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ABSTRACT:

4D millimeter-wave radar can work in harsh weather conditions such as fog and snow, and measure the position and radial Doppler
velocity of objects in three-dimensional space. Some existing methods perform positioning by fusing 3D velocity or point cloud
matching information estimated by 4D radar with IMU information. However, the sparsity of radar point clouds and the interference
of large amount of noise lead to low accuracy of odometry, and most of the existing work cannot achieve the global consistent
mapping with radar point clouds. In this paper, a 4D radar/IMU/GNSS localization and mapping method, G-iRIOM, is proposed.
We tightly coupled IMU measurement, Doppler observation information and point cloud matching information from 4D radar by
iterative extended Kalman filtering (iEKF) method, and introduced GNSS RTK and loop closure information as global observation
to correct the positioning drift of the odometry. The experimental results show that the tightly coupled Doppler velocity information
can effectively improve the control of the pose on the local point cloud position, thus enhancing the mapping accuracy. Meanwhile,
the introduction of GNSS and loop closure information can significantly improve the positioning accuracy of 4D radar odometry as
a kind of global observation, and achieve global consistent mapping of large-scale outdoor scenes based on 4D radar point clouds.

1. INTRODUCTION

Autonomous driving and robotics are popular fields in recent
years, and multi-sensor fusion localization and navigation tech-
nology is one of the key technologies in them. Lidar and camera
are commonly used sensors for autonomous vehicles, but they
are difficult to work in bad weather. Millimeter-wave radar has
the advantage of resisting interference from rain, snow, etc., and
can measure the distance, direction and Doppler velocity of ob-
jects in rain, snow and fog. In addition, it can estimate the
vehicle’s ego-velocity from a single scan.

4D imaging millimeter wave radar improves the resolution in
the vertical direction, and thus can better detect obstacle con-
tours, and improve path planning and passable space detection
capabilities. Figure 1 shows the mapping result of 4D radar and
lidar. However, 4D millimeter wave radar has low spatial res-
olution compared with cameras or lidars for the moment and
the point cloud is relatively sparse. Moreover, it is affected by
multipath effects, harmonics and other noise, making it diffi-
cult to achieve stable, continuous, and high-precision odometry.
Therefore, it is still a challenging task to perform high precision
3D spatial localization and mapping by a 4D millimeter wave
radar.

To improve the robustness of odometry and reduce trajectory
drift caused by missing data and incorrect matches in scan-to-
scan matching, some studies have used inertial data as continu-
ous observations in conjunction with scan-to-scan matching.
Many other studies have combined IMU measurements with
radar single-scan velocity estimates since 4D radar can estimate
3D ego-velocity from a single scan. In general, scan matching
can provide many point constraints, but it is sensitive to meas-
urement noise and matching errors and may fail in areas with

∗ Corresponding author

Figure 1. Mapping results of 4D imaging radar and lidar. Map
points are colored by the elevation.

sparse radar points. The ego-velocity derived from a radar scan
is not affected by drift but is largely unable to correct vertical
drift.

Meanwhile, due to the relatively lower angle resolution and ac-
curacy of current 4D radar hardware, the existing 4D radar (in-
ertial) odometey can lead to positioning drift.

To address the issue of positioning drift, we propose an integ-
rated 4D radar/IMU/GNSS positioning and mapping method
called G-iRIOM. This method tightly couples IMU information
with 4D radar point cloud matching and Doppler observation,
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and introduces GNSS RTK measurement and loop closure in-
formation as the global constraints. The main contributions of
this paper are:

1. We tightly coupled IMU information with 4D radar point
cloud matching and Doppler information through an iterative
Kalman filtering method, while using GNSS information as an
observation to further improve the positioning results of radar
inertial odometry.

2. We adopt the scan-to-local-map method for point cloud match-
ing to avoid the trajectory drift problem caused by inter-frame
matching. We also introduce RCS information to weight the
matching for robust and accurate 3D position estimation.

3. We further optimized the local map and pose information ob-
tained from radar odometry through loop closure to ensure the
quality of positioning and mapping in the event of GNSS signal
occlusion, and achieve large-scale 3D consistent map construc-
tion based on 4D imaging radar.

2. RELATED WORK

This section briefly reviews some of the existing methods for
radar (inertial) localization and mapping.

3D Radar Odometry. 3D millimeter wave radars can only es-
timate planar position from distance and azimuth data, lacking
object heights due to low elevation resolution. Therefore, most
radar odometry methods convert the radar data to a flat image or
a 2D point cloud and use image features/direct matching meth-
ods to estimate the odometry. The feature-based approach ex-
tracts and associates key points by feature descriptors or graph
matching. Cen et al. proposed two methods [Cen and New-
man, 2018], [Cen and Newman, 2019] to suppress multipath
noise and improve robustness of radar scan matching. Barnes
et al. [Barnes and Posner, 2020] proposed a self-supervised net-
work to generate key points and descriptors for scan matching,
improving the accuracy of radar odometry. Hong et al. [Hong
et al., 2020] used classical algorithms (e.g., SURF) to associate
scans for pose estimation and loop detection in a radar SLAM
system. Burnett et al. [Burnett et al., 2021] used the algorithm
in [Cen and Newman, 2019] to build a radar SLAM system and
considered motion distortion in the rotating radar data. The dir-
ect methods directly register radar scans to estimate the relative
pose. Park et al. [Park et al., 2020] applied the Fourier-Melling
transform (FMT) to sequential radar scans to estimate rotations
and translations. Barnes et al. [Barnes et al., 2020] proposed
a correlation-based end-to-end radar odometry, where a mask
network removed radar data noise, and the fast Fourier trans-
form (FFT) matching method obtained the relative pose.

4D Radar Inertial Odometry. 4D imaging radars enhance
the elevation resolution compared to 3D radars, but their point
clouds are still sparse (∼ 400 points/scan). The point cloud
matching of 4D imaging radars has a 3D search space instead of
2D, and suffers from various noises, making it hard to achieve
stable and accurate scan matching. 4D iRIOM [Zhuang et al.,
2023] and 4DRadarSLAM [Zhang et al., 2023] enhanced GICP
by considering the probability distribution of the point cloud for
more stable scan matching. Some works used inertial data with
scan-to-scan matching to make the odometry more robust and
reduce trajectory drift for missing data and wrong matches. Al-
malioglu et al. [Almalioglu et al., 2020] coupled the radar poses

from the normal distribution transform and IMU data by an un-
scented Kalman filter, and used a long short-term memory mo-
tion model to estimate 3D ego-motion. Lu et al. [Lu et al., 2020]
proposed a deep neural network based radar inertial odometer,
which encoded radar data by a convolutional neural network
and IMU data by a recurrent neural network, and achieved real-
time pose estimation by a multi-modal sensor fusion network.
Some other studies fused IMU measurements with radar single-
scan velocity estimates from 4D radar. Kramer et al. [Kramer
et al., 2020] proposed a robot velocity estimation method based
on sliding window optimization to fuse inertial and radar data,
estimating the robot’s 3D velocity in real time. Doer et al. [Doer
and Trommer, 2020a] proposed an EKF-based radar inertial
odometry method for 3D localization by fusing IMU and radar
ego-velocity estimated by a RANSAC scheme. They also used
altimeter data to eliminate altitude drift and introduced online
calibration and the Manhattan world assumption as a yaw angle
aid [Doer and Trommer, 2021]. Scan matching can provide
many point constraints, but is prone to noise and errors, and
may fail in sparse radar points. The radar scan-derived ego-
velocity is drift-free, but sparsity of constraints and velocity es-
timation errors tend to lead to vertical drift. In this paper, we
directly tightly couple Doppler measurements with scan match-
ing information to enhance the odometry robustness, instead of
estimating ego-velocity before fusion.

Loop Closure Detection. Odometry can lead to large localiz-
ation errors in large-scale environments, so a loop closure de-
tection module is usually needed to correct drift. There are two
main types of loop closure detection and relocalization meth-
ods for radar-based fusion localization systems: deep learning-
based methods, such as [Wang et al., 2021], and traditional
geometric methods, such as [Park et al., 2020], [Kim and Kim,
2018]. Deep learning-based methods can achieve good results
in specific scenes, but have high computational costs and low
generalization abilities. Representative geometry-based meth-
ods include scancontext [Kim and Kim, 2018], BoW3D [Cui
et al., 2022], etc., which were originally designed for lidar.
Scancontext is a method that converts radar scan into a two-
dimensional image representation in the BEV view, which can
effectively measure the similarity between different scans, and
has rotation invariance and scale invariance.

3. METHODOLOGY

The architecture of the proposed 4D radar/IMU/GNSS integ-
rated system is shown in Figure 2. The system inputs are time-
aligned radar, IMU, and GNSS RTK data. Due to the small
number of points in a single radar scan and the presence of mov-
ing interference points and noise points caused by multipath
and scattering, we first remove noise points from the radar to
achieve data enhancement. Secondly, we use IMU to predict
the propagation vehicle state (position, attitude, velocity, etc.)
and iteratively update the state using an extended Kalman fil-
ter algorithm tightly coupled with radar point cloud matching
and Doppler measurement. Then, we update the vehicle state
with GNSS RTK information to further eliminate odometry po-
sitioning drift. Finally, we perform loop closure detection us-
ing improved scancontext, called submapcontext, to obtain loop
constraints and perform pose graph optimization to obtain a re-
fined vehicle state and a globally consistent map.
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Figure 2. System overview of G-iRIOM.

3.1 State Definition

In the state estimated process, x is the state, u is the control
input (i.e., IMU observations), and w is the system noise.
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where GpI ,
GvI ,

GRI is the position, velocity, and attitude of
the IMU in the world coordinate system. ba,bω is the IMU
bias, modeled as a random walk process with Gaussian noise
na,nω . IRR,

I lR are the external orientation elements between
the radar and IMU coordinate system. Gg is the gravity vector
in the world coordinate system. am,ωm are the linear accelera-
tion and angular velocity observations of IMU with observation
noise of na,nω .

3.2 Doppler Velocity Measurement

Frequency modulated continuous wave (FMCW) radar can usu-
ally provide Doppler velocity observations, which measure the
magnitude of the projection of the relative velocity between
a detected target and the radar in the target’s radial direction.
Similarly, we can project the ego-velocity obtained by the al-
gorithm to that direction by the target point’s position in the
radar body frame. Ideally, they are equal. Thus, we can con-
struct the Doppler observation residual equation as follows:

rdv = vd − vdm ≈ r̂dv +Hvx̃ (2)

vd = ρT /||ρ|| · Rv (3)
Rv = IRT

R

(
GRT

I
GvI + (ωm − bω)×

I lR

)
(4)

where rdv is the residual and Hv is the Jacobian matrix of rdv
relative to the error state x̃. vd and vdm is the Doppler velocity
and its observation, ρ is the position of the target observation
in the radar body frame, and ||ρ|| is its norm. Rvm is the radar
ego-velocity in the radar body frame.

Compared with the loosely coupled approach used by the 4D
iRIOM [Zhuang et al., 2023] and EKFRIO [Doer and Trom-
mer, 2020b] methods, we establish the 1D residual equations

for the radar observations directly from the original Doppler
velocity measurements, without using methods such as least
squares to calculate the radar ego-velocity observations (3D)
for a single frame in advance. This tightly coupled approach
makes the Doppler velocity constraint more uniform and dense,
effectively enhancing the consistency between the optimized
state and the local observations.

3.3 Radar Point Matching

As in 4D iRIOM [Zhuang et al., 2023], we use a scan-to-submap
matching method and a distribution-to-multi-distribution spa-
tial weighting strategy. On this basis, we use RCS to weight the
radar point matching residuals defined in iRIOM, thus reducing
the impact of matches with large RCS differences on the state
updating process, as we consider these matches to be unreliable.
The RCS-weighted matching residual is given by:

rp = Wrcs ·Gp(Σj(
Gbj/N)− GTR · Ra) (5)

Wrcs = exp(−λ ·
∑

j
∥RCS(bj)−RCS(a)∥) (6)

where Ra is a point in the current scan, Gbj (j = 1, . . . , N )
are the N nearest neighbor points, RCS(a) and RCS(bj) are
their RCS measurements. GTR is the transformation matrix
from radar coordinate system to global coordinate system.

Similarly, we perform a linear expansion of rp as follows:

rp ≈ r̂p +Hpx̃ (7)

Hp =
[
Gp 03 HR

p 03 03 HRe
p Hl

p 03

]
(8)

HR
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(
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(9)
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GRI

(
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)
×

(10)

Hl
p = −WrcsGp

GRI (11)

where r̂p and Hp are the computed residual and the Jacobian
matrix relative to the state. (·)× is skew-symmetric matrix.

3.4 State Optimization

As mentioned before, the state optimization process mainly con-
sists of three parts: radar inertial odometry, GNSS pose graph
optimization, and loop closure optimization.
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Radar inertial odometry. We first predict and propagate the
robot state by integrating the IMU data, then obtain the Dop-
pler velocity observation and the scan-to-submap point cloud
matching pairs based on the predicted state and the prepro-
cessed radar data, and construct the corresponding residual con-
straints (as in III-B and III-C). Then we use the iEKF method to
iteratively update the state and obtain the odometry pose results.

GNSS pose graph optimization. The pose obtained from the
odometry are the input of GNSS pose map optimization mod-
ule, We construct the relative pose factor from the odometry
results and the absolute position factor from the GNSS meas-
urement. Based on Ceres Solver, we construct and solve the
pose factor optimization problem.

Loop closure optimization. The poses and point clouds ob-
tained by GNSS optimization are further fed to the loop closure
detection module. We use an enhanced version of the scancon-
text algorithm, named submapcontext, for loop closure detec-
tion. The point cloud from a single radar scan is sparse and has
low quality for direct feature extraction and matching. There-
fore, we fuse the point clouds from several neighboring scans
of the current scan to form a submap, and perform feature ex-
traction, retrieval and matching. Then, similar to the GNSS op-
timization module, we construct odometry relative pose factors
and loop closure relative pose factors, and use Ceres Solver to
solve for the current pose graph.

4. EXPERIMENTS

4.1 Experimental Setup and Data

We installed a 4D radar ARS548 from Continental on a ground
robot, which operates in the 76− 77 GHz band and scans at 15
Hz. It has a vertical AOV of ±20◦ and a horizontal AOV of
±60◦, with an angular resolution of 0.2◦ in azimuth and 0.1◦

in elevation. It can detect objects up to about ∼300 m away
with an accuracy of 0.3 m. We obtained the reference trajectory
from the Bynav X1-5H GNSS/INS module in areas with clear
sky. We fused the IMU and GNSS data from the built-in IMU
(EPSON G345) and GNSS RTK of the Bynav module with the
radar data.

To evaluate the performance of our algorithm, we conducted
data collection and verification in an outdoor open scene and a
scene with partial GNSS occlusion. Dataset 1 is an outdoor bas-
ketball court with a duration of 6 minutes. GNSS RTK meas-
urements were available throughout. Dataset 2 was collected by
traversing around the Xinghu Building of LIESMARS for two
laps. The occlusion of high-rise buildings prevents the GNSS
signal in some areas.

4.2 Results Evaluation

All two experimental datasets start and stop at the same pose,
so we can evaluate the algorithm performance by the trajectory
closure error (CE). To verify the repeatability of the algorithm,
we ran 10 times on each dataset and calculated the mean value
of the closure error. Meanwhile, we evaluate the accuracy of the
method by calculating the difference between the algorithm’s
results and the reference trajectory. We take the centimeter-
level trajectory obtained by the fusion of GNSS and IMU as
the reference trajectory, and evaluate the pose esmation accur-
acy of the algorithm by calculating the root mean square error

(RMSE) between the reference trajectory and the algorithm res-
ults, including absolute pose error (APE) and relative pose error
(RPE).

We compare our G-iRIOM method with the EKFRIO method
[Doer and Trommer, 2020b], which is the best-known and open-
source 4D radar inertial odometry method. Moreover, we com-
pare two variants of our previously proposed 4D radar inertial
mapping and positioning method [Zhuang et al., 2023]: the
iRIO method without the loop closure module and the iRIOM
method with the loop closure module. Furthermore, to test the
competitiveness of our radar-based multi-sensor fusion localiz-
ation method with the existing popular lidar method, we com-
pare it with the FastLIO-SLAM method that fuses loop closure
information.
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Figure 3. Top: Trajectories estimated by the iRIOM, G-iRIOM,
FastLIO-SLAM on our dataset 2. Bottom: The position and

attitude of estimated trajectories by these methods aligned to the
reference.

The accuracy statistics corresponding to the experimental res-
ults are shown in Table I. We can see that the iRIOM method
with loop closure significantly improves the localization accur-
acy over the EKFRIO and iRIO methods, while the G-iRIOM
method with fused GNSS measurements further reduces the
closure error and absolute position error in all scenes, effect-
ively enhancing the positional recovery accuracy. Compared
with the FastLIO-SLAM method based on Velodyne VLP-16
lidar data, the G-iRIOM localization performance is compar-
able on these data sequences.

Figure 3 illustrates the trajectory estimation results of these
methods for dataset 2 and their comparison with the ground
truth. In Figure 4, the visualization results demonstrate that
the G-iRIOM method can enhance the consistency of 4D radar
mapping and reduce the closure error.

4.3 Ablation Studies

To verify the effects of IMU data, radar doppler velocity meas-
urements, radar point cloud matching, loop closure information,
and GNSS measurements, we tested the proposed method on
the aforementioned data sequences by turning off one type of
measurement or constraint.

Table II shows the trajectory closure error as well as the tra-
jectory RMSEs for the ablation experiments. Figure 4 shows
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Method
Closure Error APE RMSE RPE RMSE

Horizontal (m) Vertical (m) Translation (m) Rotation (◦) Translation (%) Rotation (◦/m)

Dataset 1

EKFRIO 0.530 15.759 5.616 10.261 0.055 0.183
iRIO 0.029 0.010 0.313 2.923 0.040 0.171

iRIOM 0.027 0.010 0.305 2.751 0.040 0.171
G-iRIOM 0.020 0.011 0.198 2.880 0.027 0.199
FastLIO 0.024 0.007 0.147 5.331 0.025 0.343

Dataset 2

EKFRIO 17.194 24.631 10.068 9.859 0.026 0.120
iRIO 1.517 5.073 1.518 2.866 0.022 0.114

iRIOM 0.251 0.113 0.346 2.597 0.022 0.113
G-iRIOM 0.164 0.016 0.279 2.865 0.018 0.112
FastLIO 0.151 0.025 0.372 6.363 0.020 0.322

a FastLIO denotes FastLIO-SLAM with loop closure.

Table 1. Statistics of EKFRIO, iRIO, iRIOM , G-iRIOM and FastLIO-SLAM on dataset 1-2

Figure 4. G-iRIOM mapping results on dataset 2 (right), as well as mapping results with no GNSS (left) and no loop closure (middle)
information, where points are colored by height.

TOM F
Closure Error RMSE APE RMSE RPE

Horizontal (m) Vertical (m) Translation (m) Rotation (◦) Translation (%) Rotation (◦/m)

1

IMU 5 23.532 2.165 9.112 8.302 0.100 0.298
DVM 1 0.356 0.003 0.271 3.425 0.028 0.200
S2M 1 1.670 0.188 2.551 25.325 0.027 0.132
LCI 0 0.026 0.113 0.169 3.010 0.026 0.201

GNSS 0 0.045 0.029 0.174 2.994 0.026 0.201

2

IMU 2 6.012 8.367 4.791 3.528 0.039 0.236
DVM 1 0.504 0.079 0.667 3.638 0.020 0.212
S2M 0 0.704 0.807 1.799 7.060 0.032 0.180
LCI 0 0.850 0.394 0.629 3.430 0.018 0.213

GNSS 0 0.204 0.164 0.490 3.466 0.020 0.212
a IMU: imu data measurement, DVM: doppler velocity measurement, S2M: scan-to-submap matching constraint, LCI:

loop closure information, GNSS: GNSS RTK information.
b TOM means the type of measurement turned off, F means the number of failures in 10 repetitions.

Table 2. Ablation Test Statistics on Dataset 1-2
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the trajectory estimation performance of the G-iRIOM method
when GNSS or loop closure information is not considered. From
Table II, we can see that:

(1) When IMU data are unavailable and state prediction is per-
formed by the constant velocity model, the system’s positioning
accuracy and stability is significantly reduced. The constant ve-
locity model can achieve good state prediction under normal
motion, but it often fails to accurately predict the angular ve-
locity at corners, which results in the odometey-predicted pose
deviating from the true trajectory.

(2) Odometry stability was reduced when Doppler velocity meas-
urements were not used. The statistical frequency of odometry
failure in the middle of all data sequences exceeded 10% in 10
replicate runs.

(3) Odometry closure errors of the these sequences are large
when radar point cloud matching was not used and the APE
RMSE in position exceeds 1.5 m.

(4) When GNSS or loop closure information are not used, the
trajectory closure error of the algorithm becomes significantly
larger. As shown in Figure 4, GNSS measurements make the
global elevation information more consistent and reduce the off-
set and drift in the Z-direction (colors related to height are more
consistent in the horizontal plane), but cannot guarantee traject-
ory closure. The opposite is true for the loop closure informa-
tion. Therefore, effectively combining the two can improve the
positioning accuracy.

5. CONCLUSIONS

We propose a 3D spatial motion estimation and mapping method
using 4D radar as the primary sensor. The method integrates
IMU observation, radar doppler velocity measurement, scan-
to-submap matching, loop closure detection information and
GNSS position measurement. The 4D radar and IMU data provide
accurate local positioning and map point information, while the
loop closure detection and GNSS information provide global
position observation information, which can effectively reduce
the positioning drift of radar inertial odometry. Experimental
results demonstrate that the method achieves high accuracy mo-
tion estimation. The algorithm is robust to data noise and mov-
ing objects, and performs well in localization and mapping ex-
periments for large-scale harsh environments.
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