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ABSTRACT:

Under the current trend of intelligence and automation, simultaneous positioning and mapping technology has become one of the
research hotspots. The main problems of SLAM technology research are to improve the robustness of mapping and positioning,
establish an efficient back-end optimization system, and improve the generalization of SLAM technology. This paper proposes to
fuse the intensity information of the point cloud and the geometric information of the environment scene to construct a globally
consistent environment feature descriptor and use the non-iterative two-step method to perform the nearest neighbour search on the
point cloud in the point cloud registration stage. Then use the globally consistent descriptor that has been constructed to extract the
laser point cloud descriptor by using the ring partition method, combine the method based on domain search to search for the closest
point cloud frame, and finally use Intensity-ICP to complete the loopback frame. Fine registration, outputs the optimal pose
transformation, to complete the loop detection. We use our self-built mobile platform to verify the robustness and generalization of
the improved laser SLAM algorithm in public datasets and campus datasets. Experimental results show that the improved algorithm
reduces the trajectory drift of the mobile platform and improves the efficiency of point cloud registration and loop closure detection

1. INTRODUCTION

In today's rapidly advancing era of technology, the increasing
demands of social production and everyday life have placed
higher requirements on positioning and environmental
perception. These requirements primarily revolve around
achieving high precision, robustness, real-time performance,
and applicability. Positioning information, being time-sensitive
data, plays a crucial role in various practical applications.
Delays or inaccuracies in positioning can have a significant
impact on tasks such as planning and emergency response.
Therefore, to leverage the full potential of spatiotemporal big
data, it is vital to unify space and time. This entails minimizing
positioning delays and improving the real-time performance and
accuracy of data to support the smooth operation of diverse
application scenarios. In outdoor environments, the Global
Navigation Satellite System (GNSS) remains the most widely
adopted positioning system. Several countries and regions are
actively developing global positioning and navigation systems,
including the United States GPS, Russia's GLONASS, China's
Beidou, and the European Galileo satellite system. Current
research in the field of GNSS primarily focuses on improving
positioning accuracy and robustness in challenging scenarios
and environments, such as urban canyons and indoor areas
where GNSS signals may be weak. However, these single-
sensor positioning systems have inherent limitations. GNSS, for
instance, is susceptible to signal weakness and rapid attenuation
in urban operations, leading to poor robustness, low accuracy,
and the "last mile" problem. Inertial sensors, on the other hand,
suffer from accumulating errors over time, resulting in rapid
divergence of positioning accuracy. Additionally, current
outdoor positioning systems do not fully exploit the available
sensor data, leading to suboptimal positioning performance.
Simultaneous Localization and Mapping (SLAM) offers a
solution to the "last mile" problem in outdoor positioning. The

concept of SLAM was initially proposed by Cheeseman et al. at
the IEEE Platform and Automation Conference in 1986. Its
objective is to introduce estimation-based theoretical methods to
address the challenges of platform mapping and positioning.
Over the course of more than three decades, SLAM technology
has evolved from using Kalman filtering to estimate the attitude
of mobile systems (Smith et al., 1988) to the emergence of
SLAM based on graph optimization theory (A.-Latif et al.,
2013). Modern SLAM technology emphasizes robustness,
efficiency, and multi-threaded processing (Huang et al., 2020).
Depending on the sensor category, SLAM systems can be
categorized into laser SLAM, visual SLAM, and multi-sensor
fusion SLAM. Among various sensors, lidar stands out due to
its all-weather usability, high precision, and strong reliability. In
recent years, the development trend of laser SLAM has focused
on achieving high robustness, precision, and generalization
capabilities. Compared to other laser SLAM algorithms, LOAM
introduced a pioneering dual-thread simultaneous positioning
and mapping system based on environmental geometric features
(Ji and Singh, 2017). This approach significantly improved the
usability and real-time performance of laser SLAM. Since then,
many laser SLAM algorithms and multi-sensor fusion SLAM
algorithms have been developed based on LOAM. However,
there are still some challenges in the current mainstream laser
SLAM methods. These include the high computing power
required by point cloud distortion methods, resulting in poor
real-time performance; insufficient utilization of lidar sensor
information, leading to limited positioning accuracy; and
existing loop detection algorithms being prone to missing
loopback frame detection when trajectory drift errors are
significant.

To address these issues, this paper builds upon the original
LOAM architecture and proposes improvements. Specifically, a
simultaneous positioning and mapping method is presented that
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incorporates both point cloud geometric feature information and
environmental point cloud intensity information. The enhanced
laser SLAM algorithm's robustness and generalization are
validated using a self-built mobile platform on campus and
public datasets. The rest of this paper discusses the details of the
proposed method and is structured as follows. Section II
reviews the proposed methods, including point cloud
registration by fusing point cloud intensity information and loop
closure detection based on intensity information optimization.
Section III presents the experiments, including tests and
performance comparisons of the algorithms on two datasets.
Finally, Section IV summarizes the conclusions.

2. METHOD

2.1 SLAM Algorithm Fused With Point Cloud Intensity
Information

This paper proposes a lidar SLAM algorithm framework (Figure
1), including front-end laser odometer and back-end loopback
detection. Front-end tasks include preprocessing and motion
distortion compensation for point clouds, extracting local
features, such as line and surface features, and adding them to
the local feature map to estimate the pose of the platform.
Meanwhile, the intensity information of the point cloud is also
calibrated and encoded into the ISC feature map. Back-end
tasks include: loop detection, calculating the feature similarity
score to determine whether a loop occurs and publish loop
information, global consistency optimization, by constructing a
factor map and receiving the current line and surface features,
pose estimation and loop constraints. An optimized pose is
generated, and finally, a final trajectory and a global
consistency map are generated (Debeunne and Vivet, 2020).

Figure 1. Algorithm framework

2.2 Point Cloud Registration by Fusion of Point Cloud
Intensity Information

Point cloud registration is the process of unifying point clouds
in different coordinate systems into the same coordinate system.
It is realized by finding an optimal rigid body transformation
matrix from the current coordinate system to the reference
coordinate system. This transformation matrix can be in
different coordinates. The point clouds in the same coordinate
system are registered to point clouds in the same coordinate
system so that they have similar spatial positions in the same
coordinate system (Bing and Vemuri, 2011). In this paper,
feature point selection and feature matching use geometric
information features and intensity information features at the
same time. Finally, in the rigid body transformation matrix

estimation, the best pose estimation is calculated by minimizing
the geometric error and intensity error.

2.2.1 Feature Point Selection

This paper utilizes features based on environment geometry
information and intensity information instead of using only
geometry features. The calibrated intensity information contains
the reflectivity profile of objects in the environment, reflecting
the distribution of different objects in the environment.
Therefore intensity information is helpful for point cloud
registration. For each point ip P and its intensity value  i    ,
by searching for the closest point iN P , the local distance

distribution i
 and its intensity distribution value are computed

using i
 :
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where i
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 = distribution values for intensity and distance

j,ip p = a point cloud

,i j  = a point cloud intensity value

| |N = point cloud collection

By weighting and summing these features, the salient features
are selected:

i i iw w         (3)

where ( ) , ( )r sN N
ij ij ijI a a P    = final distribution value

w , w = weighted values for environment geometry
and intensity values

2.2.2 Build an Intensity Map

The intensity distribution map contains the reflectance
distribution of the environment around the mobile device. For
most SLAM systems that only use the geometric features of the
environment for point cloud registration, the map is maintained
and updated by the occupancy grid method or the octree method
(Arnesen et al., 2018). This paper adopts the method of dividing
the three-dimensional space into grid cells, expressing each cell
with a probability function, and using this method to construct
and update an intensity map. The probability function used in
the past is replaced by using intensity values 1:( | )i tI z for each
grid cell. For the observation of each grid cell at time t, the
surface reflectance can be updated by the following method:

1: 1
1: 1: 1

( | )
( | ) ( | ) i

i

m i t
i t i t

m

M m z
M m z M m z

n





 


(4)

Where 1:( | )i tM m z = current observed intensity

im
n = The total number of observations for the grid cell

And when there is no environment object in the grid cell, the
intensity value will be marked as 0.

2.2.3 Build Strength Residual
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Intensity residuals are computed by matching features to the
intensity map. It can be achieved by minimizing the intensity
residual between the current point ip (including edge features
and planar features) and the transformed point ˆip in the
intensity map:

ˆ ˆ( ) ( )I i i if p M p  (5)

Where ˆ( )iM p = Intensity values in the intensity mapM

To search for intensity information in the intensity map, we
introduce a trilinear interpolation method. Although it is more
straightforward to represent the intensity using the nearest grid
cell, the intensity information is less accurate, especially for
large-scale maps with lower grid resolution.

Figure 2. Linear interpolation

For each transformation point ˆ [ , , ]Ti i i ip x y z , we can search the
eight surrounding grid cells, as illustrated in Figure 2. The
intensity values of these grid cells are denoted as 1 ˆ( )iM p ,… ,

8 ˆ( )iM p respectively. We define the point closest to the centre of

the grid cell as 1 1 1 1[ , , ]Tp x y z and the point farthest from the

centre of the grid cell as 2 2 2 2[ , , ]Tp x y z . Based on the width,
height, and depth of the grid cell, the calculation method for
determining the intensity value of the target point is as follows:

1 1
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Where 2 1x x 、 2 1y y 、 2 1z z = The width, height and
depth of each grid cell

Likewise, the values of 3 4M  , 5 6M  and 7 8M  can be computed.
Subsequently, the intensity value is estimated as follows:
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2.3 Loop Closure Detection Based on Intensity Information
Optimization

The loop closure detection algorithm in this paper uses the
environmental geometric information and point cloud intensity
information to construct a scene descriptor to describe the scene.
In the part of environment geometric information, a local key
point will be selected, and the geometric shape of the point

cloud around the local key point will be encoded once. In this
process, the three-dimensional information of the point cloud is
converted into two-dimensional encoding, and the height
information of the local point cloud is saved, which helps to
preserve the three-dimensional information of the scene during
the information conversion process

2.3.1 Scene Descriptor Construction

The 3D point cloud scanned by the lidar is divided vertically
and horizontally based on the sensor coordinates. sN and rN are
the number of sectors and rings, respectively. Assuming that the
maximum sensing range of the lidar sensor is maxL , the central
angle of the sector is equal to 2 sN . In the experiments in this
paper, use 60sN  and 20rN  . Through vertical and
horizontal division, this frame of the point cloud is divided into
several areas, as illustrated in Figure 3, which is a collection of
points belonging to the overlapping area of the ith ring and the
jth sector.

Figure 3. Point cloud frame space division

The division of the point cloud area is based on the geometric
centre of the scanned point cloud of one frame as the centre of
the divided area so that the physical area of the area away from
the centre is wider, but in the process of encoding, the point
cloud areas of different sizes are equally encoded into the same
location descriptor. Therefore, dynamic objects in the
environment are considered noise.

The encoding value of each point cloud area is : ijP   ,
which contains the encoding of the maximum height of the
point cloud area ( ) max ( ) [ , , , ]

ij
ij k k k k kp P
P z p p z


      . where

( )z  is a function of the z coordinate value of point p . Finally,
the point cloud position descriptor is represented as a matrix of

r sN N .

( ) , ( )r sN N
ij ij ijI a a P    (10)

Where I = location descriptor
ijP = point cloud area

2.3.2 Intensity Descriptor Construction

The construction of local descriptors will consume more
computing power in the actual processing process. In this
process, local geometric features, such as the local norm of each
key point, need to be identified. Therefore, to improve
computational efficiency, this paper constructs the intensity
information as a global descriptor, which can effectively
integrate geometric information and intensity features into a
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global descriptor. The global feature descriptor,  denotes the
intensity reading, the three-dimensional space position of the
point is denoted by [ , , ]x y z , n denotes the number of points in
the point cloud, a lidar scan is denoted by 1 2 3[ , , , , ]nP p p p p  ,

and each point is denoted by [ , , , ]k k k k kp x y z  in a frame of
lidar point cloud coordinate system. Carry out coordinate
system conversion, and express the spatial position of the point
cloud in polar coordinate system, so:

[ , , , ]k k k k kp z    (11)
2 2

k k kx y  (12)

arctan k
k

k

y
x

 (13)

Where , ,k k kx y z = 3D coordinates

,k k  = polar angle and radius

k = intensity value

Next, the divided point cloud regions are represented as follows:
max max( 1) 2 ( 1) 2{ | , }ij k k k
r r s s

i L i L j jS p P
N N N N
     

       
 

    (14)

Where [| 1, |], [| 1, |]s ri N j N 

sN , rN = number of sectors and rings

maxL = radar sensor maximum range

ijS = point cloud area

Since each subspace is much smaller than a point cloud frame,
the intensity readings are assumed to be constant. Therefore, for
each subspace, an encoding function can be applied to reduce
the intensity dimensionality. The definition of this function is:

( ) max
k ij

ij ij kp S
k S


   (15)

If there is no available data in the ijS and 0ij  , the intensity
geometry descriptor can be expressed as follows:

( , ) iji j   (16)

Where  = global feature descriptor
ij = a point cloud intensity reading

3. EXPERIMENT

The hardware platform used in this article is a self-built mobile
platform equipped with a chassis and sensors including lidar
and IMU. Install the sensor on the mobile platform bracket, and
use a Lenovo notebook as the algorithm layout platform, and
deploy the algorithm on it. The mobile platform is shown in
Figure 4, where the laser radar is Pandar40p, a product of
HESAI, with 40 laser lines, a maximum detection distance of
200 meters, a horizontal market angle of 360 degrees, a
horizontal angle resolution of 0.2 degrees, and a vertical angle
of view The field is 40 degrees, the vertical angle range is -
25°～+15°and the data acquisition frequency is 10HZ and 20HZ.
The chassis of the autonomous mobile platform used is the
HUNTER chassis of the Songling platform, which reserves a
variety of interfaces and supports the access of a variety of
sensors, which facilitates the secondary development of
researchers. The full name of the industrial computer is
industrial control computer. The autonomous mobile platform

uses an industrial computer as the computing centre and embeds
the Ubuntu system as the operating system to provide the
hardware foundation for data transmission and sensor control.

Figure 4. Hardware Platform and Composition

In the SLAM algorithm, the current standard accuracy
evaluation metric involves utilizing the evaluation of the
odometry and SLAM (evo) algorithm to assess the accuracy of
the trajectory. The primary evaluation metrics encompass the
Absolute Pose Error (APE) and Relative Pose Error (RPE)
(Sturm et al., 2012). The APE calculation involves comparing
the pose information calculated by the system with the assumed
true trajectory information based on continuous time data. By
measuring the discrepancies between the poses at corresponding
time points, the trajectory error at each time point is obtained.
RPE, on the other hand, calculates the root mean square error of
the Lie algebra of each pose within the trajectory over
continuous time. This error estimation incorporates both
rotational and translational errors of the motion pose. The error
values of APE and RPE encompass various dimensions,
including the maximum error value, minimum error value,
average error value, median error value, standard deviation, root
mean square error, and other indices.

3.1 Public Dataset Experiment

The data set used in the experiment is KITTI's Odometry
collection, which was co-founded by the Karlsruhe Institute of
Technology in Germany and the Toyota American Institute of
Technology. It is one of the largest open-source data sets
currently used in autonomous driving (Geiger et al. ., 2012).

Regarding the robustness of the laser SLAM system, this paper
conducts five experiments on the four parts of the Odometry
part 00-03 of the Kitti dataset to test the robustness and
robustness of the algorithm in different scenarios. Compared
with the Lego-Loam algorithm (Shan and Englot, 2018) with
better performance, and analyzed various error indicators, the
results are as follows:

Figure 5. Kitti odometry dataset 00 run experiment
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Figure 6. Kitti odometry dataset 00 runs five times trajectory
overlap with real trajectory comparison and each error value

Through experiments on the Kitti Odometry dataset 00 (Figure
5, Figure 6), it is found that the improved algorithm maintains
stable mapping and positioning in non-closed-loop and
structured scenes, compared with the given true value The
trajectory deviation is small, and the error dispersion keeps
fluctuating within a certain range, about 2%. Compared with the
algorithm before improvement, it is found that the trajectory
deviation is small, and the differences in standard deviation,
medium error, and covariance remain in a stable range. The
algorithm as a whole is more stable than before the
improvement.

Figure 7. Kitti odometry dataset 01 algorithm run results

Figure 8. Kitti odometry dataset 01 runs five times trajectory
overlap with real trajectory comparison and each error value

Combined with the analysis of the experimental results in
Figures 7 and 8, when the improved algorithm runs in a closed-
loop environment, the trajectory and mapping accuracy obtained
from multiple experiments and the error of the true trajectory
are relatively small. The error values remain stable, the standard
deviation and the mean value of the error fluctuate at 1% for
multiple experiments, the root mean square error, the minimum
value of the error and the median of the error fluctuate at 3%,

the maximum error fluctuates at 13%, and the maximum error
shows unstable. Overall, the trajectory error remains stable, and
the algorithm is robust.

Figure 9. Kitti odometry dataset 02 algorithm run results

Figure 10. Kitti odometry dataset 02 runs five times trajectory
overlap with real trajectory comparison and each error value

Figure 11. Kitti odometry dataset 03 algorithm run results
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Figure 12. Kitti odometry dataset 03 runs five times trajectory
overlap with real trajectory comparison and each error value

Figures 5 to 12 show the effect of the improved algorithm tested
on the Kitti dataset Odometry set. Combining the above figure,
it can be seen that the point cloud image built by the improved
algorithm has no obvious trajectory offset, the structured scene
map is clear, and the point cloud registration effect has no
obvious overlapping shadows. By comparing the improved
algorithm with five experiments on the data set, it is found that
the algorithm shows good robustness and robustness, and the
algorithm performance is stable under the data sets of different
scenarios. By observing Figures 5 and 11, it is found that when
simultaneous positioning and mapping are performed on
straight and non-loop roads, as the running time increases, the
degree of deviation of the mapping trajectory from the given
true value also increases. The loopback detection module has a
poor backend optimization effect. Comparing Figure 7, Figure 9,
and Figure 11, it is found that when the algorithm is running on
a straight road, the trajectory error gradually increases. When
the trajectory forms a closed loop, when loop closure detection
and back-end optimization are performed, the error quickly
converges, forming a better map. Effect. Next, through
quantitative error analysis, compare the errors between the
improved algorithm and previous algorithms, and judge the
mapping effect of the improved algorithm.

KITTI 00 01

Algorithms Mean Std RmseMaxe Min Mean Std Rmse Max Min

A-LOAM 19.34 8.35 17.46 47.55 0.95 133.64 102.98 168.71 188.68 31.79

L C-Fusion 19.21 12.42 22.88 46.01 0.68 19.12 12.39 22.78 57.11 19.44

Lego-Loam 19.57 11.15 21.92 64.58 0.61 3.68 4.65 5.93 27.75 0.97

ISC-LIO 20.01 10.79 24.51 45.79 0.70 1.99 0.85 2.16 4.35 0.68

ORB-
SLAM2 22.01 10.29 24.31 46.88 0.66 22.18 10.95 24.95 64.46 7.49

Table 1. The improved algorithm is compared with the
mainstream algorithm, and ISC-LIO is the improved algorithm

By comparing the improved algorithm with the current
mainstream SLAM algorithm, it is found that on the Kitti
dataset 00, the road is straight, the scene is single and structured,
and the current SLAM algorithm performs similarly. On the
Kitti dataset 01, there are closed-loop scenes on the road with
high scene richness, and there are unstructured scenes. The
improved algorithm shows excellent performance. The error of
the current mainstream algorithm gradually increases with time.
In unstructured scenes, the point cloud registration effect is poor,
and the overall trajectory error is highly discrete. Compared
with the closest LEGO-LOAM, the improved algorithm
improves the Mean value by 45%, the error range is narrowed,
and the standard deviation and root mean square error are the

best. In structural scenes and scenes with closed loops, the
mapping error is reduced and the positioning accuracy is
improved.

3.2 Campus Dataset Experiment

The improved laser SLAM algorithm was tested using the
campus dataset, with the primary focus on Building A of the
Foundation Building and Building D of the College Building.
These locations are marked in Figure 13. Building A of the
Foundation Building and Building D of the College Building
represent structured and closed-loop scenes within the dataset.

Figure 13. Campus experiment scene

Figure 14. Experimental Effects of the Foundation Building
Building A
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Figure 15. The effect of running the algorithm in College
Building D before the improvement

Figure 16. The effect of the improved algorithm running in
College Building D

The collected campus environment data was integrated into the
algorithm, and the point cloud was played in chronological
order to generate a real-time point cloud map of the campus
environment and the mobile platform's movement trajectory.
Figure 14 displays the experimental results for Block A of the
Foundation Building. It can be observed that the improved
algorithm demonstrates favourable performance in closed-loop
environments, particularly during loop closure. Comparing the
experimental outcomes depicted in Figure 15 and Figure 16 for
Block D of the College Building, the results obtained using the
improved algorithm (highlighted within the red box) exhibit
several notable improvements. The outline of the surrounding
objects in the point cloud map is more distinct, and the road
point cloud map shows no significant shadows or overlapping
issues. Overall, the mapping and positioning effects are
enhanced.

Figure 17. Comparison of the trajectory of ten experiments in
Block D of the Foundation Building with the true value and the

error value of each

The surrounding environment of the basic building D was
selected to test the algorithm of the campus data set. After ten
experiments (Figure 17), it can be found that the trajectory
coincidence degree of the mobile platform is high, the algorithm
performance is robust, and the algorithm robustness is good.
Through the above experiments, it can be found that the
improved algorithm performs better in various outdoor
scenarios, the improved algorithm has good experimental results,
and the campus test is relatively successful.

Error LEGO-
LOAM ISC-LIO

RPE

Max 1.750 0.726
Min 0.017 0.009
Mean 0.379 0.183
Median 0.217 0.160
Std 0.653 0.111

RMSE 0.432 0.2l4
SSE 308.480 222.565

Table 2. Comparison of Improved Algorithm and LEGO-
LOAM Error Values

The improved algorithm and the LEGO-LOAM algorithm were
tested using the campus data set. The improved algorithm
showed a better effect in terms of relative error performance.
Compared with the LEGO-LOAM algorithm, the improved
maximum and minimum error ranges The LOAM is reduced by
30%, and the error value is small; the average error value is
reduced by 20%, and the overall mapping and trajectory errors
are reduced; the median error is 77% of the latter, and the
overall error value is reduced; the root mean square error is
reduced by 50%, and the overall The degree of dispersion of
errors is better. It can be found that compared with LEGO-
LOAM, the improved algorithm has greatly improved the
construction of point cloud maps and the improvement of
positioning accuracy on the campus dataset.

4. CONCLUSION

Based on the existing laser SLAM algorithm, this paper fuses
point cloud intensity information and environmental geometric
information to construct a globally consistent feature descriptor,
improve the accuracy of point cloud registration, improve the
loop detection algorithm, and ensure the effectiveness of loop
detection. To improve the robustness, robustness and accuracy
of laser SLAM algorithm mapping and positioning, and use
network public datasets and campus datasets for experimental
verification, analysis shows that mapping and positioning in
environments with closed-loop trajectories and unstructured
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scenes The accuracy of positioning has been improved, but
there are still some shortcomings. For example, the improved
algorithm requires a lot of computing power, and when the
algorithm experiment is performed on a personal notebook,
optimization failures and pose loss occur many times. And
when the improved algorithm is used for mapping and
positioning of large outdoor scenes, the robustness and
robustness of the algorithm decrease, and when the data is run
for more than 15 minutes, the trajectory drift will increase
rapidly.
In the future development of this work, we plan to build a multi-
sensor fusion SLAM system, using sensors such as lidar,
binocular camera, GNSS, IMU, etc. to build a composite SLAM
system that can support richer scenarios.
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