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ABSTRACT:

Accurate estimation of groundwater levels in river basins is paramount for hydro-geological research and sustainable water resource
management. In this paper, we introduce a deep learning framework explicitly developed for precise groundwater level estimation in
the Ganga River Basin. Leveraging the combined band information of Sentinel-1 synthetic aperture radar (SAR) and GRACE satellite
data, our approach capitalizes on the trans-formative capabilities of Vision Transformers (ViT) and their variants, with a particular
focus on Swin-Transformer variant enriched with Normalization Attention Modules (NAMs).To address the unique challenges of the
Ganga River Basin, we curated a comprehensive dataset, forming a robust foundation for training computer vision models tailored to this
distinct geographical region. Through rigorous experiments, our state-of-the-art Vision Transformers demonstrated significant potential
in groundwater level estimation, with the Swin-Transformer NAM-based model achieving an outstanding Mean Absolute Error (MAE)
of 1.2. These remarkable results surpass conventional methodologies and underscore the substantial advancements achieved through
advanced transformer-based architectures in this domain. Moreover, this research contributes a robust dataset for future endeavours,
fostering further advancements in groundwater estimation and related fields. This study represents a substantial step towards advancing

sustainable groundwater utilization practices in the Ganga River Basin and beyond.

1. INTRODUCTION

1.1 Background and General Introduction

The Ganga River Basin, spanning over 700 thousand square kilo-
metres, represents a critical groundwater resource in the Indian
subcontinent. With the Ganges River as its lifeline, this vast river
system plays a pivotal role in sustaining ecosystems and support-
ing the livelihoods of millions of people. Groundwater in the
Ganga River Basin is a vital freshwater source, fulfilling agricul-
tural, domestic, and industrial needs while nurturing the region’s
diverse flora and fauna.

However, recent studies have sounded an alarm over the declin-
ing groundwater levels in this region, necessitating immediate at-
tention and effective management strategies. Studies conducted
by [Janardhanan et al., 2023] and [Chinnasamy, 2017] have re-
ported a concerning decrease in groundwater levels in various
parts of the Ganga River Basin. These findings highlight the im-
pacts of human activities, such as excessive groundwater extrac-
tion for irrigation and urbanization, leading to an imbalance in
the basin’s water budget. Moreover, [Dangar and Mishra, 2021]
demonstrated that climate change is also contributing to the de-
clining groundwater levels in the region. Changing precipitation
patterns and rising temperatures affect surface water availability,
altering the dynamics of groundwater recharge and discharge pro-
cesses.
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Such a substantial decline in groundwater levels calls for innova-
tive and comprehensive approaches to monitor and manage this
vital resource effectively. Conventional groundwater level esti-
mation methods, often reliant on localized measurements, may
not suffice to capture the complex spatial and temporal variations
within the basin. As a result, there is a growing interest in explor-
ing advanced data-driven approaches that harness the wealth of
satellite data to provide a more holistic understanding of ground-
water dynamics.

Here, we propose a deep learning framework to estimate the ground-
water levels from Sentinel-1 Interferometric Synthetic Aperture
Radar (InSAR) observations and terrestrial water storage (TWS)
changes measured from NASA’s Gravity Recovery and Climate
Experiment (GRACE) and GRACE Follow-on (FO) missions, all
of which are sensitive to hydrologic variations in the study area.
Our approach harnesses the trans-formative capabilities of Vision
Transformers (ViT) [Wang et al., 2022] and their variants, Partic-
ularly focusing on enhancing the Swin-Transformer variant [Gong
etal., 2022] with the integration of Normalization Attention Mod-
ules (NAMs) [Liu et al., 2021].

As part of our methodology, we curated a comprehensive dataset
comprising the combined information of Sentinel-1 and GRACE
satellite data and the ground truth data for the groundwater levels
at various locations across the study area. This dataset forms a
robust foundation for training and validating our models, tailored
to the distinct characteristics and challenges of the Ganga River
Basin.
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Through rigorous experimentation and analysis, we present in-
depth results of our model development and training in the fol-
lowing sections. Our approach seeks to deliver accurate and ef-
ficient estimates of groundwater levels, allowing us to gain deeper
insights into groundwater dynamics through advanced data-driven
techniques. By doing so, we strive to significantly contribute to
the sustainable management of this invaluable natural resource in
the Ganga River Basin and extend our findings to benefit beyond
its boundaries.

2. STUDY AREA AND DATA-SETS
2.1 Study area:

The Indo-Gangetic Plain, also known as the North Indian River
Plain, is a 700-thousand sq. kilometres (172-million-acre) fertile
plain encompassing northern regions of the Indian subcontinent,
including most of northern and eastern India, most of east Pak-
istan, virtually all of Bangladesh and southern plains of Nepal.
Also known as the Indus—Ganga Plain, the region is named after
the Indus and the Ganges rivers and encompasses several large
urban areas. The plain is bound on the north by the Himalayas,
which feed its numerous rivers and are the source of the fertile
alluvium deposited across the region by the two river systems.
The Deccan Plateau marks the southern edge of the plain. On
the west rises the Iranian Plateau. Many developed cities like
Delhi, Dhaka, Kolkata, Lahore, and Karachi are located in the
Indo-Gangetic Plain. The Indo-Gangetic Plain (IGP) region of
India, covering about 15% of the total area of the country, is one
of the most intensively cultivated regions of the world (Yadav,
1998; Singh et al., 2015). The study area lies between 21°N 35’
- 32°N 28 / latitude and 73°E 50’ - 89° E 49 / longitude, with a
geographical area of 5.72 lakh sq. kilometres. [Ojha et al., 2020].
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Figure 1: Catchment Area of Indo- Gangetic Basin

2.2 Datasets

This study used GRACE satellites to utilise satellite gravime-
ters to measure Earth’s gravity field variations. These variations
are primarily caused by changes in water distribution, includ-
ing groundwater. By monitoring gravity anomalies over time,
GRACE can estimate changes in groundwater storage at regional
scales. This information is particularly valuable for assessing
long-term trends in groundwater availability and tracking large-
scale groundwater depletion or recharge patterns.

o Gravity Field Mapping: The GRACE and GRACE-FO satel-
lites use a twin-satellite system to measure tiny variations in

Earth’s gravity field. As groundwater changes result in mass
re-distributions, they cause minute alterations in the gravity
field, which these satellites can detect.

e Terrestrial Water Storage Changes: The data from GRACE
and GRACE-FO are used to estimate changes in terrestrial
water storage, which include groundwater variations. Sci-
entists can infer groundwater changes in large basins over
regional and global scales.

e Complementary to InNSAR: GRACE and GRACE-FO data
offer a broader perspective on groundwater variations across
extensive regions. Combining both datasets enhances the
accuracy and coverage of groundwater estimation.

e Long-Term Monitoring: GRACE and GRACE-FO provide
long-term time series data, allowing for observing ground-
water trends and seasonal variations over several years.

Sentinel-1 for Groundwater Estimation: Sentinel-1, equipped with
synthetic aperture radar (SAR) instruments, plays a crucial role in
groundwater estimation and monitoring. The satellite’s SAR data
offers several advantages for this purpose:

o All-Weather and Day-Night Observations: Sentinel-1 can
acquire data regardless of weather conditions, both during
the day and at night. This is essential for groundwater es-
timation, as clouds and darkness do not affect data acquisi-
tion.

e Repeatability and Frequent Coverage: Sentinel-1 has a short
revisit time, providing frequent coverage of the same area.
This characteristic is valuable for tracking temporal varia-
tions in groundwater levels and detecting short-term changes.

o Interferometric Synthetic Aperture Radar (InSAR): InSAR,
a technique utilized by Sentinel-1, enables the precise mea-
surement of ground surface displacements. It can detect
changes in the Earth’s surface with high accuracy, includ-
ing subsidence and uplift, which are often associated with
groundwater depletion or recharge.

e Surface Deformation Monitoring: By comparing SAR im-
ages acquired at different times, InSAR can detect and quan-
tify ground surface deformations caused by changes in ground-
water levels. This information is crucial for assessing the
aquifer’s response to pumping and natural recharge.

e Groundwater Mapping: SAR data can also be used for map-
ping surface water bodies and monitoring their extent and
variations, which is essential for understanding interactions.

e Thus, Sentinel-1 The ground surface displacements in In-
SAR datasets are precisely measured using radar technol-
ogy. By analyzing the interference patterns of radar waves
reflected from the Earth’s surface, InSAR can detect sub-
tle changes in ground elevation. This capability makes it
suitable for monitoring localized variations in groundwater
levels and identifying areas of land subsidence or uplift as-
sociated with groundwater extraction or recharge.

Combining the data from Sentinel-1 and GRACE/GRACE-FO
provides a powerful and complementary approach to groundwa-
ter estimation. The high-resolution surface deformation data from
Sentinel-1, along with the regional-scale groundwater variations
inferred from GRACE/GRACE-FO, offer a comprehensive un-
derstanding of groundwater dynamics in large basins like the Indo-
Gangetic Basin, enabling better water resource management and
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Figure 2: (a) Location of the study area within the Ganga Basin.
(b) Mean precipitation during a period of 14 years from 2003 to
2016. (c) Mean evapotranspiration during a period of 14 years
from 2003 to 2016.

sustainable planning. Researchers can comprehensively under-
stand groundwater dynamics, ranging from large-scale trends to
localized effects.
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Figure 3: Annual changes in Groundwater water level limit in
catchment sites

3. METHODOLOGY
3.1 Data Compilation and Preprocessing:

Accurate estimation of groundwater levels is of paramount im-
portance for understanding hydrological dynamics and making
informed decisions in geospatial applications. In this section, we
detail the rigorous process of compiling a comprehensive dataset
tailored to meet the specific requirements of our study. The dataset
is curated to encompass groundwater level observations, span-
ning a vast network of nearly 45,000 sites across India, and cap-
tured at different time intervals from May 2016 to May 2017.

3.1.1 Integration of Satellite Data: Our methodology incor-
porates two important satellite datasets, Gravity Recovery and
Climate Experiment (GRACE) and SENTINEL-1, to augment
the groundwater level estimation process. Combining data from
these sources has shown improved predictive performance com-
pared to using each dataset separately. Below, we elucidate the
significance of the data derived from each satellite dataset and its
contribution to our final predictions

GRACE Satellite Data : The GRACE satellite data provides
valuable insights into changes in terrestrial water storage (TWS)
through gravimetric observations. By examining variations in
the gravity field, we can infer changes in water mass, including
groundwater, soil moisture, fluctuations in the water table, and
snow cover. The integration of GRACE data enhances our com-
prehension of hydrological dynamics, facilitating a more accurate
estimation of groundwater levels. It is important to note, how-
ever, that predicting groundwater levels solely based on GRACE
data can be challenging. Many factors, such as changes in snow
cover, soil moisture levels, water table fluctuations, and ground
movement, influence gravity field variations [Liu et al., 2019].

SENTINEL-1 Satellite Data: The utilization of Interferomet-
ric Synthetic Aperture Radar (InSAR) data from the SENTINEL-
1 satellite, proficient in estimating ground deformations with high
precision [Raspini et al., 2018], presents a robust and valuable re-
source in isolation. The InSAR technology enables the observa-
tion and monitoring of localized surface deformations over time,
providing essential insights into hydrological changes, including
fluctuations in groundwater levels. When integrated with gravi-
metric observations, using SENTINEL-1 and GRACE datasets
offers a robust and comprehensive approach to assess, under-
stand, and estimate ground-water fluctuations with improved ac-
curacy and resolution. However, it is crucial to acknowledge
that despite the benefits, the intricate relationship between surface
deformations and ground-water level changes, influenced by di-
verse factors such as subsurface geological features and complex
hydrological dynamics, necessitates the integration of comple-
mentary data sources and models to achieve reliable and precise
ground-water level estimation. [Castellazzi et al., 2016].

By combining these two datasets, We have effectively avoided
any constraints encountered in individual datasets and attained a
more thorough understanding of hydrological fluctuations [Vasco
et al., 2022]. While SENTINEL-1 data permits the detection of
localized surface deformations, GRACE data provides a broader
perspective on changes in water mass. Our ability to correctly
estimate groundwater levels and produce geo-spatial maps repre-
senting changes along the study area is made possible by inter-
linking identified satellite datasets [Ramjeawon et al., 2022].

3.2 Deep Learning Model:

In this section, we outline our approach to groundwater level esti-
mation using Vision Transformers, a class of deep-learning mod-
els known for their remarkable performance in computer vision
tasks. Building upon the comprehensive dataset compiled from
various sources, including GRACE and SENTINEL-1 satellite
datasets, we integrate multi-modal information and leverage the
power of Vision Transformers to achieve accurate and continuous
groundwater level predictions.

3.2.1 Vision Transformers for Geo-Spatial Data: The Vi-
sion Transformers (ViTs) are advanced deep-learning models for
image-related tasks. Unlike traditional Convolutional Neural Net-
works (CNNs), ViTs leverage self-attention mechanisms to effi-
ciently capture spatial relationships and dependencies within im-
ages. By dividing the input satellite image into smaller patches
and applying self-attention across all patches, ViTs can effec-
tively learn complex patterns and contextually relevant informa-
tion. Their ability to efficiently capture global contextual infor-
mation makes them well suited for processing satellite imagery
which is essential for understanding large-scale scenes and com-
plex patterns in remote sensing data. [Dosovitskiy et al., 2020],
[Liu et al., 2019], [Gong et al., 2022] and [Wang et al., 2022].
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The ViT model begins by dividing the input satellite image into
smaller non-overlapping patches, each representing a local region
of the image. These patches are then linearly embedded into a
lower-dimensional feature space, reducing computational com-
plexity while retaining essential visual information. To maintain
spatial context, positional embeddings are added to the feature
vectors, ensuring the model can differentiate between different
regions in the image. The core of the ViT model consists of mul-
tiple Transformer encoder layers. Each encoder layer incorpo-
rates multi-head self-attention mechanisms, enabling the model
to attend to various image patches simultaneously. In Figure 4,
we provide a visual representation of the internal workings of the
Transformer architecture.

Although Vision Transformers performed exceptionally well on
the validation dataset. They were not good enough to be used
in industrial applications. To further enhance the performance
of our models, we incorporate a variant of Vision Transform-
ers known as Swin Transformers (Swin-T). We also had a few
modifications to the attention mechanism by using Normaliza-
tion Attention Modules (NAMs). In the following sections, we
will delve into the details of model training and dataset prepara-
tion.
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Figure 4: ViT architecture.
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3.2.2 Dataset Preparation : The data acquisition and prepa-
ration process is a crucial step in generating the training and eval-
uation datasets used in our study. We randomly selected a subset
of approximately 45000 points from the Ganga river basin re-
gion to construct the training dataset. For each sampled point, the
model peeks into a 256 x 256 window around the sample point
and tries to predict the groundwater level at the sampled point.
This dataset defines an image regression task which forms the
foundation for training our ViT model. We collected the ground
truth data from the WRIS, and after careful analysis of the ground
truth data, we were able to detect some seasonal patterns in the
variations in the groundwater levels.

3.2.3 Model Training Process: In this section, we outline the
model training process. Our training involved multiple models,
including variations based on ResNet [He et al., 2016], ViT, and
Swin-ViT architectures, each undergoing 30 epochs of training
on NVIDIA P100 GPUs, taking approximately 20 - 25 hours per
model. Through this rigorous training and evaluation, we aimed
to identify the most suitable approach for accurate groundwater
level estimation from satellite imagery. The results obtained from
our trained models will be presented and discussed in the follow-
ing sections. [Tripathi et al., 2022].

Grace Bands
("lwe thickness")

Sentinel-1 Bands
(‘VV, 'VH)

image storing
combined
Band
information

vy
‘ Sample points J

256 x 256 grid
around sampled
points

Local GWL
estimations G
i
Image stiching
=)
Sl E Ground Truth
Image (Ground Data
Water)

Figure 5: Training Pipeline

3.3 Training Pipeline:

In this section, we provide an overview of our deep-learning mod-
els’ training pipeline used in the study. The training process
involved rigorous dataset preparation, data collection, and pre-
processing steps, as described in previous sections. Leveraging
this dataset, several models were trained on an NVIDIA TESLA
P100 GPU, optimizing model parameters by minimizing Mean
Squared Error (MSE) as the loss function. The training spanned
20 epochs to ensure ample exposure to the dataset and facilitate
the learning of intricate patterns and relationships. For a com-
prehensive evaluation, we employed Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) as performance met-
rics. Figure 5 illustrates the comprehensive training pipeline, cov-
ering data preprocessing, model training, and evaluation. [Gido et
al., 2020].

4. RESULTS AND DISCUSSION

4.1 Spatial and Temporal Variations

The analysis of the compiled dataset reveals intriguing spatial
and temporal variations in groundwater levels across diverse re-
gions and time-frames. Spatially, we observe distinct patterns
of groundwater fluctuations, with some areas exhibiting higher
groundwater levels than others. These variations can be attributed
to geological differences, land use practices, and local hydrolog-
ical conditions.
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Figure 6: Spatial Variation of Groundwater Levels

Figure 6 provides a visual representation of the spatial distribu-
tion of groundwater levels during the months 05/16, 08/16, 11/16,
and 01/17. For visualization purposes, the groundwater levels
have been clipped to O - 14, while the original dataset used for
training contains levels in a broader range of 0 - 192.8. Notably,
the data highlights that groundwater levels in Delhi exhibit sig-
nificantly lower values than in other regions, indicating poten-
tial water scarcity challenges in the area. Additionally, from Au-
gust 2016 to November 2016, specific regions, including parts
of Assam and most of Bihar and Jharkhand, had sustained their
groundwater levels despite the steep drop in the other regions.
This observation can be attributed to the impact of the massive
flood of the Ganga River that occurred between 18 and 31 Au-
gust 2016.
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Figure 7: Temporal Variation of Groundwater levels.

Temporally, a clear seasonal pattern is observed for groundwater
levels across the different months used in this study, reflecting the
influence of climatic and hydrological factors on groundwater dy-
namics. Furthermore, to gain a comprehensive understanding of
the temporal variations, Figure 7 presents violin plots of ground-
water levels across different months. From the figure, we can
observe the distinct seasonal pattern closely resembling the sinu-
soidal variation underlying the dynamics of groundwater levels,
further validating the impact of climatic changes on the ground-
water system.

4.2 Groundwater Level Estimation Results
We present the results of groundwater level estimation using our

deep learning models based on ViT, Swin-ViT, and ResNet archi-
tectures. Each model underwent rigorous training on the NVIDIA

P100 GPU, utilising its computational capabilities. To assess the
performance of our models, we employed RMSE and Mean Ab-
solute Error (MAE) as evaluation metrics, while MSE was used
as the loss function during the training process.

Figure 8 illustrates the MAE values achieved by each model on
the validation dataset. From the figure, we can observe the differ-
ent model’s performance in capturing the discrepancies between
the predicted and actual groundwater levels. Lower RMSE values
indicate better performance.

In Figure 8, The ResNet and ViT are trained to estimate the ground-
water levels by relying on the sentinel-1 images. The ViT* model
is trained using Sentinel-1 and GRACE satellite images. To lever-
age the distribution of the groundwater levels in the dataset (where
more than 90% of the data points have a groundwater level not
more than 25.), We trained a ViT and Swin-T on a restricted
dataset with groundwater levels under 25, denoted as ViT" and
SwinT in Figure 7. The results demonstrate the model’s com-
petence in accurately estimating groundwater levels within this
range.

MAE for different methodologies.

ResNet VT VIT* viT™ swinT

Figure 8: Mean Absolute Error of Different Models for Ground
Water Level Estimation.

The analysis reveals that the ViT architecture, trained solely on
Sentinel-1 images, and the ViT* model, incorporating both Sentinel-
1 and GRACE satellite images, perform well in estimating ground-
water levels compared to ResNet, trained solely on Sentinel-1 im-
ages. The band information from the GRACE images proved to
be valuable in enhancing the accuracy of the predictions. Addi-
tionally, we observed a significant improvement in performance
with the integration of the Swin-T architecture and NAMs, un-
derscoring the power of these innovations in groundwater level
estimation.

4.3 Discussion

In this section, we evaluate the strengths and limitations of each
deep learning model for groundwater level estimation. The re-
markable performance of ViT and Swin-ViT models demonstrates
the efficacy of self-attention mechanisms in handling spatial de-
pendencies within satellite imagery, surpassing traditional CNN-
based approaches like ResNet.

Furthermore, the integration of Swin-ViT and NAMs showcases
the potential of innovative transformer-based architectures and
feature normalization techniques to enhance model performance,
paving the way for further advancements in geospatial analysis
and hydrological modelling. Our findings, along with spatial-
temporal visualizations, provide valuable insights into applying
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deep learning models for accurate groundwater level estimation
from satellite imagery. These contributions advance geospatial
analysis and hydrological research, with implications for sustain-
able water resource management and environmental studies.

5. CONCLUSION

In conclusion, our research presents a specialized deep-learning
framework for precise groundwater level estimation in the Ganga
River Basin, leveraging Sentinel-1 SAR and GRACE satellite
data. Our approach demonstrates significant potential for ad-
dressing declining groundwater levels. Future research can ex-
plore temporal dynamics, climate change impacts, and additional

datasets to enhance accuracy. Collaborative efforts between geospa-

tial analysis and hydro-geology communities will further advance
sustainable groundwater management. Together, we can secure
the future of this invaluable resource and support communities
and ecosystems reliant on it.
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