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ABSTRACT:

Converting deep learning methods from benchmark testing to real applications is highly sought after both in academia and the
industry. Key challenges that remain are the performance of the methods on new datasets, the preprocessing of the data and the
integration of the results into application pipelines. Specifically for the implementation of semantic segmentation procedures, each
of these challenges are still very much the subject of research. In this paper, we present a testcase to digitally twin and validate
an electrical substation. Concretely, we discuss the data processing, training and the follow up integration of the results in the
validation pipeline. In the experiments, we show that 86% initial F1-score can be achieved using the proper transfer learning on 14
classes and that this results in a 97% recall on the validation and 80% recall on the digitization of the substation. Overall, we show
that the segmentation significantly contributes to these processes and that they are absolutely necessary for the automation of the
digital twinning.

1. INTRODUCTION

Semantic segmentation procedures are becoming increasingly
potent to process large-scale point cloud data. Specifically in
the Architectural, Engineering and Construction industry, these
semantically segmented point clouds are necessary to better cre-
ate, analyze and validate construction digital twins. Current
processes still require labor-intensive human interpretation of
the raw point cloud data. Moreover, nuanced spatial analyses
are currently unachievable because the point clouds are not seg-
mented. A prominent task is the validation of digital twins with
respect to the as-built conditions (Patraucean et al., 2015). As a
metric for the accuracy of the model, the Euclidean distance is
observed between both datasets, and the mean or standard de-
viation is reported for the distances up to a cut-off distance (Ja-
didi et al., 2015). This analysis is negatively impacted by stray
points that do not belong to the object and thus produce mis-
leading result. Analogue, automated modeling of geometric ob-
jects such as beams, pipes, walls, etc. require a clear delineation
of the object boundaries to not produce false positives (Bassier,
Vergauwen, 2020).

The semantic or instance segmentation is currently achieved
through deep learning algorithms. Given sufficient training data,
these models can predict class labels or segment object instance
in new point clouds. These class labels are then used to sepa-
rate the point cloud into its respective components that can be
used for validation, modeling or analysis. Several deep learning
architectures show very promising results for the generalization
of various benchmark point cloud data. However, key obstacles
still remain to integrate these networks into industry pipelines.
A first aspect is the training data preparation, which includes
the production of relevant and sufficient known observations
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for each class. While some class imbalances have been tack-
led within the networks themselves, these methods have their
limits and thus a careful data preparation is required. A sec-
ond aspect is the data structuration of the input point clouds
including the density, region of influence and potential features
that all heavily impact the training and detection performance.
Even a slight deviation from the benchmark data can lead to a
reduction of 10-20% mIuO (De Geyter et al., 2022). A third as-
pect is the post-processing of the results and the integration of
the segmented data into existing pipelines. There are different
strategies that can be used to deal with false positives or outliers
in the detection results, which can have a significant impact on
the final application.

This research discusses each of the above aspects in the case
study of an electrical substation. In summary, the main contri-
butions are:

1. A literature study on the obstacles and solutions for deep
learning adoption

2. An empirical study of the adaption of state-of-the-art deep
learning for custom datasets

3. A practical case study to embed semantically segmented
point clouds into a validation pipeline

The remainder of this work is structured as follows. The back-
ground and related work is presented in Section 2. In Section 3,
the methodology is presented. The experiments results are dis-
cussed in Section 4. Finally, the conclusions are presented in
Section 5.
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Figure 1: Overview of the 3D data of an electrical substation: (left) CAD model with several thousand elements used for
project planning and maintenance and (right) terrestrial laser scanning point cloud with circa 90 million points.

2. BACKGROUND AND RELATED WORK

2.1 Deep learning methods

There currently are three popular methods for the semantic seg-
mentation of point cloud data i.e. projection-based methods,
volumetric methods and point-wise segmentation methods (Guo
et al., 2019). Projection-based methods transform the 3D data
into a series of 2D raster similar to images. These methods
leverage the recent advancements in image processing and achieve
very good segmentation results on objects that are captured en-
tirely within the field-of-view i.e. small-scale objects such as
building or street furniture. Additionally, the computational
complexity of these methods O(n2) is significantly lower than
their 3D counterparts. As a result, image processing networks
can be larger which aid the interpretation of the information.
However, projecting point clouds comes at a steep cost (Wu
et al., 2023). Significantly more 2D rasters are needed of the
same scene than point clouds. This is especially true for point
clouds that are produced by structure-from-motion pipelines
which have up to 90% overlapping imagery. More importantly,
projection-based methods often fail to correctly segment ob-
jects that span across multiple images e.g. both sides of a wall.
Overall, these methods are best suited to segment objects that
fit within a single raster and that have strong texture signa-
tures. SOA methods such as UNetFormer (Su et al., 2015) and
SVQNet (Liu et al., 2016b) achieve over 80% mIuO on these
types of data but are typically not proposed for unstructured
point cloud data.

Volumetric methods offer a good alternative as they retain the
fixed rasterization, but operate more directly on the 3D data.
Methods such as OctNet (Riegler et al., 2017) and VoteNet (Ding
et al., 2020) partition the 3D space into a serious of regular vox-
els. The 3D rasterization yields an O(n3) complexity over the
input space and thus these networks tend to be smaller. Addi-
tionally, larger cuboids are needed to encompass larger spaces
and thus volumetric methods typically struggle with high den-
sity point clouds. Irregular octrees and data tiling are proposed
to remedy this shortcoming i.e. OctNet requires less mem-
ory and runtime for high-resolution point clouds. Hybrid ap-
proaches are also proposed such as PointGrid (Le et al., 2018)
that combine both point and grid representations for efficient
point cloud processing. Overall, these methods work best when
there are irregular point densities, and low scene detailing that
allow for significant downsampling.

Point-wise segmentation methods are currently the preferred
technique as these operate directly on the point cloud. The
point cloud is batched into a fixed number of points, that is then
fed to the network. Similar to the volumetric methods, these
methods have an O(n3) complexity but retain the detailing of
the point cloud. This is a promising technique, as long each
batch contains sufficient information about the scene, which can
be problematic in high-density point clouds. Methods such as
PointNet (Qi et al., 2016) and KPConv (Thomas et al., 2019)
batch the input point clouds into small blocks of 1x1m, making
it challenging to interpret larger objects. Recent networks use
nearest neighbors i.e. RandLA-Net (Hu et al., 2020) and Point
Transformer (Zhao et al., 2021) can process over 40k points per
batch, which scales better with varying point density. Overall,
these methods work best when there is sufficient detailing in
each batch of the point cloud such as in complex indoor envi-
ronments.

2.2 Training datasets

Industry projects do well to align themselves with online point
cloud benchmarks as novel methods are designed and tested
on these. Point cloud benchmarks can be divided into roughly
three topics. Aerial datasets such Vaihingen and Potsdam are
characterized by their low but consistent density e.g. 25 points/m²
and detailing given the constant flight altitude. They are usually
structured in 2D regions or depth maps. Typical classes include
vegetation and various man-made structures such as buildings,
utility lines, roads and sometimes smaller objects such as cars
or fences. As further downsampling is strongly discouraged and
voxel-based methods do not typically perform well on these
datasets. Projection-based methods work very well, since the
combination with high density imagery uncovers a lot of miss-
ing details and all objects are within the field-of-view of the
image. Point-based methods also work well due to the rela-
tively consistent detailing in the point cloud due to its very low
resolution (Thomas et al., 2019). As a result, the point batches
contain sufficient context and generalize well.

The second type of datasets are urban mobile mapping or nav-
igation datasets such as SemanticKITTI, NuScenes and Paris-
lille-3D. These datasets vary in density depending on the prox-
imity of the surroundings to the sensor. These datasets are either
structured by per frame panoptic point clouds or in regions and
typically include one or more streets. Typical classes include
vehicles, pedestrians, the street and some man-made structures.
Projection-based methods again work very well in this case as
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Figure 2: Overview of the ground truth labels of the 14 classes with the % of points per class in the electrical equipment.

illustrated by SSD (Liu et al., 2016a) and SphereFormer (Lai
et al., 2023), especially in combination with image data. Ana-
logue to the aerial datasets, most objects are observed within
the field-of-view except for the street and buildings. However,
the concatenation of these observations does not yield much
additional information since only the facade and street deck are
observed anyway. Voxel-based methods perform well due to
the repetitivity in the scenes but downscaling can pose prob-
lems from small-scale objects such as pedestrians (Tang et al.,
2020). If the point clouds are unstructured, point-wise classifi-
cation methods have the best performance (Liu et al., 2021).

The third type are indoor or terrestrial datasets such as S3DIS,
Semantic3D and ScanNet. These datasets are high-density and
typically organized per frame (RGBD) or per room. This last
one is a challenge as industry projects do not have this sepa-
ration. Typical classes include various structure, architecture
and furniture elements. All three methods perform quite well
on rooms i.e. on S3DIS, DeepViewAgg (Robert et al., 2022)
(74.7% projection), Swin3D-L (Yang et al., 2023) (79.8% vol-
umetric), StratifiedTransformer (Lai et al., 2022) (77.6% point-
wise) all have top performances. If the datasets were unstruc-
tured, it is expected that the latter two will yield better perfor-
mance.

2.3 Post-processing

Two typical procedures in digital twinning are validation and
digitization/ modeling (Bonduel et al., 2017). In the former, the
remote sensing inputs are evaluated to assess whether all objects
are placed on site in the correct location. Typical validation
techniques include Euclidean distance evaluation, collision de-
tection and object detection and segmentation techniques (Son
et al., 2015). The former two are unintelligent and work well
for any object that is captured with sufficient point detailing and
has a high geometric resemblance to its digital counterpart. The
latter attempts to detect individual objects such as through in-
stance segmentation. This works well for well-trained object

classes but is very difficult in new projects. A key issue to over-
come is the inherent differences between the digital twin and the
point clouds due to abstractions, modeling differences, relative
positioning, visibility, etc. A common technique is to perform
a localised registration between both geometries to improve the
distance correlations i.e. through iterative closest point (ICP)
variants or global registration pipelines (Bassier et al., 2020).

In digitization or modeling, the remote sensing inputs are eval-
uated whether all objects have a digital counterpart and model.
This is typically performed by the above distance evaluations
in combination with an instance or semantic segmentation to
determine the type of object that is missing. Once the observa-
tions of an object are then isolated, it can be placed or modeled
in-situ. These operations have the same problems as with the
validation procedures. Typically, a two steps procedure is pro-
posed where first a set of candidate partial geometries is pro-
posed, after which the final geometries and there connections
are modeled (Bassier, Vergauwen, 2020).

3. METHODOLOGY

3.1 Dataset modalities

To devise a proper segmentation and validation workflow, we
first identify the characteristics of the substation and the point
cloud data. The substation used in this study is an Air Insu-
lated Substation (AIS). There are over 300 of these stations in
Flanders, Belgium and they are documented for project plan-
ning and maintenance. The substations consist of thousands of
standardized elements including cables, transformers, voltage
cabins, pylons, support structures and so on (Figure 1). The
scope of this study is limited to the visible exterior elements
so the buildings interior is not considered. Overall, each ele-
ment can be well observed with remote sensing and there is few
clutter on the site.

The substation is mapped using terrestrial laser scanners and
thus has a varying density. In this study, the point clouds are
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(a) Linearity (6m) is distinctive for lanterns and fences in con-
trast to other vertical structures.

(b) Sphericity (0.2m,0.3m,0.6m) is dintinct for various cables,
busbars and isolators in contrast to other elements.

Figure 3: Overview of the covariance features used in
PointTransformer.

considered unstructured. Note that no color was captured as
most objects are an indistinguishable gray or black. The over-
all density of the 90M point cloud is circa 1point/cm which is
needed to validate the numerous elements on site. However, the
data distribution for the different classes is dramatic. 51% is
vegetation, 35% is terrain and only 14% actually belongs to the
target equipment. 14 equipment classes are identified but these
lack class balancing as shown in Figure 2, with less than 1%
of the data belonging to the foundations, low voltage cabins,
cables, busbars and stairs.

The CAD of the substation is a combination of vector and block
geometries. Over 32000 geometries in 76 layers are present in-
cluding mostly polylines, meshes, solids, points, hatches and
text (Table ??). Model differences include the presence of ab-
stract geometries i.e. schematic powerlines, invisible geome-
tries under ground, wire-frame blocks, simplified geometries
and so on (Figure 4). Moreover, some blocks definitions, lay-
ers and equipment classes do not align perfectly i.e. a block
can have nested objects from multiple classes and so do certain
objects in the same layer. Overall, the CAD was designed for
project planning and operations, and in its native form, it is not
directly usable for validation.

3.2 Semantic segmentation

Ideally, an instance segmentation is used for the interpretation
of the point cloud data that suits the needs of the validation
and digitization tasks. However, this is completely infeasible
in new projects with hundreds of unique elements with vary-
ing sizes and geometric/texture signatures without excessive
training data. Instead, a semantic segmentation is proposed of
14 equipment classes that helps identify object types on site.

Figure 4: Overview of CAD vs PCD deficiencies.

The segmentation is performed in two stages. First, the veg-
etation and ground points are detected using commercial soft-
ware. Second, a point-based semantic segmentation network
is trained on the manually created samples of the unstructured
point cloud. The reasons for picking a point-based network are
that the unstructured data with significant detailing best fits with
these types of methods. Additionally, the density of the point
clouds varies greatly depending on the sensor setup. Finally,
both large and small objects are present, which are subideal to
process with voxel of projection-based approaches.

We consider Point Transformer (Zhao et al., 2021) for the se-
mantic segmentation as it is a recent network that generalizes
well over similar unstructured benchmark datasets including
S3DIS and Semantic3D. Additionally, we have altered the Point
Transformer implementation so it can be enriched with addi-
tional features i.e covariance features such as linearity, which
allows the encoding of properties larger than the data tiling
of a network. For instance, the lantern poles are challenging
to discern from cylindrical steel columns but they are signifi-
cantly taller. A linearity property within a search space of 6m
will highlight the lantern poles while both classes will have the
same properties in the network that most likely does not consid-
ered points within 6m as only 40k points are selected per batch.
Point Transformer both with and without features is trained for
300 epochs in a cross-validation setting on the complete dataset
with the appropriate class-balancing countermeasures i.e. data
augmentation, perturbations, etc. Table ?? and Figure 3 show
the features used and their signatures.

3.3 Validation & Digitization

CAD preperation The CAD geometries are converted to Open3D
geometries for the evaluation. Two approaches are considered:
(1) the CAD is parsed directly in python using the ezdxf DXF
library. However, nested block definitions proved problematic
especially in combinations with abstract geometry types. BODY,
3DSOLID, SURFACE, REGION objects also require the pro-
prietary ACIS SDK from Spatial Inc. 1. (2) A Rhino Grasshop-

1https://www.spatial.com/products/3d-acis-modeling
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CAD Open3D
Blocks 960 0 Foundation 28
Points 139 1 Building 76
Curves 27000 2 Fence 12
Surfaces 195 3 L Pole 4
PolySurfaces 2017 4 LC Cabine 4
Meshes 1567 5 Transfo 73
Text 36 6 Pyloon 65
Hatches 58 7 Metal A 421

8 Metal V 186
9 Isolator 82
10 Cable 549
11 Busbar 15
12 Stairs 39
13 Support 798

Total 32686 Total 2352

Table 1: Overview of CAD objects and converted Open3D
geometries.

Features

Linearity (0.5m,6m)

Planarity (0.5m)

Sphericity (0.2m,0.3m,0.6m)

Omnivariance (0.5m)

Anisotropy (0.1m)
Sum of Eigenvalues (0.6m)

Change of curvature
Height Z

Intensity I

Table 2: Overview of CAD objects and converted Open3D
geometries.

per 2 script is developed where a set of simple routines can be
used to automatically export only relevant geometries as polyg-
onal meshes. The second approached is heavily favored as it
provides better control over the evaluated geometries.

Validation To minimize the errors caused by relative and schematic
placement of the CAD objects, we first propose a local registra-
tion between both geometries. Note that the registration of in-
dividual objects would be prone to misassociations with nearby
objects. Analogue, a linear transformation for the entire site is
prone to the same placement errors. Instead, we perform a k-
nearest neighbor selection on the CAD objects so only a local
region is transformed (Figure 5). Both a global FPFH and local
ICP transformation were investigated but the ICP proved sig-
nificantly better in most cases. This is due to the FPFH features
between the CAD and PCD being suboptimal due to model ab-
stractions. Instead, the larger but more simplistic parts are typ-
ically the same in both geometries and are favored by ICP vari-
ants.

The validation itself is formulated as follows. An object is con-
sidered present if a significant portion of its geometry lies close

2https://grasshopper.app/

Figure 5: Overview point cloud subdivision for the lo-
calised registration.

Figure 6: Overview of the semantic segmentation results
and problems: Confusion between (A) stairs and building,
(B&C) Metal-v and Building.

to a portion of the point cloud that has a matching class. To this
end, the CAD meshes are sampled with the same density as the
input point cloud P . The resulting reference point cloud Q is
used to count the inliers in the point cloud (Eq. 1,2).

Q′ =

{
qj

∣∣∣qj ∈ Q, pi ∈ Pi : argmin
qj

∥pi − qj∥≤ td

}
(1)

presence =

{
1, |Q′|

|Q| ≥ tc

0, else
(2)

where ypi , yqj ∈ ς = {transformator, ground, etc.}. This
proximity can be further expanded with additional conditioning
on the normals of the points but yielded no better results. The
result is a binary classification of the CAD objects whether they
are present or not.

Modeling The modeling is considered a two-step procedure.
First the point cloud is filtered to isolate the observations of
missing objects. Second, their corresponding CAD represen-
tations are computed and added to the model. For the first
step, we reverse the distance evaluation in Eq.1. The condition
ypi = yqj is not kept under the assumption that two objects
cannot coexist in the same space even if they have different
classes (Figure 7a). As such, P ′ solely contains new geome-
tries (Eq. 3).

P ′ =

{
pi

∣∣∣pi ∈ Pi, qj ∈ Q : argmin
pi

∥pi − qj∥≥ td

}
(3)
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The members of P ′ are then clustered using Density-Based
Spatial Clustering of Applications with Noise (DBSCAN). The
result is a set of point clusters P ′ per class that surpass a mini-
mum threshold of points tp and with a spanning distance dmin

(Figure 7b).

(a) Point cloud candidates that do not have CAD counterparts.

(b) Result matching P ′ to P segmented by Q.

(c) Resulting CAD modeling.

Figure 7: Overview of the modeling pipeline.

For the second step, we associate the newly formed clusters in
P ′ with segmented clusters from P that do have a match in Q
to determine whether there is similar element that is scanned on
the site. We specifically use P as the source for the association
instead of Q to mitigate the numerous model abstraction errors
that also prevent the global registration pipeline to succeed. In-
stead, we propose the use of FPFH features in a global pipeline
to assess the similarity between members in P ′ and the seg-
mented P . However, for all but the best matches, we leave it
up to the user to decide which object should be modeled at a
certain location. For the clusters that do find a match, we use
the transformation parameters from the global registration as
the new insertion point of the detected CAD object (Figure 7c).

4. RESULTS AND DISCUSSION

For the inspection, the CAD was restructured to a total of 2352
objects in 14 layers conform the detection classes. 88% (2074)
objects have a valid Open3D TriangleMesh geometry and 70%
of those geometries are considered present on site in their de-
signed shape (loosely within half a meter tolerance) through
manual inspection. This is low given that the site is fully opera-
tional but this is largely due to above described shortcomings of
the TLS data and the CAD model. Note that the distribution of
missing/improper objects also greatly varies depending on the
size i.e. the 50% largest geometries have an average built status
of 93%, while the lower half only have an average 67% built
status. This is even more drastic for the 10% smallest objects
that only have a confirmed presence of 25%.

For the development of the segmentation model, several config-
urations were testing with tiling and subsampling of the data.
The results of the cross validation are reported in Table ??.
The best achieved result is 86% F1-score and 67.7% mIuO with
Point Transformer with additional features which is fairly close
to what is performed by this network on benchmark data (i.e.
73.5% mIuO on S3DIS by Point Transformer) (Table ??). This
is impressive, even for a cross-validation, on a new dataset with
14 classes with 6 classes suffering from significant class im-
balance. This is reflected in Figure 6, where well represented
classes clearly outperform the underrepresented classes. How-
ever, the segmentation lacks consistency (error B and C) with
stray point found inside of other classes. This potentially could
be solved by running the results through a Conditional Random
Field to enforce consistency. Additionally, some classes have
poor class definitions such as the stairs, which can be improved
by adding more data and splitting this class (error A).

For the validation, several evaluation criteria were tested includ-
ing objects are considered present (A) if at least 1 point in the
point cloud lies within td of their surface, (B) if no portion of
the objects is further than td from the point cloud, (C) if a per-
centage of the object is within td of the point cloud and (D)
if a percentage of the object is near its semantic counterpart in
the point cloud (Table ?? and Figure 8). The distance thresh-
old td = 0.2m and the % threshold to 70%. The unintelligent
methods A en C scored well while B underperformed. There
is an 7% increase in detection by using the semantically seg-
mented point clouds. However, misclassifications also lead to
a slightly lower precision rates for method D. Note that most
errors are also objects that are very hard to assess by a manual
operator due to the limitations of the point cloud.

For the digitization, the DBSCAN minimum number of points
was set to 500 and the spanning distances to 0.2m. 326 addi-
tional clusters were found of varying sizes (although most are
relatively small), with the most clusters belonging to the Pylon
(105) and fence (51) classes. There are 300 potential CAD ob-
jects to choose from (that have more than 400 points). For the
majority of clusters, there are only 1-2 CAD objects with a rel-
atively similar size ratio. For the global feature registration, 30
nearest neighbors are considered for the FPFH features. In total,
32 (10%) new objects could be confirmed and modeled on site,
indicating a strict selection procedure. This is to be expected
due to severe abstractions of the objects and the occlusions in
the point cloud. A strict selection is also desirable as a modeler
can easily fill in the remainder of the classified objects.

The outliers of both the validation and digitization clearly show
a relationship between the size (and thus density) of an observed

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-131-2023 | © Author(s) 2023. CC BY 4.0 License.

 
136



Ground Building Fence Pole LV. Cabin Transf. Pylon Metal-a Metal-h Isolator Cable Busbar Stairs Support
Point Transformer 65.6 79.5 91.3 71.8 30.6 66.4 71.9 59.8 88.6 81.7 61.5 28.6 31.1 58.2

Point Transformer (f) 68.9 80.5 88.4 78.6 32.1 73.3 83.4 67.3 91.2 89.6 66.2 32.0 31.5 64.6

Table 3: IuO scores of the different methods on the substation dataset.

Figure 8: Overview of the validation through segmenta-
tion: (red) objects close to the point cloud (blue) that are
not built and can only be detected through semantic seg-
mentation.

Validation Digitization
Total elements 2074 Total elements 406
Built elements 1454 Modeled elements 33

Method A Matching
Recall 91% Recall 80%
Precision 80% Precision 92%

Method B Modeling
Recall 74% Recall 15%
Precision 79% Precision 66%

Method C
Recall 90%
Precision 79%

Method D
Recall 97%
Precision 74%

Table 4: Overview of validated and digitized CAD objects.

entity and whether it is detached from other elements. Miss-
ing small objects nearby other objects of the same class are ex-
tremely difficult to detect, even by a manual operator. Most out-
liers are due to positioning and model abstractions. This can be
lowered by changing the thresholds but the recall vs precision
ratio is strictly application dependent. Overall, the CAD would
significantly benefit from aggregating multiple small objects in
larger blocks, especially if their presence is correlated.

5. CONCLUSION

This paper presents a framework to adapt deep learning se-
mantic segmentation in industry pipelines such as validation
and digitization procedures. The presented methods discuss the
training of such networks and their impact on the validation and
digitization of an electrical substation. The goal of this research
is to investigate to which extent deep learning methods can be

employed in current workflows and what their automation po-
tential is. The main contribution is the adoption of a network
using a single new dataset that does not resemble any of the
benchmark datasets, and leverage it in an automated industry
procedure.

The experiments show that current deep learning networks can
indeed be transferred to industry projects and that they can sig-
nificantly contribute to the automation of such tasks. Specif-
ically for the validation and digitization of an electrical sub-
station, we state that the semantic segmentation improves the
procedure and makes it more nuanced. For the digitization, it
is more important since it is a key step towards the automated
modeling of the objects. However, some errors still remain.
Especially for smaller objects with weak geometric signatures
or objects that have significant clutter, the distance evaluation
is flawed. An instance segmentation, perhaps with addition of
images to support the detection, could improve the detection.
However, such a method would require extensive amounts of
training data which is costly and may be challenging to gener-
alize as well.

In future work, we will explore to which extent images can con-
tribute to validation and digitization frameworks and how syn-
thetic training data can be generated from existing digital twins
to lower training costs for instance segmentation methods.
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