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ABSTRACT:  

 

This paper proposes the first energy atlas of Sofia in Bulgaria. The research uses a geographical information system (GIS) approach 

and a statistical tolerance methodology to estimate building energy consumption. The buildings were classified into ten categories, and 

tolerance intervals were computed, which provide a distribution-free summary for the consumption in each class, suitable for spatial 

visualisation. GIS is used to classify and visualise the results. The results show a clear contrast in the energy consumption between 

buildings in highly urbanised areas and those in the suburbs. It was found that the high energy consumption belongs to the areas where 

the shopping, commercial, industrial and sports buildings are located and already developed. The energy consumption bounds were 

used to enrich a semantic 3D city model of Sofia. This model can be used for further analysis of energy supply, climate change, urban 

heat islands, and urban health as well as for calculating the climate scenarios. An extensive outline of the utility and directions for 

future development of the atlas are provided.   

 

 

 

1. INTRODUCTION 

Nowadays, countries worldwide experience rapid economic 

growth and face serious energy shortages, especially in terms of 

electricity. A major concern is the growing energy consumption 

caused by the rise in global population and the need for energy 

supply in urban areas (Sheng et al. 2017). Such areas have 

already felt the effect of climate change and the reduction of 

green spaces due to high energy consumption, rapid urbanization, 

and land-use changes. It is well-known that climate change and 

increasing urban temperatures significantly impact the energy 

consumption of buildings during the summer and encourage the 

occupants to use more air conditioning to increase their thermal 

comfort. This situation leads to the increasing energy demand and 

further growth of CO2 emissions. Thus, efficient energy planning 

through the development of energy atlases with a high spatial 

resolution is required to understand the current energy situation 

at a city level and to improve energy efficiency at the 

neighbourhood scale. 

In Sweden, an energy atlas of the multifamily building stock 

already exists (Johansson et al. 2017). In Turin, Italy, the energy 

use model has been improved by considering applications to 

urban areas of different dimensions. An urban energy atlas for the 

building stock has been defined with the support of a 

geographical information system (Mutani and Todeschi, 2019).  

Moreover, the building analysis for urban energy planning using 

key indicators on virtual 3D city models through the energy atlas 

of Berlin was developed (Krüger and Kolbe, 2012). Putra and 

Van Der Knaap (2019) introduced a project related to the energy 

atlas of Amsterdam. The project aimed to help the city accelerate 

its energy transition to reduce CO2 emissions and deal with 

climate-related issues. A heat atlas was developed in Denmark, 

to serve as a support tool for energy system models (Petrovic and 

Karlsson, 2014). Energy system analysis tools incorporate 

environmental, economic, energy and engineering analyses of 

future energy systems while considering the assessment of 

transitional scenarios towards achieving a fossil-free society after 

2050.  
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In much the same way as other cities, Sofia in Bulgaria is 

experiencing rapid urbanisation and has thus seen an increase in 

energy consumption. However, there is a lack of studies and 

comprehensive methodologies focusing on estimating energy 

consumption at the building level in Sofia, which could be 

essential for the reduction of both energy consumption and CO2 

emissions. To the best of our knowledge, there has been no 

attempt to develop an energy atlas for Sofia, or, indeed, for any 

city in Bulgaria, as of yet. 

To address this issue, this research proposes the use of a 

combination of geographical information system (GIS) methods 

and tolerance statistics to estimate building energy consumption 

and develop the first energy atlas in Sofia. The energy atlas of 

Sofia shows the energy consumption of building types, using 

available energy efficiency data about individual buildings. It is 

an essential tool for researchers, society and local governments 

in coordinating climate action and energy consumption 

reduction, as well as for setting zero-emission goals and helping 

citizens and communities by providing useful energy information 

(Figure 1). 

The paper is organised as follows. The next section introduces 

the data and selected methodology used in constructing the atlas. 

It reviews tolerance intervals to a level sufficient for the paper. 

Section 3 provides the results of the tolerance analysis and 

discusses the development of both 2D and 3D visualisations of 

these results. Finally, conclusions and a detailed plan for future 

work are presented in the Conclusion section. 
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Figure 1. Applications and benefits of energy atlas. 

 

 

2. DATA AND METHODOLOGY 

This section describes the input dataset, and the process of 

calculation of the energy atlas and provides an overview of 

tolerance statistics.  

 

2.1 Study area 

Sofia has a population of 1,221,785 people (National Statistical 

Institute, 2020) and a city area of 492 km2. The city is located in 

the western part of Bulgaria in Sofia Valley, surrounded by the 

Vitosha mountain to the south and the Balkan Mountains to the 

north. The location of the city is 42.70° N, 23.33° E, and the city 

has an average altitude of 550m (Figure 2). 

According to the population and housing census, in Sofia, there 

are 607,473 dwellings and 101,696 buildings. Between 2000 and 

2011, 102,623 dwellings were constructed. Sofia's architecture 

combines a wide range of architectural styles that vary from 

Christian Roman architecture to the Socialist-era apartment 

blocks. Along with the increase in the number and density of 

buildings and population in the capital, the rise of energy 

consumption has become a main topic and a problem because of 

the associated change in the local climate, manifested most 

severely in the increased effect of the urban heat island, 

deteriorated air quality and heightened carbon emissions.  

 

 
Figure 2. Study area. 

 

2.2 Development of the energy atlas 

Smart use of energy in homes and businesses has great benefits 

and results in reduced energy consumption, cost and improves 

the negative consequences of climate change in Sofia. By 

properly combining various energy efficiency measures, energy 

savings could be achieved by setting zero emission goals. The 

application of measures and technologies to reduce energy 

consumption gives several benefits, e.g., healthier working 

conditions, improved thermal comfort, reduced heat release from 

the buildings, positive impact on the local climate, environment, 

and biodiversity, etc.  

The study uses a methodology based on GIS and tolerance 

statistics, to estimate building energy consumption and develop 

the atlas. The development approach of the energy atlas includes 

five steps: 1) data collection, 2) GIS classification, 3) tolerance 

analysis, 4) creation of the energy consumption scenarios and 5) 

development and visualisation of the energy atlas (Figure 3). 

 

 
Figure 3. Process diagram of the study. 

2.2.1 Data collection 

 

The calculation of the energy consumption is based on the 

“Building certificates of energy characteristics” dataset from 

more than 2,500 representative buildings in Sofia (Agency for 

Sustainable Energy Development, 2023). The energy atlas 

database includes the total building area and energy consumption 

per unit area (energy flux). 

 

2.2.2 GIS classification 

 

The buildings are classified into ten categories: residential, 

healthcare, cultural, administrative, hotels, services and 

restaurants, kindergartens, schools, universities, and sports, as 

seen in Table 1. 

 

2.2.3 Tolerance analysis 

 

For each of the categories, a distribution-free (p, α) tolerance 

interval, defined as TI = [TI, TI], (Meeker and Hahn, 2011) was 

computed, which contains a proportion p of the population with 

100(1-α)% confidence. The bounds of the tolerance interval can 

be propagated through further analysis and visualisation. 

Computing a tolerance interval was chosen, rather than a central 

tendency statistic, for two main reasons. 

Firstly, anybody that is likely to use the atlas will be interested in 

problematic areas and building types, as indicated by the upper 

bound of the interval, TI, rather than the average consumption of 

buildings. This is to say, energy consumption stakeholders will 

likely not be indifferent to whether individual buildings exceed 

mandated reference values or not. At the same time the lower 

bound of the tolerance interval, TI  provides a “best-case” 

consumption indicative of the state of the art in achievable 

building efficiency. Central statistics tend to mask such 

behaviour by only caring about some average measure of 

consumption for the whole class. The use of a high proportion, p, 
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widens the apparent consumption ranges but provides a statistical 

guarantee that the unobserved part of the respective building 

class will not significantly exceed the calculated figures. 

The second reason behind preferring the distribution-free (p, α) 

TI to a central statistic is that the nature of the data precludes the 

usefulness of central tendency statistics due to either complex 

distributional shapes or small sample sizes. The histograms of 4 

of the 10 classes and their log transforms are shown in Figure 4. 

The TI and tolerance statistics in general can automatically alert 

the analyst about the achievable confidence, given the size of the 

data set. Furthermore, assuming a distributional shape for the 

data will produce tighter results, but will often be unjustified, 

especially at small sample sizes. 

It must be noted here that tolerance intervals provide statistical 

rather than mathematical confidence and as such if propagated 

through all but the simplest subsequent analyses their values may 

no longer possess the same level of confidence or population 

bounding, even with the use of purpose-made intrusive (Moore, 

2009) or non-intrusive (Ioannou, 2023) techniques. Instead, 

advanced uncertain numbers, such as confidence boxes, 

translated to the tolerance domain need to be used to obtain these 

guarantees (Ferson, et al., 2013). 

The results of the tolerance analysis are presented in Section 3.1. 

 

 
Figure 4. Distribution of data for four example classes. 

Lognormality cannot be easily supported. 

 

2.2.4 Creation of the energy consumption scenarios  

 

Based on the computed tolerance intervals, this study considers 

two main cases: low (using TI) and high energy consumption 

(using TI ) scenarios. Here, GIS is applied to estimate and 

visualise the final energy consumption of buildings for the whole 

city and then focus on some specific areas represented by high 

energy consumption. The map-based visualisation is presented 

and discussed in Section 3.2. 

 

2.2.5 Development of visualisation of the energy atlas 

 

The final step of the work is to present the results in a convenient 

tool to be used by different stakeholders. The energy 

consumption scenarios are used to enrich a 3D model of the city, 

which can, in turn, be visualised and queried in a web browser to 

provide insights for citizens and support decision-making for city 

authorities.  These results are presented in Section 3.3. 

 

3. RESULTS AND DISCUSSION 

This section considers the estimation of tolerance statistics, 

energy scenarios, distribution of the gross floor area, 

visualisation of the energy atlas of the whole city and by a 

specific area, and the enrichment of a 3D model of a district of 

Sofia.  

 

3.1 Tolerance analysis for Sofia 

All tolerance intervals were computed directly from the data, 

without assuming a particular distributional shape for any of the 

building classes. Even though many of the classes suggest a 

possible log-normal distribution (Figure 4), this hypothesis 

cannot be definitively accepted across all data with high 

confidence. Data for all but the Residential and Retail, food, and 

service classes passed the Kolmogorov-Smirnov test for 

lognormality at the 5% confidence level (Foreman et al. 2014).  

However, it is well-known that this test can falsely fail to reject 

the null hypothesis (log-normality in this case) due to the small 

sample size. Using distribution-free procedures allows one to 

relax unreasonable assumptions about the data whilst obtaining 

the desired coverage probability for the intervals. 

Computing tolerance intervals for high population proportions 

with high confidence levels, as in the present case, is desirable 

from an application point of view but may be impossible, because 

certain classes may not have a sufficient number of samples to 

support the computation. For all categories, except Hotels, Sports 

and Universities, the data was sufficient to compute the tolerance 

intervals that contain, at least 90% of the buildings in the category 

with at least 95% confidence. The results are shown in Table 1. 

For the Hotels class (28 buildings), Sport class (29 buildings) the 

Universities class (15 buildings), one can either compute the 90% 

tolerance bound with lower confidence (about 45% at the lowest 

for Universities) or preserve the confidence in the estimate but 

reduce the bound (to 70% at the lowest in this case, again for 

Universities). Here, the latter option is chosen as confidence is 

favoured over completeness. This choice is purely volitional and 

is up to the analyst performing the study.  

 

Group p 1-α 𝐓𝐈 𝐓𝐈 

Administrative 0.9 0.95 48.11 586.94 

Cultural 0.9 0.95 75.15 822.01 

Healthcare 0.9 0.95 53.78 354.08 

Hotels 0.8 0.95 74.29 944.14 

Kindergartens 0.9 0.95 62.71 309.00 

Residential 0.9 0.95 46.27 156.68 

Retail, food, service 0.9 0.95 63.00 943.62 

Schools 0.9 0.95 56.88 266.90 

Sport 0.8 0.95 75.38 1171.61 

Universities 0.7 0.95 53.15 171.51 

 

Table 1. Tolerance intervals (TI) for the energy consumption 

(kWh/m2 /year) of the 10 classes of buildings. TI and TI are the 

lower and upper tolerance interval values, respectively. 

 

From Table 1 it becomes obvious that the tolerance intervals for 

different classes overlap heavily, with the interval for the Sports 

class nearly containing all other intervals. Despite the fact results 

are based on the data alone, without any unwarranted 

assumptions, the outcome is unfavourable from an inferential and 

decisional point of view. The chief reason for this overlapping is 

the fact that the data has been split only based on building usage 

and not on other physical features, which could prove more 

important in refining the results. It is well known that building 

energy consumption depends strongly on the building type and 

construction material, thermal envelope (the physical separator 

between the interior and exterior of the building), the number of 

occupants and their activities, energy-consuming appliances and 
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devices in use, and the weather conditions. Such refined analyses 

are considered part of the future work in developing the atlas, as 

outlined in Section 4. 

 

3.2 Energy scenarios  

Two energy scenarios are presented in this section. The first 

corresponds to the lower bound of the computed tolerance 

interval and the second to its upper bound. The resulting 

horizontal distribution of energy consumption is presented 

visually both for the whole city and for several areas with 

increased energy use. 

 

3.2.1 The role of gross floor area 

 

Energy flux data is convenient to use because it is portable from 

the individual building to the class of buildings. However, the 

result of the presented analysis is to obtain absolute consumption 

values. To transform consumption TI, computed on energy flux 

data to such absolute values, each TI must be multiplied by the 

gross floor area of the building of interest. Gross floor area is 

calculated as the building footprint area multiplied by the number 

of storeys of that building. Information about these building 

features is available from the Geodesy, cartography, and cadastre 

agency in Bulgaria. The horizontal distribution of the gross floor 

area is shown in Figure 5. 

Figure 5. Distribution of total floor area in Sofia. Normalized 

values represent the total floor area. The pink colour shows the 

locations with a large total floor area. 

 

The results show several areas with predominantly large total 

floor areas in the central, south, and southeastern parts of the city. 

These areas are mainly represented by non-residential buildings, 

such as hotels, sports facilities, shopping and entertainment 

centres, administrative, and cultural buildings. Some of the areas 

are part of new developments. 

 

3.2.2 Energy atlas of the whole city 

 

In this study, GIS is applied to estimate and visualise both 

tolerance bounds of energy consumption of buildings for the 

whole city and then focus on some specific areas represented by 

high energy consumption. In this case, the calculation from 

energy flux to absolute energy is a single multiplication, which 

preserves the coverage properties of the TI computed in Section 

3.1 and shown in Table 1. The energy consumption is represented 

by normalized values with a specific range depending on the 

calculation of the lower and upper tolerance bounds for the 

different classes to emphasise problematic areas. 

Figure 6 shows the horizontal distribution of the energy 

according to the lower bound of the tolerance intervals. There are 

several areas with energy consumption increases (central, south 

and southeastern parts of Sofia) among lower tolerance bounds 

for the different classes, which becomes obvious when the data 

is visualised. The interesting point here is when we use the small 

variation, the areas with increased energy consumption overflow 

with those from the suburbs. 

Similarly, Figure 7 shows the horizontal distribution of 

consumption corresponding to the upper bounds of the tolerance 

intervals. The results in Table 1 suggest that there will be a more 

pronounced difference than in the TI case, which is confirmed 

visually by Figure 7. There is a clear contrast in energy 

consumption between buildings in highly urbanised areas, 

especially shopping, commercial, industrial and sports buildings, 

compared to those in the suburbs. This effect is due to two 

reasons. The first is that there are clusters of building classes with 

higher energy consumption. The second reason is that the 

highlighted areas of the city also contain many buildings with 

large gross floor area (either high-rise buildings or large area 

warehouse-type stores). 

 

 
Figure 6. Horizontal final low energy consumption distribution 

in Sofia. The low energy consumption is represented by 

normalized values (0 to 0.2). Red and yellow colours show the 

locations with an increase in energy consumption. 

 

 
Figure 7. Horizontal final high energy consumption distribution 

in Sofia. The high energy consumption is represented by 

normalized values (0 to 1). Red and yellow colours show the 

locations with high energy consumption. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-123-2023 | © Author(s) 2023. CC BY 4.0 License.

 
126



 

Based on the results of the high energy consumption case in 

Sofia, three specific areas with high energy consumption are 

selected and described in detail in the next section. 

 

3.2.3 Energy atlas by specific area 

 

The central part of Sofia is home to the buildings of the National 

Assembly, the Presidency, the Council of Ministers and other 

governmental institutions. Here, there are also several cultural 

buildings, sports facilities, hotels and commercial centres and 

old-type residential buildings.  

Figure 8 shows the horizontal distribution of the high-energy 

consumption spots in central Sofia. It is considered that the main 

reasons for the energy consumption increase is because of the age 

and materials used which affect the building envelope (Balaras et 

al. 2005; Jo et al. 2022). For older buildings, the envelope is 

generally not as efficient as for newer buildings due to the use of 

available materials at the time of construction (e.g., no thermal 

insulation and single-pane windows). There are also losses 

associated with the ageing of the building (Hauashdh et al. 2022), 

whereby construction materials lose energy efficiency. This 

means older buildings naturally require more energy per unit area 

to be heated and, when necessary, cooled down. Moreover, the 

presence of restaurants, shops, and other businesses in residential 

buildings significantly influences their energy consumption. 

 

Figure 8.  Horizontal final high energy consumption 

distribution of the central part of Sofia. The high energy 

consumption is represented by normalized values (0 to 1). Pink, 

red and yellow colours show the locations with high energy 

consumption (0 to 1). 

 

 

The second area identified as having a high energy consumption 

is located in the southern part of the capital. This area includes 

part of Bulgaria Blvd. and Lozenets, Ivan Vazov and Strelbishte 

districts. The area is characterized mainly by residential buildings 

but also by several large shopping centres, hotels and cultural 

buildings which contribute to the elevated energy consumption 

in that area (see red spots in Figure 9).  

 

 
Figure 9. Horizontal high final energy consumption distribution 

of the south part of Sofia. The high energy consumption is 

represented by normalized values (0 to 1). Pink and red colours 

show the locations with high energy consumption (0 to 1). 

 

Additionally, the analysis of the locations of high energy 

consumption shows a connection with newly and already 

developed administrative, business, and commercial buildings 

which are mainly concentrated in the southeastern parts of Sofia 

near Tsarigradsko Shose Blvd. (Figure 10).  

 

 
Figure 10. Horizontal final high energy consumption 

distribution of southeastern parts of Sofia. The high energy 

consumption is represented by normalized values. Pink, red and 

yellow colours show the locations with high energy 

consumption (0 to 1). 

 

3.3 3D visualisation  

The calculated tolerance intervals for building energy 

consumption are used to enrich the building attributes of the 3D 

model of Lozenets District (Dimitrov and Petrova-Antonova, 

2021). The 3D model is developed in level-of-detail (LOD) 1 

following the CityGML 2.0 standard (Gröger et al, 2012). The 

geometry of the 3D model covers the whole city while building 

attributes are modelled for the Lozenets District, shown in Figure 

11. 

The new attributes extend the building module of CityGML. The 

standard is imported into a 3DCityDB database, which is a 

geospatial relational database that stores, represents, and 

manages 3D city models on top of an existing spatial relational 

database such as PostGIS (Yao et al., 2018). The 3D model is 
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visualised using Cesium (https://cesium.com/) virtual globe 

allowing user interaction and perception. A web application, 

hosted on a local Node.js web server, is developed to visualise 

the city model. Cesium.js is used to implement the web 

application due to its support of rich functionality such as 

attributes display and query, object handling, highlighting, and 

map layer control, among others. 

 

 
Figure 11. 3D City Model visualised in Cesium ion. The 

coloured buildings belong to the Lozenets District. 

 

The following filtering functionality is implemented and can be 

invoked by the main menu of the web application:  

1. Silhouette a building on mouseover and show its class as 

overlay content. 

2. Silhouette a building on selection and show its attributes, 

including energy consumption bounds in an information 

box. 

3. Show buildings in different colours depending on their 

attributes, including energy consumption bounds. 

4. Show buildings in transparent mode. 

5. Show buildings according to a logical condition. 

6. Show shadows depending on the current time. 

 

The current functionality in points 2., 3., and 5. of the web 

application is extended to support user interaction to show 

buildings in different colours depending on their TI  and TI 
energy attributes (Figures 12 and 13). Thus enriched, the 

dynamic 3D model can serve users by providing them insight 

about energy consumption and its relationship with other 

attributes of the building stock already present in the model. 

 

 

 
Figure 12. Energy TI energy visualisation of 3D City model. 

Red colours show the buildings with high energy consumption 

in Lozenets District. 

 

Figure 13. Energy TI energy visualisation of 3D City model. 

Red colours show the buildings with high energy consumption 

in Lozenets District. 

 

4. CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

This paper presented a first attempt at developing an energy atlas 

of Sofia in Bulgaria. The research used a combination of 

geographical information system approaches and tolerance 

analysis to estimate building energy consumption. A means of 

visualising the results in both 2D and 3D manner were tested and 

validated. The main conclusions of the study are as follows: 

1. Classification of the building stock in Sofia, by its usage 

type, provides a lightweight basis for computation but 

obscures many nuances of the buildings, important for 

creating an energy atlas. 

2. Based on this classification, the results show several 

areas exhibiting a clear contrast in energy consumption 

between buildings in highly urbanised areas and those in the 

suburbs.  

3. Buildings with high energy consumption belong mostly 

to the retail, food, service and sports classes. 
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4.2 Future work 

Based on the preliminary results of creating the energy atlas, 

there are several important directions for future development. 

First and foremost, subsequent studies will focus on examining 

the quality of the data. Missing or censored values, dubious data 

and measurement processes will be investigated. Secondly, the 

data will be enriched with features known a priori to be important 

drivers of energy consumption. These will be instrumental in 

providing a reliable separation of buildings in Sofia, which in 

turn is vital for a robust analysis of their energy consumption. 

Thirdly, despite the sample size not being an immediate issue, as 

demonstrated by the use of an appropriate tolerance analysis 

approach, having more data will enable the use of different, more 

data-intensive analysis methods from machine learning. This, in 

combination with a more fine-grained classification and 

geolocation, will allow a qualitatively different type of analysis 

to be conducted. Finally, various enhancements to the software 

visualisations are planned for the future, which will include 

adding more objects to the 3D model and enabling a wider variety 

of features to be accessible in Cesium. 

The results of the energy atlas are a valuable basis for further 

analysis of energy supply, climate change, urban heat islands, and 

urban health as well as for calculating climate scenarios and 

seasonal effects on urban climate, all of which are steps planned 

for the future. 
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