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ABSTRACT: 

 

Simultaneous Localization and Mapping (SLAM), as one of the core technologies in autonomous driving, provides environment 

perception, decision-making, and path planning to ensure safe vehicle operation. This paper proposes a tightly-coupled fusion 

mapping method based on LiDAR and Inertial Measurement Unit (IMU). By introducing IMU, performing extrinsic calibration, and 

time synchronization with the LiDAR, the issue of mapping drift caused by inconsistent coordinate systems is addressed, leading to 

improved mapping accuracy. Furthermore, to compensate for IMU zero-bias errors, IMU preintegration is employed to calibrate the 

point cloud and optimize the initial values of the LiDAR odometry. A novel iVox voxel-based point cloud registration method is 

used to enhance registration efficiency without compromising mapping accuracy. Lastly, the Iterative Extended Kalman Filter (IEKF) 

is incorporated into the back-end state estimation to propagate and correct the estimated state using IMU data, enabling precise state 

estimation and map updates. This research is of significant importance in addressing the challenges of low mapping accuracy and 

real-time performance in single-sensor SLAM, providing an effective solution for environment perception and path planning in 

autonomous driving systems. 

 

 

 
*  Junxing Yang 

 

1. INTRODUCTION 

Multi-sensor fusion SLAM offers several advantages: mutual 

verification and complementarity, improved localization and 

mapping accuracy, and robustness. It expands the applicability 

range by overcoming the limitations of single sensors in specific 

situations and reduces time and computational costs, enhancing 

real-time performance and efficiency. 

 

In recent years, various multi-sensor fusion SLAM algorithms 

have emerged. VINS-Mono is a framework based on visual-

inertial SLAM that achieves tight coupling by fusing pre-

integrated IMU data and camera feature data. LIO-SAM is a 

lidar-inertial SLAM framework that utilizes keyframe-based 

extraction of plane and edge features and reduces drift through 

GPS and loop closure constraints. LVI-SAM combines the ideas 

of VINS and LIO-SAM algorithms, utilizing lidar data for 

initialization and loop closure detection to improve robustness. 

LIMO is a laser-assisted visual SLAM method that can obtain 

depth information for feature points, improving feature point 

matching accuracy. LIC-FUSION proposes advanced methods 

for outlier removal and fusion of lidar plane features, but it has 

lower mapping efficiency. TVL-SLAM is a tightly coupled 

visual-lidar SLAM algorithm that avoids degeneracy situations 

through cross-checking. R2LIVE and R3LIVE are SLAM 

frameworks based on lidar-inertial and visual-inertial odometry, 

capable of building global map geometry and fusing visual data. 

 

In conclusion, the multi-sensor fusion SLAM mapping method 

has gained increasing attention in recent years. Due to the 

complementary advantages of IMU and LiDAR sensors, SLAM 

methods based on the fusion of IMU and LiDAR have been 

widely applied and developed rapidly. Among the majority of 

IMU and LiDAR fusion SLAM systems, the joint calibration of 

IMU and LiDAR is a prerequisite for mapping. In the mapping 

process, the front-end point cloud registration utilizes a tree-

based K-NN nearest neighbour search method, which leads to a 

longer computational time. Additionally, the back end adopts 

Kalman filter state estimation, which results in lower mapping 

accuracy and efficiency. To address these issues, this paper 

proposes improvements to the corresponding algorithms in both 

the front-end and back-end of the mapping process. 

Experiments were designed and conducted at the experimental 

site, and validation experiments were performed in real-world 

scenarios. Finally, the efficiency and accuracy of the 

experiments are analyzed. 

 

2. METHOD 

2.1 Joint Calibration 

In this experiment, three right-handed Cartesian coordinate 

systems are involved: the World Coordinate System (W), the 

LiDAR Coordinate System (L), and the IMU Coordinate 

System (I). These coordinate systems can be transformed into 

each other. 

 

Conversion of IMU and LiDAR Coordinate Axes: The point 

cloud data obtained from the LiDAR scanner is in the LiDAR's 

coordinate system. When the robot collects point cloud data at 

different time instances during motion, the data needs to be 

transformed into the world coordinate system for estimating 

state transformations. The transformation relationship between 

the LiDAR coordinate system and the world coordinate system 

is represented by the matrix R. Please note that the provided 

translation may need further adjustment based on the context of 

the surrounding text. 
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The obtained transformation matrix T
W

L
 between the LiDAR 

coordinate system and the world coordinate system is given by 

equation (2): 

 W L W

LX RX q= +  (2) 

 

Where x and y are the coordinates of the point cloud data in the 

world coordinate system and the LiDAR coordinate system, 

respectively. 

 

In the IMU coordinate system, the positive North direction, 

positive East direction, and positive Up direction are defined 

according to the right-hand orthogonal rule. The transformation 

between the IMU coordinate system and the LiDAR coordinate 

system is performed by solving the transformation matrix 

mapping between them. During system operation, this 

transformation matrix is used to map the current state of the 

point cloud data. 

 

In the IMU coordinate system, the OX  -axis points towards the 

positive North, the OZ -axis points towards the positive East, 

and the OY -axis is determined by the right-hand orthogonal 

rule concerning the OZ axes. The transformation between the 

IMU coordinate system and the LiDAR coordinate system is 

performed by solving the transformation matrix mapping 

between them. During system operation, this transformation 

matrix is used to map the current state of the point cloud data. 

 

Let the transformation matrix between the two coordinate 

systems be denoted as A . If the IMU rotates around the X ，Y  

and Z axes by angles  ，  and   respectively such that the 

two coordinate systems align, then A  can be solved using the 

following equation (3): 

 

cos cos sin cos sin

cos cos sin cos cos cos sin sin sin cos

sin cos sin cos sin sin cos sin sin sin cos cos

A

− 
 

= − +
 
 + − − + 

    

         

           

  (3) 

 

The matrix A is an orthogonal matrix, which means its 

transpose can represent the transformation matrix from the 

reference frame to the IMU frame. 

 

2.1.1 IMU Error Model and Preintegration: IMU sensors 

have inherent accuracy errors, such as accelerometer bias, 

gyroscope temperature drift, mechanical vibrations, and 

susceptibility of magnetometers to external magnetic field 

interference. The installation environment, motion dynamics, 

and algorithmic processing can also introduce disturbances that 

affect the accuracy of IMU output. The errors of an IMU can be 

classified into systematic errors and random errors. Systematic 

errors include bias errors, scale factor errors, misalignment and 

non-orthogonality errors, nonlinearity errors, and temperature 

errors. Random errors include random walk errors and bias 

instability. In a multi-sensor fusion system, IMU data is 

collected at high frequency with inherent errors, and it is used to 

integrate the attitude and velocity information, which is then 

fused with lidar data for pose estimation. However, IMU 

integration introduces integration errors and requires significant 

computational resources. To address this issue, IMU 

preintegration techniques can be employed. This involves 

storing the IMU velocity and displacement increments as 

constants over small time intervals and incorporating the 

preintegration results as constraints in the optimization problem. 

This reduces the computational burden of reintegration and 

improves the efficiency of the optimization process. Therefore, 

IMU preintegration is an effective approach that enhances the 

accuracy and efficiency of pose estimation in laser SLAM. 

 

2.1.2 Timestamp Synchronization: Due to the different 

operating frequencies of various sensors, in this experiment, the 

IMU has a sampling frequency of 1000Hz, while the LiDAR 

has a sampling frequency of 10Hz. To ensure synchronization, a 

common host provides a reference timestamp. Each sensor adds 

timestamp information to its independently collected data based 

on its calibrated timestamp. There are two methods for 

timestamp synchronization: hard synchronization and soft 

synchronization. 

 

Figure 1. Principle of timestamp generation for LiDAR and 

IMU. 

 

Figure 1 illustrates an example of time synchronization between 

LiDAR and IMU data. The time sequence records the sampling 

moments of each sensor, where the horizontal axis represents 

timestamps. The green dashed box represents the LiDAR 

sampling frequency, while the blue dashed box represents the 

IMU sampling frequency. When the LiDAR completes a sample, 

it searches for the nearest IMU data point in time to establish 

time matching between the two data sources, as indicated by the 

red box in the figure. Through time synchronization, data fusion 

and analysis from different sensors can be achieved, enhancing 

the accuracy of perception and control. 

 

However, this method of time synchronization may encounter 

some challenges. As mentioned earlier, the nearest neighbour 

moment mentioned in red text is often ambiguous, and the time 

difference between the nearest neighbour moment and the 

LiDAR sampling time can be significant, leading to suboptimal 

time synchronization results. Additionally, as the number of 

sensors requiring time synchronization increases, the difficulty 

of matching and the precision of synchronization decrease. 

 

Compared to soft synchronization, hard synchronization 

demonstrates better synchronization performance and higher 

matching accuracy. 

 

2.2 IMU-LiDAR Tight-Coupling Mapping Method 

In the vast majority of multi-sensor fusion systems, a tree-based 

structure is employed for nearest-neighbour matching. This 

paper introduces an improvement to the iterative closest point 

(ICP) algorithm, which mainly focuses on voxel-based nearest 

neighbour matching. This approach eliminates the need for 

constructing, iterating, balancing, and removing nodes in the 

tree-based structure, thus preserving the efficiency of the Laser-

Inertial Odometry (LIO) system. For the backend state 
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estimation, the proposed method utilizes forward computation 

using IMU data and backward computation using LiDAR data 

to calculate residuals. Iterative extended Kalman filtering is 

applied for data iteration and refinement. Figure 2 illustrates the 

mapping process flowchart for this chapter. 

 

 

Figure 2.Technical approach. 

 

2.2.1 Sparse Voxel-Based Nearest Neighbor Search: In the 

fusion system of LiDAR and IMU, strict K-nearest neighbour 

(KNN) search and range search are not required, especially 

considering the rough position estimation obtained from IMU 

measurements in the LIO system. The main advantage of the k-

d tree is its ability to provide strict K-NN and range search 

results by conditionally partitioning high-dimensional space 

using hyperplanes. However, in some cases, the search 

algorithm may traverse very distant branches of the tree in 

search of potential nearest neighbours, which is unlikely to be 

useful for local plane coefficient estimation. On the other hand, 

voxel-based algorithms limit the search range to a predefined 

value, so discarding such neighbours does not affect the 

majority of residuals. Additionally, the construction, iteration, 

balancing, and removal of k-d tree nodes impact the efficiency 

of LIO, whereas these issues do not exist in voxel-based 

approaches. In the voxel-based approach, a conservative 

insertion and passive deletion strategy is used, and it is not 

mandatory to update. 

 

Based on the aforementioned issues, this paper proposes an 

incremental voxel structure (iVox) as a point cloud spatial data 

structure in SLAM, which supports incremental insertion and 

parallel approximate K-NN queries. In the fusion SLAM system 

of LiDAR and IMU, K-NN is commonly used for point cloud 

registration in the front-end LIO module. 

 

In iVox, the K-NN search is limited to a predefined range and 

divided into three steps. Given an iVox structure V and a query 

point P1, find the voxel index and neighbouring voxels, 

represented as S. Iterate through each voxel in S and search for 

up to K nearest points in each voxel. Merge the search results 

and select the best K nearest points. Since the algorithm has 

already been parallelized at the point cloud level, there is no 

need to perform parallel searches for each voxel here. The K-

NN search in iVox is simple and efficient, although it is not as 

strict as tree-based algorithms. However, it is sufficient for LIO 

applications. 

2.3 Fusion Mapping Method Based on Iterative Extended 

Kalman Filtering 

This paper proposes an iterative extended Kalman filter-based 

method for LIDAR-IMU fusion mapping. The approach 

includes a preprocessing step that selects feature points from the 

raw LIDAR data for subsequent state estimation processes. 

Preintegration is utilized to calibrate the point cloud and provide 

initial values for optimizing the LIDAR odometry. 

 

2.3.1 Iterative State Update: The propagated state ˆ
kx  and 

covariance ˆ
kp  impose a prior Gaussian distribution on the 

unknown state
kx , where ˆ

kp  represents the covariance of the 

error state given by the equation below: 

 

( )

( )

ˆ ˆ ˆ ˆ ˆ

ˆ0,

k k k k k k k k

k

X X X X X X X J X

P

    =  = +



% %

:

 (4) 

 

where J 
 is the partial derivative of concerning evaluated at 

zero, and the specific formula for J 
 is given by equation (5): 
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          (5) 

 

k

G

I   and 
k

I

L   represent the error states of the IMU's 

pose and external rotation matrix, respectively. For the first 

iteration of the Kalman filter, ˆ ˆ
k kX X =  and J I = . In 

addition to the prior distribution, the state distribution of the 

measurement model is as follows: 

 

( )0,j j j k jV Z H X R  − = + :  (6) 

 

The posterior distribution of the state kX  is obtained by 

combining the prior distribution from Equation (4) with the 

measurement model from Equation (5). The maximum a 

posteriori estimate (MAP) 
kX % can also be expressed as 

follows: 

 

( )
2 2

1ˆ

ˆmin
jkk

m

k k j j RPX
X X Z





−+%

 (7) 

 

In this case, where 
2 1T

M
X X M X−= , the maximum a 

posteriori (MAP) estimation problem can be solved using 

iterative Kalman filtering. 

 

( )
1

1 1 1T TK H R H P H R
−

− − −= +  (8) 

( )( ) ( )( )1
1ˆ ˆ ˆ ˆ

k k k k kX X Z I H J X X     
−

+ =  − − −     (9) 

 

In equation (9), for ease of computation, we simplify some parts 

of the formulas as 
1 ,...

T
T T

mH H H  =  
， ( )1,... mR diag R R= ，

( ) ( )
1
ˆ

T

kP J P J 
− −

= ,
1 ,...

T
T T

k mZ Z Z   =  
. Kalman filtering 

is typically computed through ( )
1

T TK PH HPH R
−

= + , which 

requires transposing matrices of state dimensions. We repeat the 

above process until the iteration reaches the target threshold and 

then stop, completing the iteration as shown in equation (10): 

 
1ˆ ˆ

k kX X +   (10) 
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By updating the state X, the point cloud collected by the k-th 

scan of the LiDAR sensor is transformed into the global map, 

completing the iterative update of the local map into the global 

map. Figure 3 illustrates the process of point cloud local map 

state update. 

 

Figure 3. Updating the state of the point cloud local map. 

 

State estimation based on IEKF： 

Input: Previous output of 
1 1,k kX P− −

； 

Raw LiDAR point cloud from the current scan； 

IMU measurements ( ,m ma w ) from the current scan； 

1、Compute the state estimate ˆ
kX  and covariance value ˆ

kP  

using the forward calculation equations  and； 

2 、 Perform motion compensation using the backward 

calculation equations； 

3、
0ˆ ˆ1, k kX X == − =  

4、Iterate and repeat the process 

1 = + ； 

According to equation (5) and ( ) ( )
1
ˆ

T

kP J P J 
− −

= , 

calculate J  ; 

Calculate the residual 
jZ 

 and covariance 
jH 

 based on 

equations  and； 

Calculate the state update 
1ˆ

kX  +
 based on equation (9)； 

5、 1ˆ ˆ
k kX X +   

6、
1ˆ

k kX X  += ， ( )kP I KH P= −  

Output: Current best estimate 
kX  and 

kP . 

Table 1. The process of state estimation algorithm based on 

IEKF is as follows. 

 

After converting the transformed LiDAR point cloud data into a 

local map, the local map is then updated into the global map. 

This iterative process, using the Iterative Kalman Filter, 

continuously optimizes the error state of the tightly-coupled 

fusion system between LiDAR and IMU, thereby improving the 

robustness and accuracy of the SLAM system. 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Experimental Platform and Objects 

This chapter primarily focuses on the experimental validation of 

the proposed algorithm and provides comparative experiments 

to demonstrate the feasibility and robustness of the 

improvements made in this study. To validate the LIDAR and 

IMU fusion SLAM mapping algorithm proposed in this paper, 

data collection was conducted within the experimental site. 

Furthermore, the algorithm was tested in real-world scenarios at 

the site to evaluate its performance in practical field conditions. 

 

3.1.1 Experimental Platform Introduction： To validate 

the feasibility of the algorithm proposed in this paper, a self-

built robot platform was used in the laboratory. The platform 

consists of a robot base, LiDAR, camera, inertial measurement 

unit (IMU), and GPS, as shown in Figure 4. The detailed 

specifications of the main hardware facilities used in this 

experiment are listed in Table 2. 

 

Sensor 

Types 
Detailed Introduction 

Working 

Environment 

Songling 

Robot 
HUNTER 

It has similar features to a car, 
supports integration with the 

ROS system, and has the 
advantages of long battery life 

and minimal wear. It has a 

maximum payload of 200kg. It is 
an Ackermann front-wheel 

steering line-controlled chassis, 
which allows for high-speed 

operation under this 

configuration. It has a minimum 
braking distance of 0.2m and is 

suitable for autonomous driving 
development. 

It can work around 

the clock, provided 

that there is 
sufficient battery 

power 

Hesa 

Pandar 40 

The detection distance is 200m 

with a 20% reflectivity. It has a 
vertical field of view angle of 

23°, providing a viewing angle 
range from -16° to +7°. The 

minimum vertical resolution is 

0.33°, and the minimum 
horizontal angular resolution is 

0.2°. 

It is recommended to 
operate in a 

relatively stable 

environment with 
good lighting, strong 

target surface 
reflection, and 

suitable temperature 

and humidity 
conditions. It is not 

suitable for operation 
in rainy or snowy 

weather. 

OEM7 

six-axis 

IMU 

It consists of three 
accelerometers and three 

gyroscopes. It can measure the 

acceleration and angular velocity 
of an object. 

It needs to work in a 

relatively stable 

environment with a 
good GPS signal, 

moderate 
temperature, weak 

magnetic field and 

electromagnetic 
interference, and 

minimal vibration to 
ensure measurement 

accuracy and 

reliability. 

Table 2. Introduction of experimental platform hardware. 
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Figure 4. Experimental equipment. 

 

3.1.2 Software Platform Introduction: The software 

platform used in this study was Ubuntu 18.04. The system was 

compiled under the Robot Operating System (ROS), which 

facilitated the display of node information during algorithm 

execution. Visualization and graphical representation were 

achieved using RVIZ, allowing for a visual representation of the 

algorithm's operation. 

 

3.1.3 Selection of Experimental Site: To validate the 

feasibility of the proposed algorithm in a real-world 

environment, we collected our experimental data at the test site. 

The satellite image of the campus is shown in Figure 5. 

 

Figure 5. Experimental site. 

 

The data collected at Site 1 was used for evaluating the SLAM 

algorithm and had a total length of approximately 800m. The 

data collected at Site 2 was utilized for IMU calibration as well 

as the calibration between IMU and LiDAR. Site 3 was chosen 

for collecting data to evaluate the improved point cloud 

registration algorithm, with a total length of around 500m. 

 

3.2 IMU and LiDAR Calibration Experiment 

3.2.1 IMU Self-Calibration Experiment and Result 

Analysis: In this section, we conducted an IMU self-calibration 

experiment to obtain the zero-offset errors of the three axes of 

the IMU. The open-source imu_utiles toolbox was used for this 

purpose. The specific steps of the experiment were as follows: 

First, the IMU was kept stationary in place for two minutes. 

Then, it was rotated in any direction, followed by a two-second 

static period. This process was repeated 50 times. 

 

Obtained IMU Accelerometer Calibration Results: 

 

The IMU was subjected to a calibration experiment to obtain 

the zero-offset errors of the three axes of the accelerometer. The 

open-source imu_utiles toolbox was used for this purpose. The 

specific steps of the experiment were as follows: First, the IMU 

was kept stationary in place for two minutes. Then, it was 

rotated in any direction, followed by a two-second static period. 

This process was repeated 50 times. 

 

The obtained IMU accelerometer calibration results are shown 

in Figure 6. 

 

Figure 6. Errors in acceleration for each axis of the IMU. 

 

From Figure 6, it can be observed that the errors in the 

accelerometer readings of the IMU fluctuate within the range of 

-0.02 to +0.02 over a certain period, with a maximum value not 

exceeding 0.02. Based on this, the average zero-offset error of 

the IMU accelerometer can be determined as: 

 

 0.035698 0.085627 0.009563
T

， ，  (11) 

 

Errors in Angular Velocity for the IMU are shown in Figure 14: 

 

Figure 7. Errors in angular velocity for each axis of the IMU. 

 

From Figure 7, it can be observed that the errors in the angular 

velocity measurements of the IMU fluctuate within the range of 

-0.002 to +0.002. The average error can be calculated as: 

 

 0.000567 0.000264 0.000056
T

− ， ，  (12) 

 

IMU Gyroscope Errors are shown in Figure 8: 

 

Figure 8. Errors in the gyroscope for the IMU. 

 

The obtained gyroscope bias is: 

  06 06 061.3568 ,1.7632 ,1.4362
T

e e e− − − − 
    (13) 

 

The gyroscope errors of the IMU are influenced by factors such 

as zero-drift, which refers to the instrument itself or temperature 

effects; random noise, which is the interference on the 

gyroscope signal from electromagnetic fields or vibrations; 

vibration interference, which is external mechanical vibrations; 

and power supply voltage variations. However, the impact of 
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these factors on the instrument is minimal. As can be seen from 

the figure, the gyroscope errors of the IMU are very small, with 

minimal angular bias errors. Therefore, the cumulative effect of 

these errors on the IMU can be considered negligible. 

 

3.2.2 LIDAR and IMU Calibration Experiment Results 

and Analysis: In this study, the opencalib toolbox was used for 

the calibration of the LIDAR and IMU, employing a self-

calibration method. This method minimizes the eigenvalues of 

the covariance matrix, ensuring that the feature points in the 

local map are distributed on the same plane or edge. By 

minimizing the distance between feature points and feature 

planes or edges, the extrinsic calibration from the LIDAR to the 

IMU is optimized. The Bundle Adjustment (BA) algorithm is 

then utilized to minimize the distance between each plane 

feature point and its corresponding plane. The experimental 

setup for data collection should follow the procedure depicted in 

Figure 9. 

 

 

Figure 9. Field data collection trajectory route map. 

 

This study collected data four times and conducted calibration 

on each dataset. The results obtained are shown in the following 

table: 

 

Serial 

number 

Roll Pitch Yaw X(cm) Y(cm) Z(cm) 

1 -0.007 0.004 -1.608 -4.652 2.322 15.261 

2 -0.009 0.006 -1.670 -4.591 2.467 15.167 

3 -0.008 0.004 -1.687 -4.851 2.239 15.988 

4 -0.013 0.005 -1.593 -4.425 2.355 15.462 

Table 3. The results of the four calibrations for the LIDAR and 

IMU calibration are as follows. 

 

The final calibration results, obtained by averaging the values 

from the four calibration sessions, are presented in Table 4: 

 

Serial 

number 

Roll Pitch Yaw X(cm) Y(cm) Z(cm) 

1 -0.093 -0.004 -1.639 -4.630 2.346 15.169 

Table 4. The final calibration results for the LIDAR and IMU 

are presented in the following table. 

 

By incorporating the calibration results into the algorithm, it is 

evident that the mapping accuracy improves significantly, 

eliminating the occurrence of drift in the generated maps. Please 

refer to Figures 10 and 11 for a visual representation. 

 

Figure 10. Experimental image before calibration. 

 

Figure 11. Experimental image after calibration. 

 

3.3 Experimental Results and Analysis of the SLAM 

Algorithm 

3.3.1 Efficiency Analysis of Improved Point Cloud 

Registration and Backend Optimization Experiment: To 

validate the robustness of the laser SLAM algorithm with the 

inclusion of IMU sensors and the feasibility of the proposed 

multi-sensor fusion system, this study conducted SLAM 

mapping in a real outdoor campus environment. Figures 12 and 

13 illustrate the mapping results of the proposed algorithm in 

different campus scenarios. 

 

Figure 12. Mapping results in an outdoor scene 1. 

 

 

Figure 13. Mapping results in an outdoor scene 2. 

From the above two effect images, it can be observed that our 

proposed algorithm exhibits no significant drift. There is no 

evident point cloud overlap for edges, buildings, and feature 

points. The maps generated by our algorithm exhibit clearer 
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contours, and the pose estimation remains stable throughout the 

subsequent mapping process, achieving closure successfully. 

 

To further evaluate the efficiency and accuracy of our proposed 

improved sparse voxel-based point cloud registration and 

backend mapping, a comparative experiment was conducted 

against the Lego-Loam algorithm. The comparative experiment 

involved comparing the runtime of the algorithms and their 

overall accuracy. 

 

Table 5 presents the time consumed by the point cloud 

registration process, which involves K-NN nearest neighbour 

search, and the point cloud mapping process, which 

encompasses state estimation and fusion of IMU and lidar data. 

By analyzing the runtime of these three processes in point cloud 

mapping, the optimization of our algorithm in both the frontend 

and backend stages can be effectively verified. 

 

Algorithm 

Point cloud 

registration 

time (ms) 

Odometry 

processing 

time (ms) 

One frame of 

point cloud 

mapping time 

(ms) 

Total 

processing 

time (ms) 

The 

algorithm in 

this paper 

19.362 9.365 76.681 105.408 

Lego-Loam 27.654 9.694 89.642 127.990 

Table 5. Analysis of runtime comparison. 

 

Data analysis reveals that our proposed algorithm outperforms 

the Lego-Loam algorithm by reducing the total runtime for a 

single frame of point cloud data by 22.582ms. The reduction in 

runtime is primarily concentrated in the point cloud registration 

stage (8.292ms) and the mapping stage (12.961ms). Specifically, 

the improved point cloud registration method significantly 

reduces the registration time during data preprocessing, 

resulting in a 29.99% improvement in point cloud registration. 

Furthermore, the adoption of iterative extended Kalman 

filtering in the mapping stage enables efficient iteration and 

processing of point clouds, leading to the rapid generation of 

local point cloud maps. However, it should be noted that our 

algorithm exhibits a 17.64% increase in runtime compared to 

Lego-Loam. 

 

3.3.2 Precision Analysis: In terms of accuracy, the 

evaluation mainly focuses on the drift error per hundred meters. 

Table 6 presents the absolute trajectory errors for the first scene, 

with the maximum relative trajectory error being 0.139%, the 

minimum relative trajectory error being 0.089%, and the 

average trajectory error being 0.114%. The relative trajectory 

error fluctuates around 0.110%. These results demonstrate that 

our proposed algorithm achieves high scene accuracy, with a 

relative trajectory error of 0.114%. These findings highlight the 

high precision of our algorithm in the given scene, as evidenced 

by the low relative trajectory error of 0.114%. 

 

Serial 
number 

APE（m） 
RPE

（%） 

Max Mean Median Min Rmse Sse Std  

1 1.9507 0.8268 0.7946 0.1682 0.8691 4241.4618 0.2677 0.1091 

2 1.4243 0.6501 0.6881 0.0466 0.7115 2842.8620 0.2891 0.0892 
3 2.2327 1.0051 0.9757 0.0528 1.1116 6938.5590 0.4748 0.1393 

4 2.0422 0.8098 0.6281 0.1252 0.9403 4965.1192 0.4780 0.1185 

Avg 1.9124 0.8230 0.7716 0.0982 0.9081 4747.0005 0.3774 0.1142 

Table 6. Absolute trajectory error for scene 1. 

Serial 

number 

APE（m） 
RPE

（%） 

Max Mean Median Min Rmse Sse Std  

1 2.6786 0.8697 0.6370 0.0457 1.0494 4723.6321 0.5872 0.2105 
2 3.8995 1.8139 1.4866 0.0811 2.0640 18271.8649 0.9849 0.4133 

3 1.4059 0.3622 0.3188 0.0301 0.4044 701.7439 0.1800 0.0817 

4 3.9205 0.8038 0.5324 0.0148 1.1331 5507.4360 0.7987 0.2273 
Avg 2.9761 0.9624 0.7437 0.0429 1.1627 7301.1692 0.6377 0.2325 

Table7. Absolute trajectory error for scene 2. 

 

Table 7 presents the absolute trajectory error for Scene 2. The 

maximum relative trajectory error is 0.4133%, the minimum 

relative trajectory error is 0.0817%, and the average trajectory 

error is 0.2325%. The relative trajectory error fluctuates around 

0.2300%. These results indicate that the proposed algorithm 

achieves high accuracy in Scene 2, with a relative trajectory 

error of 0.2325%. 

 

In summary, both Table 6 and Table 7 demonstrate that the 

proposed algorithm exhibits low absolute and relative trajectory 

errors, indicating high precision. Qualitative experiments were 

conducted comparing the proposed algorithm with the Lego-

Loam algorithm using data from Scene 2. The qualitative 

experiment results are shown in Table 8 and Table 9. 

 

Please note that the content of Table 8 and Table 9 was not 

provided, so I cannot translate it for you. 

 

Serial 
number 

The algorithm in this paper Lego-Loam 

APE(m) PRE(%) APE(m) PRE(%) 

1 0.8691 0.1091 1.3594 0.1700 
2 0.7115 0.0892 3.2486 0.4061 

3 1.1112 0.1393 2.3941 0.2993 

4 0.9404 0.1185 2.1136 0.2642 

AVG 0.9082 0.1142 2.2790 0.2849 

Table8. Experimental results for algorithm comparison in scene 

1. 

 

Serial 

number 

The algorithm in this paper Lego-Loam 

APE(m) PRE(%) APE(m) PRE(%) 

1 1.0494 0.2105 1.6542 0.3308 

2 2.0640 0.4133 2.0364 0.4073 

3 0.4045 0.0817 1.2235 0.2447 

4 1.1331 0.2273 1.4563 0.3641 

AVG 1.1627 0.2325 1.5936 0.3185 

Table9. Experimental results for algorithm comparison in 

Scene 2  

 

The experimental results demonstrate that in both Scene 1 and 

Scene 2, using the data collected on the campus, the errors of 

the two algorithms have minimal impact on the mapping results. 

The proposed algorithm exhibits lower relative trajectory error 

and absolute trajectory error compared to the Lego-Loam 

algorithm, indicating higher accuracy and stronger robustness. 

 

The experimental results demonstrate that in both Scene 1 and 

Scene 2, using the data collected on the campus, the errors of 

the two algorithms have minimal impact on the mapping results. 

The proposed algorithm exhibits lower relative trajectory error 

and absolute trajectory error compared to the Lego-Loam 

algorithm, indicating higher accuracy and stronger robustness. 

 

Furthermore, the proposed iVox voxel-based point cloud 

registration and iterative extended Kalman filtering algorithms 

were compared experimentally. Finally, the fusion algorithm 

was tested in a real campus environment to validate its 

feasibility. A comparison experiment with the Lego-Loam 

algorithm was conducted to evaluate the performance in terms 

of time consumption, robustness, and accuracy. The analysis of 

the computational time for 10 single-frame point clouds 

concluded that the fusion SLAM algorithm based on iVox point 

cloud registration and iterative extended Kalman filtering 

exhibited a 17.64% improvement in time consumption 

compared to Lego-Loam.In terms of accuracy, self-testing and 
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comparative experiments were conducted on buildings A and F 

on the campus. The experimental results showed that the 

absolute trajectory errors were 0.8230m and 0.8038m, and the 

relative trajectory errors were 0.1142% and 0.2325% for Scene 

1 and Scene 2, respectively. The comparative experiments 

further confirmed the higher accuracy and robustness of the 

proposed algorithm. 

 

4. CONCLUSION 

This article presents research on multi-sensor SLAM, which 

combines IMU and LiDAR sensors, to address the issues of 

motion drift and low mapping efficiency in the mapping process 

of the LiDAR SLAM algorithm. The article introduces the 

models of IMU and LiDAR and derives the IMU preintegration 

through analysis of the IMU model. The IMU self-calibration 

and the joint calibration experiment of IMU and LiDAR are 

completed to solve the mapping drift caused by inconsistent 

coordinate systems in the multi-sensor fusion process. In the 

SLAM front-end, the voxel method iVox is introduced to 

replace the traditional tree-based point cloud registration. The 

back end utilizes iterative extended Kalman filtering to fuse the 

data from IMU and LiDAR sensors, achieving sensor fusion in 

the algorithm. The efficiency of mapping is evaluated by 

measuring the time consumption of mapping for multiple 

single-frame point clouds. The experimental results show that 

the efficiency is improved by 29.99% in the point cloud 

registration stage, 14.46% in the single-frame point cloud 

mapping stage, and 17.64% in total time consumption. To 

validate the effectiveness and feasibility of the proposed 

algorithm, this study conducted data collection in three selected 

areas of the test site under real-world environments. Qualitative 

and quantitative analysis is performed on the collected data, and 

algorithm testing is conducted in various campus scenarios. The 

average absolute trajectory errors are 0.9081m and 1.1627m, 

and the average relative trajectory errors are 0.114% and 

0.233% respectively. A comparison of accuracy is also made 

with the Lego-Loam algorithm, showing that the proposed 

algorithm has a relative trajectory error of 0.171% lower than 

Lego-Loam in scenario one and 0.086% lower in scenario two. 

This confirms the advantages of the proposed algorithm in 

terms of robustness and accuracy. Through this research, we 

have successfully proposed a multi-sensor SLAM algorithm that 

integrates IMU and LiDAR sensors and demonstrated its 

robustness and accuracy through experiments. This research has 

important practical implications for improving the mapping 

efficiency and accuracy of LiDAR SLAM algorithms. 
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