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ABSTRACT： 

 

Synthetic Aperture Radar (SAR) Tomography (TomoSAR) is a three-dimensional SAR imaging technique that uses multiple passes to 
process complex SAR images and obtain three-dimensional spatial scattering information to derive the elevation scattering distribution. 
Due to its own shortcomings, the elevation obtained by the traditional spectral estimation method has low resolution in the e levation 
direction and is affected by noise. The imaging algorithm based on compressed sensing can achieve super-resolution reconstruction in 
the elevation direction while reducing the number of observations. However, the CS algorithm still faces challenges when applied to 
real-world tomographic SAR imaging. In particular, it often requires numerous iterations to achieve satisfactory results, which 
significantly reduces its processing efficiency in large-scale tomography. To address the above issues, in this paper, we proposed an 
urban 3D reconstruction of VHR SAR images using an iterative optimization algorithm and layover fixed-order model. The iterative 

optimization algorithm and the layover fixed-order model consist of two parts: The TomoSAR imaging equation is solved by the two-
step iterative shrinkage/thresholding (TwIST) algorithm, and the number of scatterers K is estimated by the Bayesian Information 
Criterion (BIC). In this paper, the effectiveness of TwIST-BIC in TomoSAR imaging in urban areas is verified with real TerraSARX 
data. By comparing with the OMP algorithm based on matching tracking and the FISTA algorithm based on gradient descent. The 
TWIST-BIC method is less complex, converges faster, and combines both execution speed and super-resolution, which can effectively 
solve the processing efficiency problem in large-area tomography and acquire high-resolution tomographic analysis. 
 
 

 

1. INTRODUCTION 

Unlike traditional optical observation methods, Synthetic 
Aperture Radar (SAR) has the ability to operate around the clock 

and in all weather conditions and is therefore widely used in areas 
such as land and resource surveying and natural disaster 
monitoring(Curlander & Mc Donough, 1991). However, 
conventional SAR imaging is limited to acquiring two-
dimensional images of the target in the azimuth-distance domain, 
which fails to accurately depict the three-dimensional scattering 
characteristics of the target. This limitation somewhat hinders the 
further application of SAR images. Synthetic Aperture Radar 
Tomography (TomoSAR) is an advanced extension of SAR 

imaging technology, enabling the acquisition of three-
dimensional spatial scattering information by processing SAR 
complex images obtained from multiple passes in the 
tomographic direction to derive the scattering distribution(Zhu et 
al., 2018a).  
 
Satellite-based TomoSAR technology has been under 
development for about 20 years. In 2000, Reigber et al. 

performed a three-dimensional imaging experiment using a 
Fourier transform algorithm on 14-view L-band synthetic 
aperture radar (SAR) two-dimensional images. The results, 
obtained by imaging building structures, demonstrated for the 
first time the practical feasibility of SAR tomography imaging 
(Reigber & Moreira, 2000). In 2003, Fornaro et al. performed 
data processing experiments using ERS satellite-based SAR data 
to demonstrate the viability of using satellite-based SAR data for 

TomoSAR 3D imaging, laying the groundwork for subsequent 
research and practical applications (Fornaro et al., 2005). In 2010, 
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Zhu et al. conducted the first research experiment on TomoSAR 
imaging of urban areas using compressed sensing techniques and 
proposed a minimized L1 parametric regularised TomoSAR 
imaging algorithm based on compressed sensing (Zhu & Bamler, 
2010). In 2017, Wang et al. proposed an iterative reweighted 
alternating direction multiplier algorithm for fast TomoSAR 
imaging(Wang et al., 2017). In recent years, the field of synthetic 

aperture radar (SAR) imaging has witnessed a surge in novel 
imaging techniques incorporating deep learning methods, leading 
to significant research breakthroughs. The earliest attempt to 
extend traditional networks dates back to 2010, when Gregor and 
Le Cun proposed a novel network for fast sparse coding, LISTA, 
by evolving the Iterative Shrinkage and Thresholding Algorithm 
(ISTA)(Gregor & LeCun, 2010). In 2021, Qian Kun et al. applied 
the LISTA network to TomoSAR imaging and demonstrated 
through simulation experiments that the LISTA network could 

more accurately approximate the Cramér-Rao lower bound 
(CRLB) for tomographic estimation in scenarios with both single 
and multiple scatterers in the elevation direction(Qian et al., 
2021). With the launch and deployment of a new class of meter-
resolution Synthetic Aperture Radar (SAR) systems (TerraSAR-
X, COSMO-Skymed, and GaoFen-3), fast, high-resolution, 
multi-angle, layered three-dimensional imaging of large areas is 
expected in the future, further extending the range of TomoSAR 

applications. 
 
In this paper, we proposed an experimental study on TomoSAR 
and imaging for high-quality 3D reconstruction of buildings 
using CS techniques based on 17-view TerraSAR-X SAR 
complex image data. The iterative optimization algorithms and 
layered fixed-order models are employed in the process. The 
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subsequent structure of this paper is as follows: Section 2 focuses 

on the TomoSAR imaging model, Section 3 introduces the 
compressed sensing (CS) solution scheme for the TomoSAR 
model, and several technically promising methods for solving the 
TomoSAR equation are presented. In Section 4, a TomoSAR 
imaging study is conducted using SAR complex image data from 
17-view TerraSAR-X, followed by a presentation and analysis of 
experimental results. Finally, Section 5 concludes the article.  
 

2. TOMOSAR IMAGING MODEL 

TomoSAR is achieved through the use of multiple height-
oriented baselines, which can be achieved by performing 
multiple flight passes over time or by using multiple antennas 
simultaneously. The geometric model representing SAR 

Tomography imaging is shown in Figure 1. 
 
Synthetic Aperture Radar (SAR) uses N observations of the same 
target, obtained from different spatial and temporal positions, to 
construct a synthetic aperture in the height direction. This allows 
three-dimensional imaging in terms of range-azimuth-elevation 
and facilitates the deconvolution of scatterers. The geometric 
model for tomographic SAR imaging is shown where r is the 

range direction, x is the azimuth direction and s is the elevation 
direction. 

 
 

Fig. 1 Schematic diagram of TomoSAR imaging geometry 
 

Assuming that  N baselines of data (Fig. 1) are available, i.e., N+1 
SAR images acquired by the antenna and arranged geometrically 
arranged, the pixel values at corresponding positions on these 

images can be formed into a sequence 𝑦 = [𝑦0 , ⋯ , 𝑦𝑛] of length 
N+1 after amplitude and phase calibration. The N/2 image is 
selected as the primary image and each pixel value can be 
expressed as an integral of the scattering rate distribution along 

the upward slope. This can be expressed as: 
 

          𝑦𝑛 = ∫ 𝛾(𝑠) 𝑒𝑥𝑝( − 𝑗2𝜋𝜁𝑛𝑠
𝛥𝑠

)𝑑𝑠, 𝑛 = 0,⋅⋅⋅, 𝑁         (1) 

 
If the function is sampled discretely L times along the elevation 
direction and L is large enough, Eq. (1) can be discretised as: 
 

(

𝑔1

⋮
𝑔𝑁

) = (
𝐴11 ⋯ 𝐴1𝐿

⋮ ⋱ ⋮
𝐴𝑁1 ⋯ 𝐴𝑁𝐿

) ⋅ (
𝛾(𝑠1)

⋮
𝛾(𝑠𝐿)

) + 𝜀            (2) 

 
where g is the measurement vector of length N, A is the diction-

ary matrix of size N×L, where 𝐴𝑛,𝑙 = 𝑒𝑥𝑝( − 𝑗2𝜋𝜁𝑛𝑠𝑙) , N is 

the number of observations, 𝑠𝑙(𝑙 = 1,2，⋯ , 𝐿) is the upward 
direction of elevation towards the sampling location, and ε is 
the noise vector.  
 
After discretization, Eq. (2) can be simply approximated as fol-
lows(Fornaro et al., 2003): 

 

                            𝑔𝑁×1 = 𝐴𝑁×𝐿 ⋅ 𝛾𝐿×1 + 𝜀                         （3） 

 
The Tomographic resolution is related to the maximum vertical 
baseline length Δb (shown in Figure 1). Assuming that the base-

lines are uniformly distributed along the length of the synthetic 
aperture above the slant and are well sampled, the Rayleigh res-
olution above the slant-range direction can be obtained as Eq. (4), 
which can be calculated using the following: 
 

                                 𝜌𝑠 = 𝜆 ∙ 𝑟 2 ∙ ∆𝑏⁄                                     (4) 
 

where Δb is the baseline range, r is the slant-range distance from 
the sensor, and λ is the wavelength. 
 

3. TOMOSAR INVERSION 

In the absence of error effects, Spaceborne TomoSAR 3D 
imaging involves two essential steps: 3D imaging and scattering 
parameter extraction. Three-dimensional imaging involves 

reconstructing the complex scattering coefficients γ(s) from the 

TomoSAR signals, while scattering parameter extraction 
involves determining the number and height position of each 

scattering element based on the reconstructed coefficients. This 
requires the use of scatterer detection methods (Ren et al., 2022). 
For the model described in Eq. (3), this paper implements 
compressed sensing based TomoSAR imaging by solving the 
following optimisation problem. The solution method can be 
divided into two main aspects: tomographic sparse spectrum 
estimation and model order selection. 
 

3.1 Tomographic Spectrum Estimation 

For 3D imaging using spaceborne SAR data, the spectral 
estimation method is commonly used to reconstruct the 
backscatter coefficients due to small variations in the angle of 

incidence between different observations(Jakowatz et al., 2012). 
Assuming that the elevation profile is sparse, a sparsity constraint 
(i.e., L0 norm minimisation) can be imposed by solving the 
underdetermined linear system of Eq. (3). The sparsest estimate 
of the reflectivity can be given by Eq. (5). 
 

                       𝑚𝑖𝑛
𝛾

‖𝛾‖0𝑠. 𝑡. ‖𝑔 − 𝐴𝛾‖2
2 ≤ 𝑀𝜎𝜀

2                      (5) 

 

where ‖∗‖0 is the L0 norm; M is the number of acquisitions; 

𝜎𝜀
2 represents the model fitting error(Ren et al., 2022).However, 

the mathematical solution of the L0-norm minimization is a 
generalized NP-hard problem, whereas Candès et al. showed that 

the L0-norm minimization problem can be transformed into an 
L1-norm minimization problem if the signal X satisfies the 
conditions of incoherence, isometric constraints, etc., thus 
transforming the non-convex optimization model into a convex 
optimization model to be solved. Thus, the L0 norm can be 
approximated as the L1 norm. It can be approximated by ridge 
estimation as follows: 
 

                    𝛾
∧

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛾

{
1

2
‖𝑔 − 𝐴𝛾‖2

2 + 𝜆𝐾‖𝛾‖1}               (6) 

 

where 𝜆𝐾 is a hyperparameter that needs to be adjusted according 
to the noise level. For Eq. (6), the current solution methods 
primarily consist of convex optimization algorithms and 
matching tracking class algorithms, which differ significantly in 
principle. The core of the convex optimization algorithm is to 
find the best matching atomic bases in each iteration to 
reconstruct the original signal with the highest accuracy using the 
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least number of bases. The match-tracking algorithm achieves a 

sparse approximation of the original signal by iteratively 
searching for the signal atom that best matches the measurement 
matrix. In Section 3.3 we present three iterative optimisation 
algorithms and matched tracing algorithms for solving the 
TomoSAR equation. 
 

3.2 Model Order Selection  

The task of model selection in SAR tomography is to select a 
matching statistical model from a set of possible parametric 
statistical models based on the estimated backscatter profile data. 
In estimates involving mixed distribution components and model 
order, the Bayesian Information Criterion(BIC) based on 
information theory(Schwarz, 1978) is the most commonly used 

estimation method. The likelihood criteria is  given by: 
 

𝐾
∧

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐾

{
2‖𝑔−𝐴𝛾‖2

2

(𝑀𝜎𝜀
2)

+ 3𝐾𝐼𝑛𝑀}                           (7) 

 

Where 
2‖𝑔−𝐴𝛾‖2

2

(𝑀𝜎𝜀
2)

  is the log-likelihood term of the distribution 

model and is used to characterize the fit performance of the 

model, 3𝐾𝐼𝑛𝑀 is the model complexity penalty term; K is the 
number of scatterers in the stacked mask and M refers to the 
number of channels in the image. Since each scatterer 
corresponds to three parameters, amplitude, phase ,and elevation, 

the model complexity corresponding to K scatterers is 3𝐾𝐼𝑛𝑀. 
 

3.3 OVERVIEW OF EXISTING ALGORITHMS 

3.3.1 Fast Iterative Shrinkage Thresholding Algorithm

（FISTA） 

 
The Fast Iterative Shrinkage Threshold (FISTA) algorithm is a 
common method for solving L1 parametric minimization  
problems. It is mainly based on the principle of gradient descent 

for solving the convex optimization problem in Equation (6). 
The FISTA algorithm is based on the Iterative Shrinkage 
Threshold (ISTA) algorithm using the Nesterov acceleration 
technique, where the difference between one iteration and the 
current iteration is added as an acceleration term when the 
previous variable is updated, allowing the algorithm to converge 
quickly. The FISTA algorithm process is as follows:  
 

𝛾𝑘 = 𝑇(𝑧𝑘) 
 

𝑡𝑘+1 =
1 + √1 + 4𝑡2

2
 

 

𝑧𝑘+1 = 𝛾𝑘 +
𝑡𝑘−1

𝑡𝑘+1
(𝛾𝑘 − 𝛾𝑘−1)                  (8) 

 

where, 𝑡𝑘 is the iteration step it depends on the previous iteration 
step and is constantly changing. In FISTA algorithm 𝑧𝑘  is a 

specific linear combination of 𝛾𝑘−1 and 𝛾𝑘−2 . By this specific 
linear combination the FISTA algorithm converges faster. 

 
3.3.2 Two-step Iterative Shrinkage/Thresholding (TwIST) 
 
The Two-Step Iterative Shrinkage/Thresholding (TwIST) 
method has been proposed to solve the pathological linear inverse 
problem. The algorithm is based on the Iterative Shrinkage 
Thresholding (IST) and the Iterative Reweighted Shrinkage (IRS) 
algorithms, and its core idea is to use the first two iteration values 

to update the current value. TomoSAR can be solved by mini-
mizing the number of L1 paradigms. Therefore, the use of TwIST 
for the TomoSAR study is feasible(Wei et al., 2015). TwIST re-
constructs the scattering coefficients by iteratively solving the 
objective function of Eq. (5). The initialisation of the TWIST 
method can be carried out by the following equation: 
 

𝛾1 = 𝜓（𝛾0 + 𝐺𝑇(𝑔 − 𝐺𝛾0)）         （9） 

 

where 𝛾0 is the initial backward scattering quantity, which can be 

obtained by the least squares method, and 𝜓 is the convex opti-

misation function defined in Eq. (6). When For t ≥ 1, the itera-

tive process starts until convergence to the minimum value of the 
objective function Eq. (6). 
 

𝛾𝑡+1 = (1 − 𝛼)𝛾𝑡−1 + (𝛼 − 𝛽)𝛾𝑡 + 𝛽 ⋅ 𝜓(𝛾𝑡 + 𝐺𝑇(𝑔 − 𝐺𝛾𝑡))
（10） 

where α and β are weighting parameters. The meaning of "two-

step" here is that the value of𝛾𝑡+1depends on both 𝛾𝑡 and 𝛾𝑡−1, 

not only on 𝛾𝑡. This kind of the two-step structure enables fast 
and unbiased estimation of the pathological problem. 
 
 

                       
 

Fig 2 a. Optical picture of the Study area (from Google Earth) 
 
 

 

b. Cropped SAR image block (770x770 pixels) 
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Fig. 3. Spatial and temporal baseline of the data stack.                                  Table 1. Parameters of the TerraSAR-X data 

3.3.3 Orthogonal Matching Pursuit（OMP） 

 
The orthogonal matching pursuit(OMP) algorithm is an 
improvement of the matching pursuit (MP) algorithm(Tsaig & 
Donoho, 2006), which compares the inner product of the target 
signal with the atoms in the selected measurement set, and selects 
the atoms that most closely match the measurement signal g from 
the sensing matrix each time, which are then included in the 

reconstructed sparse basis due to the orthogonalisation process, 
so as to enable the algorithm to converge quickly and obtain the 
reconstructed sparse basis that meets the accuracy of iterative 
error, and then reconstruct the original layer-dispersion vector. 
The OMP algorithm has been one of the commonly used 
algorithms in the CS field because of its simple structure and low 
computational complexity. However, the OMP algorithm is less 
robust to noise, and the reconstruction accuracy of the algorithm 
deteriorates when the atomic correlation in the measurement 

matrix is high. 
 

4. PRACTICAL DATA PROCESSING  AND ANALYSIS  

4.1 Study area and datasets 

For this study, a stack of 17 stripmap images was acquired by the 
TerraSAR-X sensor, enabling the evaluation of proposed 
TomoSAR methods. We selected the apartment building in 
Pingzhou Xincun, Baoan District, Shenzhen and Bao'an First 

Foreign Language School (Middle School) as the target area for 
TomoSAR imaging. As a result of the field survey, the tallest 
building in the study area is a 28-storey residential building with 
a height of approximately 84 metres. The image size of the area 
selected for the experiment is 770 x 770 pixels. Corresponding 
field area is approximately 0.48 x 0.5 Km2 The optical image is 

shown in Figure 2(a), and its corresponding SAR image area is 
shown in Figure 2(b). 
 
TerraSAR-X is the world's first X-band Earth observation SAR 
satellite. As you can see from the XML file that accompanies the 
data: The satellite flew at an altitude of 514 kilometers, a revisit 
period of 11 days, an irradiation direction of right-side view, The 
polarization mode of the images is HH, and the values of the slant 

range and azimuth resolutions are 0.8 m and 0.25 m, respectively. 
The parameters of the TeraSAR-X SAR sensors are summarized 
in Table 1. The SAR images were acquired over Shenzhen, China, 
from the ascending orbit direction between 6 January 2016 and 
31 July 2017. Since the image captured on 13 August 2016 was 
situated at the relative center of both temporal and spatial 
baselines, it was chosen as the reference master image. The 
vertical effective baseline of this SAR dataset is non-uniformly 

distributed, with a baseline span of approximately 𝑏⊥ = 189.8m 

and a heightwise Rayleigh resolution of 𝜌𝑠 = 20.953m. 
The baseline was calculated using SARscape(Simonetto & Follin, 

2011), and Figure 3 illustrates the temporal and spatial baselines 
of the dataset consisting of seventeen views.  

 
 

Fig 4. TomoSAR processing framework. 

Stack Name ShenZhen 

Number of Images 17 

Orbit Ascending 

Work Mode Spotlight 

Flight Height 541Km 

Revisit Cycle 11 days 

Polarization Method HH 

Azimuth Resolution 0.25m 

Slant Range Resolution 0.8m 

Baseline Range 189.8m 

Expected resolution 20.953m 
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FISTA -BIC result                        OMP-BIC result   

 
TwIST -BIC result   

 
Fig.5 Tomography results (after geocoding) 

 
 

4.2 Experiments and Results 

This section presents the results of the TomoSAR reconstruction 
based on the TerraSAR-X dataset. The image size of the selected 
area for the experiment is 770 x 770 pixels. The actual size of the 

corresponding area is approximately 0.48x0.50km2. The 
processing flow of the data is shown in Figure 4 Firstly, in the 
pre-processing phase, we utilized the correlation function method 
for image alignment using SNAP, an open-source SAR 
processing toolbox developed under ESA's auspices. After co-
registration, an interferometric image pair was generated and 
during its formation by SNAP, topographic phase removal was 
performed using an external DEM. Subsequently, operations 

such as flat earth phase and atmospheric phase screen removal 

were performed. Secondly， the SAR tomography processing 

was then performed using FISTA/TwIST/OMP, followed by 

Bayesian Information Criterion (BIC) to estimate the number of 
scatterers per pixel and their corresponding reflectance. Finally, 
project the estimated coordinates of the tomography scattering 
point locations from the SAR imaging coordinate system to the 
geographic coordinate system. This process can be realized by 
geocoding technique. 

 
The distribution of the number of scatterers in the experimental 
area extracted using the three SAR tomography methods is 
shown in Figure 5, and we have assigned different colors to these 
scatterers according to the different elevation values of each 
scatterer. The accurate evaluation of this experiment comprises 
two components. Firstly, it involves comparing the detected 
estimation of the scatterer height values with the true height 
building to calculate the accuracy of height estimation for these 

scatterers. Secondly, the algorithm's performance is 
quantitatively assessed based on both the time required for the 
3D reconstruction of the building and the density of the detected 

scatterers, as presented in Table 2. Figure 5 and Table 2 provide 
visual evidence supporting these findings. 
 

Evaluation 
indicators 

 
TwIST-BIC 

 
FISTA-BIC 

 
OMP-BIC 

Number of 
scatterers 

 
183552 

 
166002 

 
110597 

Processing 
time 

 
2403s  

 
3762s 

 
262s 

Height 

estimates 

 

84.35m 

 

84.82 

 

85.89 

 
 Table 2. Algorithm reconfiguration performance comparison 
(Includes model order selection) 
 
As depicted in Figure 5 and presented in Table 2. The TwIST 
algorithm provides better reconstruction completeness of the 
building as a whole compared to the OMP algorithm based on 

match tracing, with richer details on the edges and main body of 
the residential building, and with more structural integrity of the 
roof. TwIST, due to its unique "two-step" iteration mechanism, 
where the result of each iteration step depends on the results of 
the previous two steps, detected 183552 scatterers in a field area 
of 0.48x0.50 km2, and the height of the scatterers was estimated 
to be 84.32 meters, which is very close to the height of the 
building, 84 meters. The OMP algorithm based on matched 

tracking indicates the best imaging efficiency, about ten times 
that of the TwIST algorithm, but due to the flaws of the algorithm 
itself, OMP has the worst reconstruction accuracy and the lowest 
number of detected scatterers. It is worth noting that the TwIST 
algorithm detects more than 20,000 more scatterers than the 
FISTA algorithm, which is attributed to the TwIST's unique 
"two-step iterative updating" mechanism, and is instead nearly 
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one-third faster than the FISTA algorithm in terms of processing 

time. 
 

5. CONCLUSION 

 

In this work, we proposed a 3D reconstruction of buildings using 
an iterative optimization algorithm and layover fixed-order 
method to improve the processing efficiency of algorithms based 
on the theory of compressed perception for real-world 
applications and to improve the accuracy of building height 
estimation in urban areas. The analysis of the proposed 
TomoSAR method is based on 17 TerraSAR-X strip map 
ascending orbit superimposed images of Bao'an District, 
Shenzhen. Therefore, the tallest building in Pengzhou Xincun 

district is selected as a case study building to analyze the 
efficiency and accuracy of the TwIST-BIC estimation method. 
The gradient descent-based FISTA algorithm and the matching 
tracking-based OMP algorithm are used as comparative 
experiments to evaluate the effectiveness of the method in terms 
of building reconstruction accuracy and imaging processing time. 
The results show that: The TwIST-BIC method is characterized 
by lower complexity, faster convergence, both execution speed 

and super-resolution capability. It is suitable for 3D imaging of 
large area scenes. It also demonstrates that the compressed 
perception technique has great potential for application in urban 
SAR tomography, particularly for high-resolution SAR 
tomography. 
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