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ABSTRACT: 

The primary strategy to eliminate the effect of scatter noise in synthetic aperture radar (SAR) imagery is usually through filtering or 

combining neighborhood information. However, both approaches to reducing noise reduce the detection accuracy of change edges with 

similar characteristics to scatter noise points. Considering the above problems, this letter proposes a post-processing method that applies 

a fully connected conditional random field theoretical model to fuse the original image information with the initial change detection 

results. The method first takes the original image information and the initial change detection results as a priori conditions. Secondly, 

the global spatial information in the original image and the label values in the initial change detection results are fully considered when 

detecting the changed and unchanged pixels to establish a fully connected relationship between all the pixels and find the label 

distribution probability of each pixel under the condition of noise suppression, and finally obtain better change detection results. The 

experimental results on the real SAR dataset confirm the proposed method's effectiveness, robustness, and efficiency. 

1. INTRODUCTION

Change detection is the process of analyzing and identifying 

change areas from images of different time phases of the same 

area (Blaschke, 2010). With the development of earth 

observation technology, Synthetic Aperture Radar (SAR) has 

become an essential tool for military reconnaissance, forest 

environment monitoring, disaster estimation, urban change, and 

crop growth condition monitoring(Tsokas et al., 2022) However, 

the scattering noise in SAR images makes detecting SAR images 

more complicated than that of ordinary optical images. 

The variation detection process can be seen as the analyzing of 

two different simultaneous images to obtain a binary image. The 

variation detection method of SAR images generally consists of 

three steps: (1) Pre-processing: noise reduction, geometric 

correction, and alignment. (2) Variance image generation: The 

log-ratio operator is the most widely used (Bujor et al., 2004). (3) 

Disparity image analysis: Disparity image analysis is a process 

of image segmentation, where each image pixel in the disparity 

image is segmented into two categories: changed and unchanged. 

Thresholding is one of the most commonly used methods, with 

OTSU and GTIK being the more classical thresholding methods 

(Bazi et al., 2005; Sezgin et al., 2004); the level set method (Bazi 

et al., 2010) and the clustering method (Gong et al., 2017) are 

also used for disparity image analysis. However, these are 

methods that use pixels as the most basic unit. These methods 

are too sensitive to noise and must first use filtering to reduce 

noise in the original image.However, filtering will change the 

pixel value of each image pixel in the original image while 

reducing noise, which is prone to the loss of image edge 
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information. PCAKEANS classifies each reduced vector by 

performing PCA on the neighborhood of each image pixel and 

then using fuzzy C-mean clustering (FCM) (Celik, 2009); 

FLICM classifies each image pixel by fusing the spatial and 

grey-scale information of the neighborhood image pixels and 

using FCM (Krinidis et al., 2010). In recent years, with the rise 

of deep learning in computer vision (Arel et al., 2010; Bengio et 

al., 2013), training deep models has gradually become a research 

direction, with convolutional neural networks (Vinholi et al., 

2020), deep confidence networks (Liu et al., 2018), stacked self-

encoders (Dong et al., 2018), PCA-NET (Gao et al., 2016) and 

other models are widely used in change detection tasks. The 

method of training deep models avoids fixed and complex 

equations and can learn and accumulate knowledge, achieving 

good results in change detection tasks. While the above approach 

of combining neighborhood information when classifying a 

single image pixel avoids the need for filtering and noise 

reduction, the neighborhood can also cause inaccurate edge 

segmentation, for example, when the number of accurate 

dissimilar images in the neighborhood of an image pixel is 

higher than the number of accurate similar images, the image 

pixel is prone to misclassification. 

In summary, in the change detection task in SAR imagery, 

existing methods are mainly used to avoid noise interference 

through filtering or neighborhood. However, whether by 

filtering or neighborhood processing, one problem that cannot be 

avoided is that both methods reduce edge detection accuracy 

while eliminating the effect of noise points. However, this edge 

information is, in many cases, of great value. Since the raw 

image is the richest in edge information, this letter proposes a 
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fast post-processing method that incorporates the raw image into 

the initial change detection results, using a fully connected 

conditional random field as a medium. The method uses existing 

methods' initial change detection results to construct a first-order 

potential function. Then it constructs a second-order potential 

function from the original image pairs and considers the global 

spatial information of each image pixel in the original image 

based on the initial change detection results, establishes a fully 

connected relationship between all image pixels with feature and 

label values and encourages image pixels with similar features 

and similar spatial distances to be assigned the same label, thus 

yielding better results. The method is robust in suppressing the 

effects of noise and preserving important edge information. 

The letter is organized as follows: Section 2 details the post-

processing method flow for applying the fully connected 

conditional random field theoretical model to fuse raw image 

information and initial change detection results. Section 3 

presents the experimental dataset. Section 4 gives the 

experimental protocol and results, demonstrating the method's 

effectiveness, robustness, and efficiency. Conclusions are given 

in Section 5. 

2. METHODOLOGY

Given two SAR images X1 = {x𝑖𝑗
1 , 1 ≤ 𝑖 ≤ m, 1 ≤ 𝑗 ≤ n}

and X2 = {x𝑖𝑗
2 , 1 ≤  𝑖  ≤  m, 1 ≤  𝑗  ≤  n} acquired at

different times in different regions, both with dimensions m × 

n, change detection aims to generate a binary change image 

representing the changes that occurred between the dates of the 

two images. Applying the change detection method from the 

literature (Celik, 2009), the detected change is represented by Xc 

= {x𝑖𝑗
𝑐 ,1 ≤ 𝑖 ≤ m, 1 ≤ 𝑗 ≤ n}. This letter it is using the 

combined graphs X={x𝑖𝑗=(x𝑖𝑗
1 , x𝑖𝑗

2 ), 1 ≤ 𝑖 ≤ m, 1 ≤ 𝑗 ≤

n} of X1 and X2, and the change graph Xc to represent the

original image and the initial change detection results,

respectively. X𝑖𝑗 is a 6-dimensional spectral vector combined

with the 3-dimensional spectral vectors corresponding to each

image pixel in X1, X2, where x𝑖𝑗
𝑐  refers to the category of each

image pixel in the binary change image and takes the value of 0

or 1, with 0 indicating no change and 1 indicating change, and to

differentiate from the method in this letter, expressing Xc as the

initial detection result from other methods. The flow of the

method in this letter is shown in Figure 1.

Figure 1. The flowchart of the proposed method 

2.1 Fully Connected Conditional Random Field Model 

Most of the previous methods derive the change detection result 

Xc after filtering or neighborhood processing of X. The influence 

of the original information on the change result needs to be fully 

considered. In this letter, we will consider combining the original 

image information X to derive a new change detection image 

Xnew, which can be viewed as a random field Y={ y𝑖𝑗 , 𝑖∈

(1,m),  𝑗 ∈ (1,n)}, where the random variable y𝑖𝑗 ∈ {0,1}

represents whether the image pixel belongs to a changed or 

unchanged image pixel, respectively. The change detection 

process can be regarded as the solution of a random distribution 

satisfying the distribution conditions X and Xc. The original 

image information and the initial change detection result are 

used as a priori conditions for the random field Y to construct a 

conditional random field, and a new change detection image 

Xnew can be obtained by solving this conditional random field 

model. 

The probability distribution function corresponding to the fully 

connected conditional random field (Y/X, Xc) can be defined 

through the Gibbs distribution in the following form: 

 p(Y X,Xc⁄ )=
1

Z(X,Xc)
exp(-E(Y X,Xc⁄ ))   (1) 

where 𝑍(𝑋, 𝑋𝑐)     =    the normalisation constants

E(Y X,Xc⁄ )  =  the potential functions of the conditional

random field model 

The process of solving for the class of each image pixel in the 

new change detection image Xnew can be considered as the 

process of solving for the maximum posterior probability of the 

conditional random field (Y/X, Xc), which follows from 

equation (1): 

y*=argmaxP(Y X,Xc⁄ )=argminE(Y X,Xc⁄ )  (2) 

I.e., maximizing the probability function P(Y/X, Xc) is

equivalent to minimizing the potential function E(Y/X, Xc).

2.2 Fusion of Original Image with Initial Change Detection 

Result 

In order to produce a more accurate new change detection image 

Xnew, this letter considers incorporating the original information 

into the initial change detection result by using the category 

information of each image pixel in the initial change detection 

image Xc, the feature similarity and spatial distance information 

between images in the merged image X to construct two 

potential functions respectively. The original image information 

will be incorporated into the initial change detection result by 

summing the two potential functions: 

E(Y X⁄ ,Xc)= ∑ θ𝑖𝑗(y𝑖𝑗)+𝑖𝑗 ∑ θ𝑖𝑗(y𝑖𝑗 , y𝑖𝑗
' )  (3)𝑖𝑗  

where  θ𝑖𝑗(y𝑖𝑗)    =  The first-order potential function

defined by the variogram Xc 

θ𝑖𝑗(y𝑖𝑗 ,y𝑖𝑗
' )   =  The second-order potential function

defined by the merging image X  
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By establishing the image pixel potential function of the joint 

initial detection result and the original data, the fully connected 

relationship of the random field is established in this letter. 

2.2.1 First-order Potential Function:  A first-order potential 

function θ𝑖𝑗(y𝑖𝑗) is constructed using the category

information of each image pixel in the initial change detection 

image Xc as a priori conditions, which is defined by a 

confidence evaluation of each image pixel's own category in 

Xc: 

𝜃(𝑦𝑖𝑗) = {
−𝑙𝑜𝑔(𝑝𝑖𝑗) , 𝑦𝑖𝑗 = 𝑥𝑖𝑗

𝑐

−𝑙𝑜𝑔(1 − 𝑝𝑖𝑗),  𝑦𝑖𝑗 ≠ 𝑥𝑖𝑗
𝑐 (4)

                       

where    𝑝𝑖𝑗    =  The probability of 𝑦𝑖𝑗  belonging to the

first category 

1 − 𝑝𝑖𝑗  =  The probability of 𝑦𝑖𝑗  belonging to the

second category  

It follows from equation (4) that the larger 𝑝𝑖𝑗 is, the smaller

the first-order potential function when the random variables 

𝑦𝑖𝑗 and 𝑥𝑖𝑗
𝑐 take the same value, i.e., the easier it is for the 

random field to classify the new change detection image Xnew as 

being in the same category as the corresponding image pixel 
(𝑖, 𝑗) in the initial change detection image Xc. 

The initial change detection image Xc is already highly accurate 

but only partially free from noise. By dividing the image pixels 

in the binary change image Xc into two categories and setting 

different potential functions for each category, the model's 

ability to suppress noise is increased. 

(1) Discrete image pixels

The first category of image pixels is called discrete image pixels,

i.e., those that conform to equation (5), as shown in Figure 2:

  𝑁𝑘𝑙[(𝑘, 𝑙) ∈ Ω𝑖𝑗 ∩ 𝐶(𝑘, 𝑙) = 𝐶(𝑖, 𝑗)] <= 2 (5) 

where   Ω𝑖𝑗  =  The set consisting of all image pixels in the

3×3 neighborhood of point (𝑖, 𝑗) 

𝐶(𝑖, 𝑗)   =  The category of (𝑖, 𝑗) points in the binary 

change image 

  𝐶(𝑘, 𝑙)  =  The category of (𝑘, 𝑙) points in the Xc 

image 

In the initial change detection image Xc, the image pixel that 

satisfy equation (5) are usually misclassified due to noise, so 

setting a minor 𝑝𝑖𝑗, i.e., by setting a more significant potential,

increases the ability of the model to suppress noise. 

Figure 2. Discrete points 

(2) Non-discrete image pixels

The second category of image pixels is called non-discrete image

pixels, i.e., image pixels that do not conform to equation (5).

Since the Xc derived by the initial change detection method is

already very accurate, setting a larger 𝑝𝑖𝑗  for non-discrete

image pixels, the model will tend to trust the classification

results of the Xc for image pixel (𝑖, 𝑗) more.

After several experimental verifications, the values of 𝑝𝑖𝑗 for

discrete and non-discrete points are set to 0.1 and 0.9, 

respectively. 

2.2.2 Second-order Potential Function: The new change 

detection image Xnew obtained from the first-order potential 

energy function alone is equivalent to the initial change detection 

image Xc with discrete points suppressed. The edge delineation 

still needs to be updated. Considering that the original image 

information has the richest edge information, a second-order 

potential energy function is defined using spectral feature 

similarity and the spatial distance of each image pixel from all 

remaining image pixels in the merged map. Summing the two 

potential energy functions is used to incorporate the original 

image information into the initial change detection results, 

giving the new change detection image Xnew a more accurate 

edge region. 

In this letter, two Gaussian kernels are used to construct the sum 

of second-order potential functions to construct the potential 

function of the original data. The first Gaussian kernel consists 

of the spectral and spatial information of each image pixel and 

all other image pixels, while the second Gaussian kernel function 

is related to the spatial information only, as shown in equation 

(6): 

θ𝑖𝑗(𝑦𝑖𝑗 , 𝑦𝑖𝑗
′ ) = 𝜇(𝑦𝑖𝑗 , 𝑦𝑖𝑗

′ ) (𝜔1 exp (−
‖𝑙𝑖𝑗 − 𝑙𝑖𝑗

′ ‖
2

2𝜎𝛼
2

−
‖𝑞𝑖𝑗 − 𝑞𝑖𝑗

′ ‖
2

2𝜎𝛽
2 )

+ 𝜔2 exp (−
‖𝑙𝑖𝑗 − 𝑙𝑖𝑗

′ ‖
2

2𝜎𝛾
2 ))  (6) 

where  𝑦𝑖𝑗
′   =  all random variables in the random field Y 

except for the random variable 𝑦𝑖𝑗

𝜇(𝑦𝑖𝑗 , 𝑦𝑖𝑗
′ )  = a label-compatible function to penalize

the case where near-neighbor similar image pixels are labeled 

into different categories; when 𝑦𝑖𝑗 =𝑦𝑖𝑗
′ , 𝜇(𝑦𝑖𝑗 , 𝑦𝑖𝑗

′ )=1 when

𝑦𝑖𝑗=𝑦𝑖𝑗
′ , and 0 otherwise 

𝜔1, 𝜔2   =  the corresponding weight coefficients of

the first and the second Gaussian kernels 

𝑞  =   a 6-dimensional spectral vector 

𝑙   =   a 2-dimensional image point coordinate vector 

𝜎𝛼 , 𝜎𝛽 , 𝜎𝛾   =  the parameters used to adjust the

positional proximity and similarity between the image pixel 
(𝑖, 𝑗) and the rest of the image pixels. 

The potential function is mainly used to penalize the 

inconsistency of annotation results for similar near-neighbor 

pixels in the new change detection image, which can effectively 

serve to refine the edge regions. Moreover, one can flexibly 

adjust the spatial and spectral information proportion between 

image pixels to achieve different results with such a setting. For 
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example, when the proportion of 𝜔1  is higher than 𝜔2 , the

model can better refine the edge regions; when the proportion of 

𝜔2  is higher than 𝜔1 , the model can better suppress isolated

points. 

After the total potential function is obtained, this letter uses the 

method based on mean-field approximation in the literature 

(Krähenbühl et al., 2012) to explain the fully connected CRF. 

The information propagation step in the mean-field 

approximation can be implemented by Gaussian filtering, 

accelerating this step and making the whole inference process 

more efficient. 

3 EXPERIMENTS AND ANALYSIS 

In order to verify the effectiveness, robustness, and efficiency of 

the proposed method, two datasets with different regions and 

sensors were tested in the experiment. The following 

experiments were also designed in this letter: (1) to verify the 

effectiveness of this method by setting parameters and analyzing 

the results; (2) to verify the robustness of this method using 

multiple datasets and multiple methods; (3) to verify the 

efficiency of this method by conducting comparison experiments 

with other post-processing methods for SAR image change 

detection. 

3.1 Introduction to Dataset 

3.1.1 Bern Dataset: The first dataset is known as the Bern 

dataset. The images in this dataset were taken by the European 

Remote Sensing Satellite SAR sensor around Bern, Switzerland, 

in April and May 1999. The two SAR images of the first dataset 

and the reference image of the area of change are shown in 

Figure 3(a), (b), and (c), with an image size of 301 × 301 pixels. 

Figure 3(d) shows the log-ratio difference images of the two 

images, from which it can be seen that they are filled with a large 

amount of scattered noise. 

(a) (b) (c) (d) 

Figure 3. Multi-temporal images of Bern.(a) Image acquired in April. (b) Image acquired in May. (c) Areas of change. (d) Log-

ratio difference image of two images 

3.1.2 Ottawa Dataset: The second dataset, known as the Ottawa 

dataset, consists of two phases of SAR images acquired by 

Radarsat satellites in the Ottawa area of Canada in May 1997 and 

August 1997, respectively, both with image sizes of 350 × 290 

pixels. The variation in the two phases of images is mainly due 

to the rise in river levels caused by the rainy season, and Figure 

4(d) shows the log-ratio difference between the two images, 

from which it can be seen that the two images are filled with a 

large amount of scattered noise. 

(a)   (b) (c) (d) 

Figure 4. Multi-temporal images of Ottawa.(a)Image acquired in May. (b) Image acquired in August. (c) Areas of change. (d) 

Log-ratio difference image of two images 

3.1.3 Evaluation Indicators: This letter evaluates the 

performance of change detection methods in both qualitative and 

quantitative ways, the former being achieved by visual 

interpretation and the latter by calculating accuracy metrics for 

each change image, including false alarms (FA), missed 

detections (MD), overall error (OE), percentage correct 

classification (PCC), and kappa coefficient (KC), where FA 

refers to the number of unchanged pixels that were misclassified 

as change, MD refers to the number of undetected changed 

pixels. OE equals FA+MD, i.e., the number of all misclassified 

pixels. PCC refers to the number of all correctly classified pixels 

divided by the total number of pixels multiplied by 100%, and 

the kappa factor is calculated as: 
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Kappa = 
PCC-PRE

1-PRE
(7) 

where PRE is shown in equation (8): 

PRE =
(𝑇𝑃+𝐹𝑃)⋅(𝑇𝑃+𝐹𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)2 +
(𝑇𝑁+𝐹𝑁)⋅(𝑇𝑁+𝐹𝑃)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)2 (8)

where   FP    =   MD 

FN    =   FA 

TP  =  the number of correctly detected changed 

pixels 

TN  =   the number of correctly detected unchanged 

pixels 

3.2 Effectiveness Experiments 

The first set of experiments was used to demonstrate the 

effectiveness of the proposed method, using the change detection 

result from the FCM method and the new change detection result 

after processing by the method proposed in this letter. 

Due to the flexibility of the second-order potential function 

proposed in this letter, setting different parameters would give 

the model a different performance. When increasing the weight 

of the first Gaussian kernel function in the second-order potential 

function, the model would be better able to fine-tune the edges. 

When increasing the weight of the second Gaussian kernel 

function, the model would have a better ability to remove noise. 

As shown in Figure 5, Figures 5(a), (b) show the detection results 

of the ground truth, and FCM methods, respectively, Figures 

5(c), (d) show the new change detection results in different 

parameters set by the proposed method in this letter, respectively, 

and Figures 5(e), (f), (g), (h) show the partially enlarged areas in 

Figures5 (a), (b), (c), and (d), respectively. The parameters θ𝛼,

θ𝛽, and θ𝛾 are fixed at 2, 13, and 80 in both images in Figures

5(c), (d). The values of 𝜔1  and 𝜔2  are taken as 7 and 3 in

Figure. 5(c), making the first Gaussian kernel function have a 

higher weighting, and the values of 𝜔1 and 𝜔2 are taken as 3

and 7 in Figure 5(d), making the second Gaussian kernel 

function have a higher weighting. As shown in Figures 5(c), (d), 

Figure 5(d) eliminates more noise relative to Figure 5(c); as 

shown in Figures 5(g), (h), Figure 5(h) has finer edges relative 

to Figure 5(g). 

(a) (b) (c) (d) 

(e)   (f) (g)   (h) 

Figure 5. New change-detection images relating to the Ottawa dataset obtained by different Gaussian kernel function parameter 

settings.(a)Ground-truth. (b) FCM method detection result. (c) Image of the result of the first Gaussian kernel function with high 

weights. (d) Image of the result of the second Gaussian kernel function with high weights. (e) Part of the enlarged area of Fig. (a). (f) 

Part of the enlarged area of Fig. (b). (g) Part of the enlarged area of Fig. (g). (h) Part of the enlarged area of Fig. (h). 

In order to increase the ability of the model to refine the edges 

while better-suppressing noise, this letter finally fixed θ𝛼, θ𝛽,

θ𝛾 to 2, 13, and 80, and first fixed parameters 𝜔1, 𝜔2 to 7 and

3 to eliminate noise and refined the edges of the initial change 

detection result image. Then, based on the new change detection 

image obtained, fixed parameters 𝜔1, 𝜔2 to 3 and 7 to further

eliminate the still residual noise in the new change detection 

image by choosing different parameters to process the detection 

results twice respectively, thus achieving the ability to refine the 

edge regions of the image while suppressing noise. As shown in 

Figure 6, Figures (a), (b) and (c) is the detection results of ground 

truth, the FCM method, and the detection result of the FCM 

method after processing by the proposed method in this letter, 

respectively. As shown in Figure 6, the edges of the final change 
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detection result are much finer, and the white speckle noise in 

the initial change detection result is almost eliminated. 

(a) (b) (c) 

Figure 6. Image of the results of the second change detection with different parameter settings.(a) Ground-truth. (b) FCM 

method detection result. (c) Result of proposed method. 

Finally, the new detection result obtained by the FCM method 

processed by the proposed method in this letter is compared with 

those of PCAKM, MRFFCM, and PCA-NET to demonstrate the 

effectiveness of the proposed method, and the final results are 

shown in Table 1. As can be seen from Table 1, the FCM 

method's detection result is significantly improved by the 

proposed method in this letter, and the evaluation indexes of the 

new change detection image are higher than those of PCAKM, 

MRFFCM, and PCA-NET. 

Methods 

Result On the Ottawa datasets 

MD

OE

PCC

Kappa

FA MD OE PCC Kappa 

FCM 1174 1180 2354 0.9768 0.9129 

Proposed 449 1318 1767 0.9826 0.9331 

PCAKM 949 1570 2519 0.9757 0.9045 

MRFFCM 1634 710 2344 0.9769 0.9127 

PCA-NET 726 1112 1838 0.9822 0.9306 

Table 1. Comparison of experimental results on the effectiveness of the Ottawa dataset 

3.3 Robustness Experiments 

The second set of experiments was carried out on the Bern and 

Ottawa datasets, and the change detection results obtained using 

the threshold method OTSU, the combined neighborhood 

information method FLICM and the restricted Boltzmann 

machine method RBM were compared with the new change 

detection result obtained after processing in this letter to verify 

the robustness of the proposed method. 

3.3.1 Experimental Results for Bern Dataset: The 

experiment's final results are shown in Figure 8 and Table 3. In 

Figure 8, figures (a), (b), (c), (d), (e), (f), (g), and (h) show the 

ground truth, OTSU detection results, FLICM detection results, 

RBM detection results, OTSU detection results post-processed 

by the method proposed in this letter, FLICM detection results 

post-processed by the method proposed in this letter, and RBM 

detection results post-processed by the method proposed in this 

letter. As shown in Figures 8(b) and 8(e), the change detection 

results of the OTSU method still have some white speckle noise 

and loss of edge information in the images. As shown in Figures 

8(c) and 8(f), the change detection results of the FLICM method 

have a large amount of white speckle noise in the images. After 

processing by the method proposed in this letter, the number of 

misclassified pixels is reduced by 10.2%, and the white speckle 

noise in the images is almost eliminated; as shown in Figures 8(d) 

and 8(g), the change detection results of the FLICM method have 

a large amount of white speckle noise in the images. 8(d) and 

8(g) show that the change detection result of the RBM method 

has a small amount of white speckle noise in the image, and after 

being processed by the method proposed in this letter, the 

number of misclassified pixels is reduced by 20.3%. The white 

speckle noise in the image is almost eliminated. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1271-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1276



(a) (b)   (c) (d) 

(e)    (f) (g) 

Figure 7. Experimental results on the robustness of the Bern dataset. (a)Ground-truth. (b) OSTU experimental result. (c) FLICM 

experimental result. (d) RBM experimental result. (e) Post-processing result of the OTSU proposed in this letter. (f) Post-processing 

result of the FLICM proposed in this letter. (g) Post-processing result of the RBM proposed in this letter. 

Methods 

Result On the Bern datasets 

MD

OE

PCC

Kappa

FA MD OE PCC Kappa 

OTSU 219 212 431 0.9952 0.8116 

Proposed 76 239 315 0.9965 0.8515 

FLICM 339 105 444 0.9951 0.8230 

Proposed 155 128 283 0.9964 0.8773 

RBM 417 123 540 0.9969 0.7896 

Proposed 140 184 324 0.9964 0.8552 

Table 2. Results of the experimental evaluation of robustness on the Bern dataset 

3.3.2 Experimental Results for Ottawa Dataset: The final 

results of the experiments are shown in Figure 8 and Table 3. In 

Figure 8 ,Figs. (a), (b), (c), (d), (e), (f), (g), (h) are the ground 

truth, OTSU detection result, FLICM detection result, RBM 

detection result, OTSU detection result after post-processing by 

proposed method in this letter, FLICM detection result after 

post-processing by proposed method in this letter, RBM 

detection result after post-processing by proposed method in this 

letter. As shown in Figs. 8(b) and 8(e), the change detection 

result of the OTSU method still has some white speckle noise 

and loss of edge information in the figure. As shown in Fig. 8(c) 

and 8(f), the change detection result of FLICM method has a 

large amount of white speckle noise in the figure, and after 

processing by this method proposed in this letter, the number of 

misclassified pixels is reduced by 10.2%, and the white speckle 

noise in the figure is almost completely eliminated; as shown in 

Fig. 8(d) and 8(g), the change detection result of RBM method 

has a small amount of white speckle noise in the figure, and after 

processing by this method proposed in this letter, the number of 

misclassified pixels is reduced by 20.3%, and the white speckle 

noise in the figure is almost completely eliminated. 
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(a)    (b) (c) (d) 

(e) (f) (g) 

Figure 8.Experimental results on the robustness of the Ottawa dataset. (a)Ground-truth. (b) OSTU experimental result. (c) 

FLICM experimental result. (d) RBM experimental result. (e) Post-processing result of the OTSU proposed in this letter. (f) Post-

processing result of the RBM proposed in this letter. 

Methods 

Result On the Ottawa datasets 

MD

OE

PCC

Kappa

FA MD OE PCC Kappa 

OTSU 1260 1090 2350 0.9768 0.9134 

Proposed 453 1291 1744 0.9828 0.9341 

FLICM 695 2088 2783 0.9726 0.8933 

Proposed 180 2346 2526 0.9751 0.9011 

RBM 1113 883 1996 0.9803 0.9134 

Proposed 624 966 1590 0.9843 0.9406 

Table 3. Results of the experimental evaluation of robustness on the Ottawa dataset 

3.3.3 Experimental Results Comparing Proposed Method 

with Other Post-processing Methods: The third set of 

experiments was carried out on the Bern and Ottawa datasets, 

using the initial change detection result from the FCM method, 

followed by post-processing using RBM, MRF, and the 

proposed method in this letter and comparing the new change 

detection results to demonstrate the efficiency of the proposed 

method in this letter. The final results are shown in Figure 9, 

Figure 10, Table 4, and Table 5. In Figures 9 and 10, Figs. (a), 

(b), (c), (d), (e) are the ground truth, FCM detection result, and 

the results obtained by post-processing the RBM, MRF, and the 

method proposed in this letter on the Bern and Ottawa datasets, 

respectively. 

The experimental results of the Bern dataset: As can be seen 

from Figure 9, after the detection results of FCM have been 

processed by the three post-processing methods, RBM 

eliminates a large number of noise points, but the image 

segmentation is not detailed enough due to the influence of the 

neighborhood; MRF only analyses the category relationship 

between each image pixel and its neighboring image pixels in 

the label image, which can only play the role of noise reduction 

and image smoothing, so the method only slightly eliminates the 

white speckle noise in the image. The method proposed in this 

letter eliminates almost all the white speckle noise and refines 
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the edges of the image. As seen from Table 4, the results of this 

method outperform other methods in all evaluation criteria. 

(a)         (b)          (c)          (d)         (e) 

Figure 9. Bern dataset comparison experimental results.(a)Ground-truth. (b) FCM experimental result. 

(c) RBM post-processing experimental result. (d) MRF post-processing experimental result. (e) Method proposed in this letter

Methods 

Result On the Bern datasets 

MD

OE

PCC

Kappa

FA MD OE PCC Kappa 

FCM 218 212 430 0.9953 0.8119 

RBM 182 233 415 0.9954 0.8140 

MRFICM 194 214 408 0.9955 0.8196 

Proposed 76 239 315 0.9965 0.8515 

Table 4. Results of the comparative experimental evaluation on the Bern dataset 

The experimental results for the Ottawa dataset: As can be seen 

in Figure 10, the FCM result has been processed by the three 

post-processing methods, with RBM and MRF eliminating a 

large amount of noise and the proposed method not only 

eliminating almost all of the noise but also refining the edges of 

the images. As seen from Table 5, the results of the proposed 

method outperform other methods in all evaluation indexes. 

(a) (b) (c)  (d) (e) 

Figure 10. Ottawa dataset comparison experimental results.(a)Ground-truth. (b) FCM experimental result. (c) RBM post-

processing experimental result. (d) MRF post-processing experimental result. (e) Method proposed in this letter 

Methods 

Result On the Ottawa datasets 

MD

OE

PCC

Kappa

FA MD OE PCC Kappa 

FCM 1174 1180 2354 0.9768 0.9129 

RBM 590 1433 2023 0.9801 0.9235 

MRF 965 1174 2139 0.9789 0.9204 

Proposed 449 1318 1767 0.9826 0.9331 

Table 5. Results of the comparative experimental evaluation on the Ottawa dataset 
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Table 6 shows the running times of the three methods, using the 

dataset Ottawa, size 350 x 290 pixels, platform python 3.5, Intel 

Core i7-6850K CPU, and NVIDIA GeForce GTX 1080 Ti 

graphics card. The time taken by the proposed method is 

significantly less than other methods, which makes it an 

excellent post-processing method for consideration in practical 

applications. 

Methods Time(s) 

FCM 5 

RBM 150 

MRFICM 30 

Proposed 0.2 

Table 6. Comparison of the time taken by different 

methods 

5. CONCLUSIONS

This letter applies the fully connected conditional random field 

model to establish a fast post-processing method that fuses the 

original image information with the initial detection results. The 

initial change detection results are used to construct a first-order 

potential function. It uses the global spatial information of the 

original image pair to construct a second-order potential function. 

The aim is to integrate the original image into the initial change 

detection result and obtain a new change detection result by 

summing the two potential functions. Experiments demonstrate 

that the method can effectively eliminate noise, refine the edges 

of the detection region and improve the detection accuracy of the 

initial change detection result and that it only takes 0.2 seconds 

to process a 350 × 290 pixel SAR image, which is sufficient to 

demonstrate the effectiveness, robustness, and efficiency of the 

method. Applying this letter to remote sensing images of 

different resolutions and proposing new fusion methods are the 

main directions of our future research. 
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