmin h−= ∑  (3) 

 
where 2

iΣ
 denotes the squared Mahalanobis distance. From the 

perspective of estimation, the Kalman Filter can be considered 
as generalized least-squares. Therefore, updating historical 
information is the primary distinction between EKF and FGO, 
provided consistent information and measurement models. 
 

2.2 Single-Differenced Model 

It is essential that the factors in the graph be uncorrelated from 
one another. However, DD measurements of the same 
frequency and the same satellite constellation tend to be 
correlated due to between-satellite single differencing, as shown 
in Figure 2. Therefore, the DD measurements be incorporated as 
a whole factor, which may bring dense matrices into 
optimization, adversely impacting sparsity. To address this issue, 
this paper adopts the SD model. By between-receiver single 
differencing, we can also eliminate a majority of GNSS errors 
arising from satellite and propagation. 
 

Single-differenced Measurements Double-differenced Measurements 
( )-4 2×10 m

 

 
Figure 2. Illustration of single-differenced measurements 

sparsity 
 
Figure 3 depicts the graph structure of the proposed method, 
note that there should be multiple factors and variables in the 
graph, which are omitted for brevity. The estimated state 
variables at epoch n are represented as follows: 
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where *X  denotes the state space corresponding to the graph 
model. S

fN∆  denotes SD ambiguity received from satellite S on 

frequency f. This paper considers ambiguity S
fN∆  as a constant 

across different epochs without cycle slip, owing to the nature 
of carrier phase measurements. And it can also improve the time 
correlation among measurements. Xk  denotes the state at 
epoch k, including position xk  and single-differenced receiver 
clock bias tkδ . The estimation of tkδ  is required, as errors 
originating from the receiver have not been eliminated. The SD 
measurement model is represented as follows: 
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where pseudorange and carrier phase from satellite i on 
frequency f are respectively denoted as ,i f

kP∆  and ,i f
kL∆ . iρ∆  

is the single-differenced geometric satellite-to-receiver distance. 
And SD ambiguity S

fN∆  is estimated, capable of handling the 
hand-over of reference satellite. Hence, the cost function of 
single-differenced measurements is expressed as: 
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To enhance the time correlation, velocity vk  can be derived 
from doppler measurements by least square. And velocity factor 
is adopted to constrain adjacent position states. 
 

 ( )
2 2

1,
Σ Σ

e v xx
V V

V
k k

V
k k h −−=  (7) 

 
Including three types of factors, the final cost function of the 
proposed method is represented as follows:  
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For high-precision positioning, it is critical to achieve integer 
ambiguity resolution (AR). So after the float solution is 
estimated by FGO, the float SD ambiguity associated to the 
current epoch k will be selected out of the state space and 
subjected to between-satellite single differencing to obtain float 
DD ambiguity. This paper applies the Least-squares AMBiguity 
Decorrelation Adjustment (LAMBDA) algorithm to solve the 
AR problem (Teunissen, 1995), independent of FGO. Partial 
ambiguity resolution is also employed to ensure reliability in the 
urban environment. 
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Figure 3. Graph structure for SD-RTK 

 
2.3 Outlier Detection 

In urban environments, frequent cycle slips and outliers can be 
hazardous to the reliability and accuracy of GNSS positioning. 
In addition to regular prior detection, a post outlier detection 
with graph structure is implemented to ensure robust 
positioning performance of the proposed structure. Traditional 
EKF can only detect outliers of the current epoch. With FGO, 
we can detect outliers of epochs inside the sliding window to 
enhance data redundancy. It is also possible that we detect 
previous missing outliers together with current observations. 
The test statistics of outlier detection can be formulated as 
follows (Teunissen and Montenbruck, 2017): 
 
 ( )2 1 2 ,0

Z
ZD

r r D rT qαχ
−= <  (9) 

 
where r  denotes the residual vector of observed measurements. 

ZD  denotes the measurement covariance. ( )2 ,0qαχ  is the 
threshold computed from the central Chi-squared distribution 
with q degrees of freedom.  
 
If the test is successful, the measurements are deemed free of 
outliers. In the event of a test failure, the biggest residual is 
recognized as an outlier under mean drift model assumptions, 

and a re-optimization is conducted to re-linearize the state *X . 
As shown in Figure 4, the detected SD pseudorange factor will 
be reweighted to zero, and the detected SD carrier phase factor 
will be considered as cycle slips. In the event of a cycle slip 
occurring, a new variable S

fN ′∆  will be introduced into the 

graph to distinguish it from S
fN∆ .  
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Figure 4. Outlier detection of FGO 

 
 

3. EXPERIMENTS 

To evaluate the proposed framework, a comparison has been 
conducted between FGO and standard EKF-RTK. The same 
processing strategy is applied for both methods to ensure the 
validity of the results as shown in Table 1.  
 

Item Strategy 

Measurements 

GPS：L1/L2 
BDS：B1/B2 
GAL：E1/E5a 
GLO：L1/L2 
QZS：L1/L2 

Ephemeris broadcast ephemeris 
Dynamic model/  
Constraint factor GNSS velocity 

Elevation mask angle 15° 
Stochastic model Elevation-dependent model 
Outlier detection Chi-square test 
Phase Ambiguities PAR 

Table 1. Processing strategy 
 
As shown in Figure 5, the vehicle experiment is carried out in 
urban environments, with a total length of over 8km and a 
duration of about 1200s. The trajectory has covered typical 
urban scenes like avenues, urban canyons, and bridges, which 
can lead to a considerable number of outliers and frequent 
signal interruptions. The dataset is collected by NovAtel SPAN 
at a frequency of 1 Hz and a post-process GNSS/INS integration 
solution is adopted as the reference. 
 
Figure 6 presents the trajectories of FGO and EKF. Overall, the 
FGO provides a smoother and more accurate trajectory over 
EKF, thanks to the time correlation factor. While both are 
unable to obtain fixed solutions in the deep urban area due to 
GNSS obstruction, more reliable positioning is achieved by 
FGO. Furthermore, Figure 7 and Figure 8 give the position error 
sequence of FGO and EKF in the east-north-up (ENU) frame, 
respectively. FGO is apparently less affected by the outliers and 
presents an improvement in positioning accuracy and reliability.  
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Figure 5. Route and environment of urban experiment 

 

 
Figure 6. Trajectories of urban experiment 
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Figure 7. Positioning error sequence of FGO 
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Figure 8. Position error sequence of EKF 

 
Furthermore, the statistics of position errors for four methods, 
EKF-FLO, EKF-AR, FGO-FLO, FGO-AR are summarized in 
Table 2 respectively. Due to the better capability of outlier 
detection, the RMSEs of fixed solution drop from 2.30, 1.89, 
and 6.42 m to 1.45, 0.93, and 1.67 m in the ENU directions. The 
cumulative distribution of position errors is shown in Figure 9. 
EKF and FGO both can provide reliable positioning under 
normal conditions. Yet the maximum and one sigma statistics 
show that FGO remains better robust under outliers. due to a 
better float solution, FGO-AR gives the best performance. This 
improvement indicates the effectiveness of the proposed 
framework. 

 
Float 

Solution 
FGO-FLO EKF-AR 

E N U E N U 
1σ (m) 0.47 0.47 1.58 0.63 0.49 2.61 

RMSE(m) 1.46 1.04 2.31 2.36 1.93 6.68 
MAX(m) 11.36 11.80 13.65 20.55 27.11 40.01 

Fixed 
Solution 

FGO-AR EKF-AR 
E N U E N U 

1σ (m) 0.07 0.09 0.24 0.16 0.22 0.56 
RMSE(m) 1.45 0.93 1.67 2.30 1.89 6.42 
MAX(m) 11.36 11.80 13.65 20.55 27.11 40.01 

Table 2. Statistics of position errors 
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Figure 9. Cumulative distribution of position errors 

 
To further evaluate the AR performance of the proposed 
structure, an additional experiment is conducted in open-sky 
environments. Table 3 presents the evaluation index of AR in 
two experiments. The open-sky data reveals notable 
improvements in the mean ratio and Ambiguity Dilution of 
Precision (ADOP), increasing from 36.4 and 0.0273 cycles to 
44.7 and 0.0267 cycles, respectively., which indicates better 
quality of fixed solution and AR performance. Moreover, the 
ambiguity residuals are formulated as follows: 
 
 ˆa a a∆ = ∆ − ∆

  (10) 
 
where a∆  and â∆ denote fixed and float DD ambiguities 
respectively. Figure 10 is presented to provide an intuitive 
comparison of the a∆  distribution between both methods. The 
deviation of the distribution is determined by subtracting the 
distribution of aEKF∆  from the distribution of aFGO∆ . As can be 
seen from the figure, the FGO outperforms EKF with a more 
centralized distribution in the open-sky dataset, which 
contributes to better AR performance. Consistent with the open-
sky dataset, slight improvement can be seen from the urban 
dataset. The main reason is that signal interruptions lead to the 
frequent reset of ambiguity, lessening the impact of the FGO. 
 

(a) Open-sky dataset 
 

(b) Urban dataset
 

Figure 10. Deviation of ambiguity residual distribution 
 

Dataset Method ratio  ( )ADOP cyc  

Open-
sky 

FGO 44.7 0.0267 
EKF 36.4 0.0273 

Urban FGO 8.62 0.0570 
EKF 7.39 0.0671 

Table 3. Statistics of ambiguity resolution 
 
 

4. CONCLUSIONS 

Urban canyons, with frequent outliers, and cycle slips, will 
largely degrade the reliability and accuracy of GNSS 
positioning. This paper develops an FGO-GNSS structure based 
on the single-differenced model adopting pseudorange and 
carrier phase measurements. Outlier detection and PAR 
methods are employed to improve performance in urban 
environments. In the context of consistent processing strategies, 
a comparative analysis is conducted between FGO and EKF 
through experiments in urban and open-sky environments. The 
results of both experiments reveal that FGO exhibits 
improvements in ratio and ADOP, showing better quality of 
ambiguity resolution. In the urban experiment, the position 
RMSEs exhibit a notable decrease from 2.30 m, 1.89 m, and 
6.42 m to 1.45 m, 0.93 m, and 1.67 m in the ENU directions and 
a reduction in maximum errors. The result indicates that the 
proposed structure can evidently advance the performance of 
AR and outlier detection, leading to the improvement of 
positioning accuracy and reliability. However, the signal 
interruption situation can be difficult for GNSS, thus our future 
work will focus on fusing more sensors such as inertial to 
strengthen the positioning capability. 
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