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ABSTRACT:

Feature extraction plays a crucial role in visual localization, SLAM (Simultaneous Localization and Mapping) and autonomous
navigation, by enabling the extraction and tracking of distinctive visual features for both mapping and localization tasks. However,
most of the studies, investigate the efficiency and performance of the algorithms in urban, vegetated or indoor environments and not
in unstructured environments which suffers by poor information in visual cues where a feature extraction algorithm or architecture
could base on. In this study, an investigation of SuperPoint architecture’s efficiency in keypoint detection and description applied to
unstructured and planetary scenes was conducted, producing three different models: (a) an original SuperPoint model trained from
scratch, (b) an original fine-tuned SuperPoint model, (c) an optimized SuperPoint model, trained from scratch with the same
parametarization as the corresponding original model. For the training process, a dataset of 48 000 images was utilized representing
unstructured scenes from Earth, Moon and Mars while a benchmark dataset was used aiming to evaluate the model in illumination
and viewpoint changes. The experimentation proved that the optimized SuperPoint model provides superior performance using
repeatability and homography estimation metrics, compared with the original SuperPoint models, and handcrafted keypoint detectors
and descriptors.

1. INTRODUCTION

Feature extraction plays a crucial role in visual localization,
SLAM (Simultaneous Localization and Mapping) and
autonomous navigation, by enabling the extraction and tracking
of distinctive visual features for both mapping and localization
tasks (Nixon & Aguado 2019). These features represent
distinctive points or structures in the environment including
corners or keypoints, which provide a compact and efficient
representation of the environment, while serve as reference
points for associating sensor data with the map and estimating
the robot's pose. Furthermore, feature extraction helps to handle
challenges such as occlusions, dynamic environments, or
changing lighting conditions, by focusing on stable and
discriminative visual cues.

Several handcrafted algorithms including keypoint detectors and
descriptors such as Shi-Tomasi (Shi & Tomasi 1993), Harris
(Harris & Stephens 1988), Fast (Rosten & Drummond 2006),
Orb (Rublee, 2011), Sift (Lowe, 2004) etc and deep learning
architectures such as SuperPoint (DeTone, 2018), UnsuperPoint
(Christiansen, 2019), Lf-net (Ono, 2018), D2-net (Dusmanu,
2019), etc have been proposed in the literature (Bojanić, 2019).
Handcrafted keypoint detectors rely on designed filters or
mathematical operations that are based on gradient-based or
intensity-based techniques, while attempt to maintain their
reliability in scale, rotation, and viewpoint changes (Isık &
Ozkan 2015). On the other hand, deep learning architectures,
create response maps aiming to detect interest points while
subsequently learn representations of each

keypoint using either local patches centred on the predicted
keypoints or the entire image utilizing the pixel-level keypoint
locations (Ma, 2021).

However, most of the studies, investigate the efficiency and
performance of the algorithms in urban, vegetated or indoor
environments and not in unstructured environments which
suffers by poor information in visual cues where a feature
extraction algorithm or architecture could base on (Guastella &
Muscato 2021).

Moreover, although there is a plethora of datasets for
evaluation and training of feature extraction algorithms such as
HPatches (Balntas, 2017), Aachen (Sattler, 2008), COCO (Lin,
2014), Google Landmarks (Noh, 2017), etc, they focus on
urban, indoor or vegetated environments while the datasets
which represent unstructured scenes are quite few and they are
designed mainly for SLAM (Simultaneous Localization and
Mapping) evaluation (Meyer, 2021, Furgale, 2012, Giubilato,
2022, Hewitt, 2018) and not for training or keypoint detector or
descriptor evaluation.

In this study, a SuperPoint neural network (DeTone, 2018) is
implemented, optimized and trained in order to accurately
conduct feature extraction in unstructured environments,
focused on rocky and sandy scenes. For the training process, a
dataset of 48 000 images was utilized (Petrakis & Partsinevelos
2023) representing unstructured and planetary scenes from
Earth, Moon and Mars. Concerning images from Earth, were
captured from construction sites, mountainous areas, sandy
beaches and a quarry, while the images from Mars were
collected by a publicly available dataset of NASA which
includes rover-based images, captured by Mars Science
Laboratory (MSL, Curiosity) rover. Regarding the Moon, the
dataset includes artificial images, created by Keio University in
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Japan. Concerning the learning procedure, the MagicPoint
detector, the standalone part of SuperPoint detector, was trained
in three phases, one time with synthetic data and two times
using the aforementioned dataset using homographic adaptation,
a technique to increase the efficiency of the architecture in
geometric transformations. Finally, the SuperPoint neural
network was trained based on the weights of MagicPoint in
order to fine-tune the keypoint detector and train the descriptor.
Three different models were produced using the aforementioned
dataset: (a) an original SuperPoint model, trained from scratch,
(b) an original fine-tuned SuperPoint model, (c) an optimized
model, trained from scratch. The models were evaluated using a
benchmark dataset (Petrakis & Partsinevelos, 2023), designed
for unstructured environments including earthy and planetary
scenes, aiming to test the accuracy in illumination and
viewpoint changes. The experimentation proves that the
optimized SuperPoint model provides satisfactory results in
keypoint detection and description, compared with the original
SuperPoint and popular handcrafted detectors and descriptors.

2. MATERIALS AND METHODS

The main goal of this study, is the implementation of a feature
extraction architecture, capable to detect and describe keypoints
in challenging unstructured environments or planetary scenes
with lack of visual cues and intense illumination changes. To
deal with these challenges, SuperPoint (DeTone et al. 2018), a
state-of-the-art neural network which outperforms handcrafted
and deep learning feature extractors (Bojanic, 2019, Liu, 2022)
was implemented and improved.

2.1 SuperPoint architecture

Superpoint is a fully convolutional neural network, composed
by an encoder-decoder architecture which is performed using
full-sized images as input. At first, a shared encoder, based on
VGG neural network (Simonyan & Zisserman 2015) is utilized
aiming to reduce the image dimensionality using three max-
polling operations, extracting image cells in a size of Hc = H / 8
and Wc = W / 8 where H and W are the height and width of an
image. The extracted tensor is imported in two decoders, one of
which acts as a keypoint detector and the other one as a
descriptor (fig 1).

Concerning the keypoint detector decoder, it undertakes the
reconstruction of the full-sized image, extracting the probability
of a keypoint existence in each pixel. Initially, it forms a tensor

where 65 channels are composed by 64 non-
overlapping 8x8 pixel cells and an extra cell, called “no interest
point dustbin” (DeTone, 2018). Subsequently, this tensor is
imported to a “softmax function” where the dustbin cell is
removed while the resulted tensor is reshaped to a full-sized
image output ( ) after a “reshape operation” (fig. 1). It’s
worth noting that the detector decoder doesn’t upsample the full
resolution of the image using transposed convolution techniques
such as Unet (Ronneberger, 2015) due to high demands on
computing resources while according to DeTone et al. 2018,
these upsampling techniques are able to introduce checkerboard
artifacts. Instead a”sub-pixel convolution” (Shi, 2016) is
utilized, which doesn’t include training parameters, aiming to
reduce the computation process.

Regarding the descriptor decoder, it computes a tensor
where D is the descriptor length equal to 256 while

via two convolutional layers, it extracts fixed feature maps in a

shape of . The feature maps are reconstructed to the
full-sized dimensions through a bi-linear interpolation while
afterwards, the L2 norm operation is performed aiming to
calculate the unit length of the descriptors (fig. 1). It’s worth
noting that the original SuperPoint architecture utilizes bi-cubic
interpolation instead of bi-linear. However, in case of
unstructured environments, it was observed that bi-linear
interpolation provided similar accuracy while reducing the
computation process compared with bi-cubic interpolation.

SuperPoint utilizes a unified loss function which is composed
by the loss function of keypoint detector ( ) and the loss
function of the descriptor ( ). SuperPoint uses pairs of
wrapped images with the predicted keypoint locations and the
corresponding transformation matrices or homography, utilized
as ground truth. The unified loss function is presented in
equation (1):

Where and are the keypoint detector loss
function for the original and a wrapped image respectively,
defined as follows:

with:

where are pixel cells of the input image while
the corresponding labels.

The loss function of the descriptor can be defined below:

Where: and D are the normalized descriptor
cells from the original and wrapped image respectively while

is a binary variable which presents the homography
correspondence between (h, w) and (h’, w’) cells.

Moreover, the parameter was added, aiming to reinforce the
balance between negative and positive correspondences while
the hinge loss is used (5):

where and are the positive and negative margins
(Rosasco, 2004).

It’s worth noting that, in the original SuperPoint, the descriptor
cells ( ) are not normalized. However, it was
observed that the normalized descriptors, combined with tuning
the factor λ (eq. 1) and the weighting term (eq. 5)
accordingly, produced more accurate results in unstructured
environments.
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Figure 1. SuperPoint architecture

2.2 Self-supervised training of SuperPoint

The self-supervized training process of SuperPoint is conducted
in several rounds aiming to increase the accuracy of feature
detection. At first, the standalone keypoint detector, called
MagicPoint (DeTone, 2018) is trained using a generated
synthetic dataset which includes 2D geometric shapes such as
lines, ellipses, triangles etc. During the training process,
homographic adaptation is performed, which combines multiple
random homographies of the input image and the keypoint
predictions of the model, aiming to reinforce the efficiency in
geometric transformations (fig 2).

After the first round of training, the trained model is used in
order to extract pseudo-ground truth of the desired dataset (fig 3)
while afterwards, the MagicPoint is re-trained using the desired
dataset and the extracted labels while the homographic
adaptation is utilized also. It’s worth noting that, the MagicPoint
training with the desired dataset can be repeated for two or three
rounds using the optimized pseudo-ground truth each time, in
order to further improve the detector’s accuracy.

Finally, the SuperPoint including detector and descriptor is
trained using the desired dataset and the optimized pseudo-
ground truth (fig. 4).

Figure 2.MagicPoint training using homographic adaptation

Figure 3. Pseudo-ground truth prediction based on the trained
model

Figure 4. SuperPoint training and fine-tuning

3. IMPLEMENTATION AND RESULTS

In this section, the implementation and training procedure of the
SuperPoint architecture are presented, while afterwards the
evaluation and results of the extracted models are described.

3.1 SuperPoint implementation and training

SuperPoint was implemented using the TensorFlow (Abadi.
2015) deep learning platform and trained utilizing the dataset
proposed in (Petrakis & Partsinevelos 2023), aiming to increase
the SuperPoint’s sensitivity in planetary and unstructured scenes.

As described in section 2.1, the original SuperPoint’s
architecture was improved applying the following two
modifications:
● The bi-linear interpolation is utilized for feature maps

reconstruction in full-sized images instead of bi-cubic
interpolation, used by the original SuperPoint

● In the loss function of keypoint description, the
descriptors of initial and wrapped images are L2
normalized while tuning the weighting parameters
including λ and λd accordingly

During the experimentation, three SuperPoint models were
produced following the training approaches presented below:

● The original SuperPoint was trained from scratch, using
the aforementioned dataset aiming to focus on planetary
environments
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● The original SuperPoint was trained using the
aforementioned datastet, based on the weights extracted
by the training of SuperPoint with COCO (Lin et al. 2014)
dataset (fine-tuning). This model aims to combine the
general-purpose knowledge, with the specialized
knowledge for unstructured environments acquired by the
main training process

● The optimized SuperPoint trained from scratch, using the
aforementioned dataset, aiming to focus on planetary
environments

Both, original and optimized SuperPoint models were trained
under the same parameterization. For each model, the
MagicPoint which is the standalone detector of SuperPoint, was
trained for three rounds applying 18 000 iterations with batch
size equal to 32 and homographic adaptation enabled.
Subsequently, SuperPoint was trained for 250 000 iterations
with batch size equal to 2 with homographic adaptation disabled
due to high demands on computing resources. The Adam
optimizer with default learning rate equal to 0.001 were utilized
while the image input size that was used is 240 x 320 in
grayscale.

Before each round of training, the weights from the last round
are used to extract the pseudo-ground truth of the dataset which
is subsequently used in the next round of training. It’s worth
noting that in the first round, the pseudo-ground truth is
extracted using the weights based on a MagicPoint model,
trained with the synthetic shapes dataset.
Regarding the computing resources, an Intel i7-4771 CPU with
3.50GHz × 8 combined with an NVIDIA GeForce GTX 1080
Ti GPU were utilized while an external hard drive of 3.5 inches
and a size of 4TB was used for retrieving and storing data
during the training.

3.2 Evaluation and results of SuperPoint models

In this section, implemented SuperPoint models focused on
unstructured environments, are evaluated in terms of keypoint
detection and description, compared with well-known and
widely used algorithms and the pre-trained SuperPoint model.

The evaluation is conducted using the benchmark dataset
proposed in (Petrakis & Partsinevelos 2023) designed for
planetary and unstructured scenes while the repeatability and
homography estimation metrics are utilized for the evaluation of
keypoint detection and description respectively.

Regarding the evaluation of keypoint detection, the produced
models are compared with the algorithms SHI (Shi & Tomasi
1993), Harris (Harris & Stephens 1988), and FAST (Rosten &
Drummond 2006) implemented with OpenCV library (Bradski
2000) and the original SuperPoint model, trained with 80 000
general-purpose images from COCO dataset. The repeatability
metric, which determines the efficiency of the model to detect
the same keypoints in different image representations of the
same scene, was estimated using 300 detected points as the
maximum limit and threshold of correctness ε=3 pixels (table 1).

Table 1. Evaluation of keypoint detectors based on illumination
(i) and viewpoint (v) changes in planetary and
unstructured environments, using repeatability
metric with ε=3

Table 2 Evaluation of keypoint descriptors based on
illumination (i) and viewpoint (v) changes in
planetary and unstructured environments, using
homography estimation (H.E) with ε=3

As presented in table 1, the optimized and original SuperPoint
models trained and fine-tuned with the proposed dataset,
provided similar repeatability of 0.82 and 0.83 respectively in
terms of illumination changes, outperforming the SHI, Harris
and FAST detectors, while the pre-trained SuperPoint model
achieves the highest repeatability equal to 0.85. Instead, the
optimized SuperPoint model outperforms SHI, FAST and all the
original SuperPoint models, (the pre-trained model and trained
from scratch with the proposed dataset) in terms of viewpoint
changes, achieving a repeatability score equal to 0.66. It’s worth
noting that Harris detector provides the highest repeatability in
terms of viewpoint changes, equal to 0.73.

As presented in table 2, the optimized and original SuperPoint
models provide the highest homography estimation in terms of
illumination changes (0.99) outperforming the descriptors ORB,
SIFT and the original pre-trained and fine-tuned SuperPoint
models. In terms of viewpoint changes, the SIFT algorithm
provides high accuracy in a level of 0.95 while the optimized
SuperPoint model, achieves homography estimation equal to
0.87, outperforming ORB and all the original SuperPoint
models (the trained and fine-tuned with the proposed dataset
models and the pre-trained model).

Qualitative results in keypoint matching between images with
different illumination or viewpoint are depicted in figure 5.

Keypoint detectors Rep. (i) Rep. (v)
FAST 0.72 0.61
Harris 0.75 0.73
SHI 0.74 0.61
Original SuperPoint
(Pre-trained)

0.85 0.63

Original SuperPoint
(Trained from scratch)

0.83 0.65

Original SuperPoint
(Fine-tuning)

0.83 0.65

Optimized SuperPoint
(Trained from scratch)

0.82 0.66

Descriptors H.E (i) H.E (v)
ORB 0.82 0.53
SIFT 0.97 0.96
Original SuperPoint
(Pre-trained)

0.98 0.81

Original SuperPoint
(Trained from scratch)

0.99 0.85

Original SuperPoint
(Fine-tuning)

0.98 0.84

Optimized SuperPoint
(Trained from scratch)

0.99 0.87
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Figure 5 a - f: Keypoint matches in two images from an earthy
scene in different levels of illumination: (a) ORB, (b)
SIFT, (c) Pre-trained SuperPoint, (d) original
SuperPoint, trained from scratch, (e) original fine-
tuned SuperPoint, (f) optimized SuperPoint, trained
from scratch. g-l: Keypoint matches in two images
from the same lunar scene in different viewpoints: (g)
ORB, (h) SIFT, (i) Pre-trained SuperPoint, (j)
original SuperPoint, trained from scratch, (k)
original fine-tuned SuperPoint, (l) optimized
SuperPoint, trained from scratch

As observed in figure 5, the trained from scratch original and
optimized SuperPoint models, using the aforementioned dataset,
provide high accuracy and sensitivity in feature-poor scenes
with illumination and viewpoint changes, outperforming the
handcrafted algorithms and the pre-trained SuperPoint model.
The fine-tuned SuperPoint, provides refined results compared
with the pre-trained SuperPoint but it is not as accurate as the
trained from scratch models.

(a) ORB

(b) SIFT

(c) Pre-tr SP

(e) FT. Or. SP

(d) TfS. Or.
SP

(f)TfS. Opt. SP

(a) ORB

(b) SIFT

(c) Pre-tr SP

(d) TfS. Or.
SP

(e) FT. Or. SP

(f) TfS. Opt. SP
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4. DISCUSSION

Regarding the evaluation of keypoint detectors in terms of
illumination changes, although the original and optimized
models perform respectable results outperforming the
handcrafted algorithms, the pre-trained SuperPoint provides the
highest score in repeatability. This is reasonable, since the
COCO dataset which has been utilized for the pre-trained
SuperPoint model, includes thousands of images with increased
variance in lighting conditions, instead of the proposed dataset
which includes limited variance in illumination changes. On the
contrary, the optimized SuperPoint model achieves the highest
repeatability in terms of viewpoint changes, proving that
enriching the dataset with high variance in illumination changes,
the overall accuracy of the optimized SuperPoint will be further
enhanced. Concerning the evaluation of descriptors, the
optimized SuperPoint model outperforms all the original
SuperPoint models and ORB algorithm in illumination and
viewpoint changes while SIFT achieves the highest score in
overall homography estimation.

In figure 6, the progress of the SuperPoint’s learning process is
presented through the visualization of detected features in a
scene from Mars. Initially, in fig. 6a the features are detected
using the MagicPoint (the standalone detector of SuperPoint)
model trained with the synthetic shapes dataset, while
afterwards the results of the MagicPoint models produced by
two rounds of MagicPoint training with the proposed dataset
(fig. 5b, 5c), prove the increased sensitivity in feature-poor
planetary scenes. Finally, in fig 6d, the superiority of the final
SuperPoint model is presented through the multiple detected
features which describe the content of each scene with quite
higher detail than the aforementioned MagicPoint models.

Figure 6. (a) MagicPoint model trained with synthetic shapes
dataset (b) first round of MagicPoint training with
the proposed dataset, (c) second round of
MagicPoint training with the proposed dataset, (d
SuperPoint model, trained after two rounds of
MagicPoint training

It’s worth mentioning that most of the studies which utilize
feature extractors based on deep learning, use models that have
been trained with general-purpose datasets such as COCO,
regardless of the environments that are applied. The superiority
of SuperPoint models, trained for unstructured environments,
compared with the pre-trained SuperPoint, proves that the
feature extractors based on deep learning, trained for a
specialized and completely different environment, are able to
provide increased efficiency compared with a model trained
with general-purpose datasets.

5. CONCLUSIONS

In this study, an investigation of SuperPoint architecture’s
efficiency in keypoint detection and description applied to
unstructured and planetary scenes was conducted. Two
modifications in the original SuperPoint architecture including
the use of bi-linear instead of bicubic interpolation in the
descriptor decoder and the normalization of the descriptors in
the descriptor's loss function, were implemented, aiming to
increase the accuracy of the model in unstructured environments.
The original and an optimized architecture of SuperPoint, were
trained with the proposed dataset, producing three different
models: (a) an original SuperPoint model trained from scratch,
(b) an original fine-tuned SuperPoint model, (c) an optimized
SuperPoint model, trained from scratch with the same
parametarization as the corresponding original model. The
models were evaluated using the designed benchmark dataset
while the repeatability and homography estimation metrics were
utilized in order to evaluate the produced models and compared
with the pre-trained SuperPoint model, trained with COCO
dataset and several popular keypoint detectors and descriptors.
The results determined a scaleable potential of deep learning in
unstructured environments while the optimized SuperPoint
model, provided satisfactory accuracy compared with the pre-
trained and fine-tuned SuperPoint.

However, the lack of the utilized dataset with high variance in
illumination changes is one of the main limitations of the
optimized and original SuperPoint models, since it is the main
reason of providing slightly lower repeatability in keypoint
detection compared with the pre-trained SuperPoint. Moreover,
although the optimized model outperforms all the original
SuperPoint models, SIFT algorithm provides the highest
accuracy in viewpoint changes.

Thus, the future work of the optimized model can be focused on
two main improvements. At first, the proposed dataset could be
enriched including real or artificial images with intense lighting
changes, while the difficulty of homographic adaptation during
the training process could be increased, through more examples
with highly transformed representations. The aforementioned
improvements, will further escalate the efficiency of the model
in illumination and viewpoint changes, providing more robust
results in both illumination and viewpoint changes.

As a conclusion, the optimized SuperPoint model, is a
promising solution for accurate keypoint detection and
description in unstructured and planetary scenes, which could
be an inspiration for the computer vision community, increasing
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the potential for accurate autonomous navigation in completely
unknown and unstructured scenes.
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