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ABSTRACT:

During the High Modernism period spanning from approximately 1914 to 1970, the manufacturing of steel-constructed system
halls witnessed a significant surge to accommodate the growing demand across various sectors such as industry, commerce, and
agriculture. Surprisingly, these specific types of buildings have been largely overlooked in the realm of construction history re-
search, resulting in a dearth of knowledge regarding their construction methods, distribution patterns, and contextual significance
for assessing their historical value. This study aims to address this gap by exploring the potential of instance segmentation methods
for the automated detection of system halls using high-resolution aerial imagery. To achieve this objective, state-of-the-art deep
learning models are evaluated in terms of their ability to localize and delineate system halls accurately. Our experiments reveal that
Mask R-CNN yields the most accurate results both quantitatively and qualitatively, closely followed by Cascade Mask R-CNN.
However, it is important to note that multi-scale methods may introduce false positives since system halls possess distinct geometric
dimensions that necessitate careful consideration during the detection process.

1. INTRODUCTION

Between 1914 and 1970, the High Modernism period saw the
widespread production of various steel system halls to attend
to the growing need for new spatial solutions driven by the in-
dustrial production and logistics requirements of medium-sized
businesses. Regrettably, despite their prevalence, the construc-
tion history of system halls has been disregarded, leading to
inadequate knowledge of the diversity of construction types,
their distribution, and site-specific contexts. Consequently, it
is difficult to determine the feasibility and suitability of listing
them as historical monuments or recognizing them as valuable
and sustainable structures. This work aims to contribute to the
research on system halls by developing methods for their auto-
matic detection. The precise location of these buildings will
allow further study and their evaluation as objects in the history
of building construction and as potential monuments.

Automatic building detection can be performed using machine
learning (ML) and deep learning (DL) algorithms. The primary
distinction between ML and DL is the feature extraction stage
required by the former. This stage typically involves a specialist
who identifies the optimal set of features based on their expert-
ise (e.g., geometric dimensions, texture, appearance, color, and
shape). In contrast, DL algorithms enable end-to-end learning
during training, where the algorithm learns task-specific fea-
tures automatically. In this context, we recognized three main
methods (see Figure 1) for building detection based on DL: se-
mantic segmentation, object detection, and instance segmenta-
tion. The semantic segmentation output is a mask in which each
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pixel is associated with a class label (e.g., system hall and back-
ground). Object detection provides boxes enclosing each object
(building) and its corresponding class. Instance segmentation
produces a more structured output with boxes enclosing each
instance (individual buildings) of each class and a mask with a
class label for each pixel.

Semantic segmentation needs a post-processing (e.g., identific-
ation of connected components) stage to isolate individual in-
stances and to obtain their precise localization (i.e., bounding
box coordinates). On the other hand, object detection lacks a
proper delineation of each building footprint, so it is necessary
to apply another method to delineate each building inside the
generated bounding box. In this context, instance segmenta-
tion supplies better management of individual instances for the
later extraction of measurements (e.g., geometric dimensions
and roof shape) from each building. These measurements are
employed in the categorization and evaluation of each system
hall.

There are four main categories of approaches for instance seg-
mentation: classification of mask proposals (Hariharan et al.,
2014), detection plus segmentation (Zhou et al., 2019), seg-
mentation plus clustering (Kirillov et al., 2017), and dense slid-
ing windows (Pinheiro et al., 2015). In the first approach, the
method involves proposing mask candidates (Arbeláez et al.,
2014) and extracting features from these masks. Afterwards,
these masks are classified and refined to enhance the accuracy
of object boundaries. The second approach modifies architec-
tures similar to two-stage detectors to generate object masks.
For example, Mask R-CNN (Zhou et al., 2019) extends Faster
R-CNN (Girshick, 2015) by incorporating an object mask pre-
diction branch along with the object bounding box recogni-
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Figure 1. Exemplification of results obtained different
approaches for automatic building detection from aerial imagery.

tion branch. The third approach combines semantic segment-
ation with clustering methods to distinguish between object in-
stances and backgrounds. In (Kirillov et al., 2017), two separate
branches are used to produce per-pixel class and edge scores.
The edge scores are employed to extract super-pixels, which
are then merged based on the class scores to generate the object
instances. Lastly, the fourth approach applies a dense sliding
window technique across the entire image, where each window
passes through a model equipped with segmentation and object
detection heads. In (Pinheiro et al., 2015), these heads are par-
allel branches that predict a segmentation mask for the object
located at the center and an object score to determine the pres-
ence of an object within the window.

In our previous work (Achanccaray et al., 2023), we extensively
assessed semantic segmentation and object detection methods
for system hall detection from very high-resolution airborne im-
agery, concluding that segmentation methods are more suitable
for this task. In this work, we explore instance segmentation
methods as a better solution for the automatic detection of sys-
tem halls. Thus, we aim to answer the following research ques-
tions:

• Is it possible to directly detect specific building types in
an end-to-end learning manner without a post-processing
step?

• Is instance segmentation more suitable than other methods
for the detection of specific building types?

To this end, we use state-of-the-art instance segmentation meth-
ods to assess their suitability for automatic system hall detec-
tion. The evaluation of these methods is performed quantitat-
ively and qualitatively.

The remaining parts of this work are organized as follows: Sec-
tion 2 presents the study area and the dataset built to train and
assess all methods, Section 3 explains each step of the meth-
odology employed for automatic detection of system halls and
provides a brief description of each method, Section 4, describes
the experimental protocol followed in our experiments and the
results obtained by each method in terms of accuracy metrics
and visual predictions, and Section 5 summarizes our findings
based on the performed experiments and outlines the next steps
in our research to further improve our results

Mecklenburg-
Vorpommern

Sachsen-
Anhalt

Thüringen
Sachsen

Brandenburg

Berlin

Figure 2. Distribution of system hall locations found by visual
inspection.

2. DATASET

Our dataset was built based on the locations of system halls
found by visual inspection using aerial photos and 3D views
from Google Earth. This inspection was performed employing
the information obtained from different system hall manufac-
turers from the former German Democratic Republic (GDR).
Then, Digital Orthophotos (DOP ) and Normalized Digital Sur-
face Models (nDSM ) were collected to cover all these loca-
tions (green dots in Figure 2). A total of 110 image tiles were
used from different states in Germany: Berlin (7), Brandenburg
(16), Mecklenburg-Vorpommern (29), Sachsen (20), Sachsen-
Anhalt (15), and Thüringen (23). These tiles have sizes of 5K×
5K or 10K×10K pixels, with 20 cm spatial resolution. DOPs
contain spectral information in four channels: Red, Green, Blue,
and Infrared. nDSM was created by the subtraction between
Digital Surface Models (DSM ) and Digital Elevation Models
(DEM ). Both spectral and height information was acquired
from each state’s geoportals1234.

The annotations (labels) to train the detection algorithms for in-
stance segmentation were created manually using the Quantum
GIS (QGIS)5 software. First, a vector layer was created to store
the polygons delineating each building. Then, each vector layer
was rasterized in TIF format. Finally, the segmentation mask
and bounding box coordinates were obtained from the delin-
eated polygons and the coordinates of their contours. Our data-
set includes four different types of system halls (see Figure 3):
KT 60 L, Ruhland, GT 60 L, and 24×42. Figure 3 shows each
system hall type illustration (first row) and 20 cm spatial resolu-
tion DOP (second and third rows) covering each type location.
The total number of instances is 188 distributed in the follow-
ing way: KT 60 L (81), Ruhland (74), GT 60 L (10), and 24×42
(23). As our main objective is to find where a system hall is

1 https://www.geodaten.sachsen.de
2 https://www.lvermgeo.sachsen-anhalt.de/
3 https://www.geoportal-th.de/
4 https://geobasis-bb.de/lgb/de/
5 Available at: https://qgis.org/en/site/index.html
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Figure 3. System hall types available in our dataset. From left to right: KT 60 L, Ruhland, GT 60 L, and 24×42. Sketches (first row)
and their respective 20 cm DOP (second and third rows).

Figure 4. Methodology followed to assess instance segmentation models (blue boxes) for the automatic detection of system halls, in
comparison with our previous work where semantic segmentation and object detection methods were explored (grey boxes).

located independently of its type, we merged all classes into a
single class. For that reason, our dataset comprises two classes:
system hall and background.

3. METHODOLOGY

Our methodology is presented in Figure 4, where instance seg-
mentation methods are used for the automatic detection of sys-
tem halls. In contrast with semantic segmentation and object
detection approaches, instance segmentation provides us dir-
ectly with the precise localization and mask of each building,
not needing post-processing of their outcome. From the entire
dataset, two mutually exclusive sets are created: train and test.
The train set is split internally into two sets: train and validation
(not shown in Figure 4), where the train set is used to update
the parameters model and the validation set to select the best
set of these parameters. Once the training has finished, the test
set is used to produce the model’s prediction, which is assessed
quantitatively and qualitatively to determine which model is the
most suitable for our application.

For instance segmentation, we selected the following DL-based
architectures for being the current state-of-the-art in the COCO6

6 https://cocodataset.org/

(Lin et al., 2014) dataset: Mask R-CNN, Cascade R-CNN (Cai
and Vasconcelos, 2018), Mask Scoring R-CNN (Huang et al.,
2019), SOLOv2 (Wang et al., 2020b), and RTMDet (Lyu et al.,
2022).

Mask R-CNN: Mask R-CNN extends Faster R-CNN by in-
cluding a branch for predicting an object mask parallel to the
bounding box recognition branch. Thus, the first stage of Mask
R-CNN is similar to Faster R-CNN: region proposal. Then, in
the second stage, Mask R-CNN predicts a binary mask for each
Region of Interest (RoI), a class, and box offsets.

Cascade R-CNN: Cascade R-CNN was proposed to over-
come the detection performance decreasing as a consequence
of using high Intersection over Union (IoU ) during training.
Cascade R-CNN is composed of a series of detectors trained
using progressively higher IoU thresholds, enabling them to
become increasingly discerning when it comes to eliminating
nearby false positives. The detectors undergo incremental train-
ing stages, taking advantage of the insight that the output of one
detector serves as a valuable training distribution for the sub-
sequent detector of superior quality.

Mask Scoring R-CNN: Mask Scoring R-CNN deals with the
lack of correlation between mask quality and its classification
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bounding box mask

Model Backbone AP0.5 AP0.75 AP0.5:0.95 AP0.5 AP0.75 AP0.5:0.95

Mask R-CNN ResNet 50 84.6 76.1 66.5 84.6 70.6 67.8

Cascade Mask R-CNN ResNet 50 76.8 72.4 65.9 77.3 72.4 65.7

Mask Scoring R-CNN ResNet 50 83.8 71.1 61.4 82.8 70.0 63.9

SOLOv2 ResNet 50 - - - 87.1 68.7 65.3

RTMDet tiny CSPDarknet 65.3 53.4 44.6 68.3 57.2 52.0

RTMDet small CSPDarknet 55.7 43.1 34.1 57.4 41.6 41.4

Table 1. AP values at different IoU thresholds for bounding box and mask obtained by all selected methods. The highest values per
threshold are highlighted in bold.

score. Within Mask Scoring R-CNN, a network block is dedic-
ated to acquiring knowledge about the quality of the predicted
instance masks. This network block combines the instance fea-
ture with the corresponding predicted mask, allowing it to es-
timate the mask IoU through regression. The mask scoring
strategy addresses any disparities between mask quality and
mask score, enhancing the performance of instance segmenta-
tion by giving higher priority to more precise mask predictions.

SOLOv2: SOLOv2 is an improved version of SOLO (Seg-
menting Objects by LOcations) (Wang et al., 2020a). SOLOv2
derives its strength from a proficient and comprehensive in-
stance mask representation scheme that actively segments each
instance present in the image, bypassing the need for bound-
ing box detection. More precisely, the process of generating
object masks in SOLOv2 is divided into two parts: mask ker-
nel prediction and mask feature learning. The former generates
convolution kernels, while the latter generates the feature maps
that are subsequently convolved with these kernels. For this
reason, SOLOv2 generates a mask per instance without direct
prediction of its bounding box.

RTMDet: RTMDet uses modified CSPDarknet blocks (Boch-
kovskiy et al., 2020) with large kernel depth-wise convolution
layers as the backbone. The neck of the model is composed of
multilevel features extracted from the backbone and fused by a
series of convolutions. Finally, the detection heads have shared
convolution weights and are used to predict the classification
and regression results for (rotated) bounding box detection. In
our experiments, we only used the tiny and small versions of
RTMDet due to memory limitations.

4. RESULTS

4.1 Experimental protocol

The 110 image tiles acquired in the dataset were split into three
mutually exclusive sets: train (44), validation (22), and test
(44). These splits were created in a stratified manner consider-
ing the German states of each image tile to ensure that each set
has images from all states. This is important as image tiles from
different states are slightly different in terms of appearance due
to different pre-processing approaches, especially for nDSM ,
which depending on the state, can be image- or LiDAR-based
with different point densities and grid sizes. Then, from each
image tile, patches of 1500 × 1500 were extracted from each
building. A total of five patches were extracted from each build-
ing by varying the relative position of each building in the patch:

centered, to the north, to the south, to the west, and to the east.
This was performed to increase the number of patches and the
variability of samples in our dataset. Finally, patches with an
overlapping higher than 50% were discarded to avoid redund-
ant information.

All DL instance segmentation methods used ResNet 50 (He
et al., 2016) as backbone pre-trained with ImageNet (Deng et
al., 2009), with the exception of RTMDet, which uses CSP-
Darknet. We used each model’s pre-trained weights with the
COCO dataset and fine-tuned the models for a maximum of 50
epochs. All model parameters are the ones recommended by the
authors. The whole methodology was implemented in Python
language using PyTorch and the MMDetection7 framework. To
increase each model’s robustness, random flips were applied
as data augmentation during training. Only this transformation
was considered to avoid modifying the scale and appearance of
the buildings because system halls have specific geometric di-
mensions and roof materials. As the input to these models is
an image with three channels, we created false color RGB com-
positions to train each model. The false color RGB compos-
ition has the following configuration: Infrared (R), Gray (G),
and nDSM (B), where Gray is the arithmetic mean of the Red,
Green, and Blue channels from the DOP , with equal weights
for each channel.

4.2 Quantitative results

Table 1 summarizes our results in terms of Average Precision
(AP) at different IoU thresholds: 0.5, 0.75, and 0.5:0.95, for
bounding box and mask obtained by all instance segmentation
methods. The highest values per threshold are highlighted in
bold. The bounding box metrics provide information regarding
how accurate is the localization of each building, while mask
metrics about their delineation at the pixel level.

Mask R-CNN achieved the highest AP for almost all thresholds,
while the lighter versions of RTMDet (tiny and small) got the
worst results. Note that there are no bounding box results for
SOLOv2 as this algorithm directly produces a mask per in-
stance. A good trade-off between bounding box and mask met-
rics is provided by Mask R-CNN and Cascade Mask R-CNN,
which obtained the best results for IoU0.5:0.95. Mask Scoring
R-CNN and SOLOv2 obtained high mask AP for IoU0.5: 82.8
and 87.1, respectively; however, it decreased substantially for
IoU0.5:0.95, indicating that these models are not as robust as
Mask R-CNN.
7 Available at: https://github.com/open-mmlab/mmdetection

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1303-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1306



Figure 5. Snips of images from the test set with their corresponding predictions and scores (black boxes) for all selected methods.
From left to right: samples acquired from different locations. Note that all models were trained on false color RGB compositions but,

just for visualization purposes, the true color RGB compositions with the predictions are shown.
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4.3 Qualitative results

Figure 5 shows snips of images from the test set with their
corresponding predictions and scores (i.e., how confident the
model is about the prediction) generated by each method (each
row).

We can observe in the first column (Figure 5) that occluded
(e.g., by trees) and too-close instances (i.e., a building next to
the other) are challenging for almost all methods. For instance,
Mask Scoring R-CNN and RTMDet, both versions, missed one
or two buildings (RTMDet tiny), while SOLOv2 produced a
mask delineating both buildings but as a single instance as the
buildings are adjacent. In addition, only Mask R-CNN obtained
predictions with high scores (73.9 and 98.0), while other meth-
ods were uncertain about their results (e.g., SOLOv2: 56.8 and
RTMDet small: 51.1).

In the second column of Figure 5, we can see the presence of
some false positives and negatives. Cascade Mask R-CNN and
RTMDet tiny missed one building, while RTMDet small gen-
erated two false positives, which correspond to a large building
with a similar roof. In general terms, almost all methods suc-
cessfully delineated each building, with the exception of RTM-
Det small, which had some problems with shadows (Figure 5,
third column) resulting in a concave mask.

Note that in the last column of Figure 5, all methods detected
the same false positive. From the DOP , this building has a
similar roof type to the GT 60 L type (see Figure 3). To verify if
it is a new finding or just a false positive, we collected 3D views
of that location from Google Earth. Figure 6 presents these 3D
views and their corresponding DOP for a GT 60 L type (left)
and the aforementioned false positive (right).

We can see that both buildings look really similar; however, the
false positive corresponds to a greenhouse with a similar outer
structure but different geometric dimensions (height, width, and
length). Even if we did not apply any data augmentation tech-
nique to simulate different scales, many instance segmentation
methods do it to be robust against objects at multiple scales.
This is performed by resizing the input image to different pre-
defined input sizes depending on the method. This is a par-
ticular characteristic of state-of-the-art instance segmentation
methods which is not desired for our specific application as the
buildings we are looking for possess exact geometric dimen-
sions. Thus, instance segmentation is suitable for our applic-
ation based on the proper localization and delineation of each
building; however, it is necessary to consider the robustness of
the methods against different scales, which can generate false
positives as described before.

5. CONCLUSIONS

In this work, we explored the suitability of instance segment-
ation models for the automatic detection of system halls from
the high-modernism period using aerial imagery. For this pur-
pose, state-of-the-art DL-based algorithms were selected and
assessed quantitatively (in terms of average precision at differ-
ent IoU thresholds) and qualitatively (based on a visual inspec-
tion of the generated predictions). From our experiments, we
concluded that instance segmentation methods are able to gen-
erate accurate localization and delineation of system halls, es-
pecially Mask R-CNN, which achieved the highest metric val-
ues. It is worth mentioning that the multi-scale characteristic

Figure 6. DOP and Google Earth 3D views of a GT 60 L and a
false positive detected by all methods.

of some methods can lead to the generation of false positives.
This is critical for our application as system halls are paramet-
rized buildings that were produced with specific geometric di-
mensions and scales. This can be overcome by fixing the scales
to train each method, or post-processing to discard those false
positives.

In the following steps, we will perform the automatic detec-
tion of system hall types. This is a multi-class problem that we
have not explored yet as there are some system hall types with
just a few instances, resulting in a highly imbalanced dataset.
Moreover, based on the information collected from manufac-
turers, there are more than 80 system hall types in Germany,
of which some types might not continue to exist nowadays. To
overcome the lack of samples for some types, we will use syn-
thetic data generated manually or automatically by generative
models such as Generative Adversarial Networks (GANs) or
Diffusion models.
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