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ABSTRACT: 

 

Mangroves provide various ecosystem services and contribute to climate change adaptation being one of the blue carbon 

ecosystems. The extents of mangroves are mapped and monitored using commonly available multispectral images, such 

as Landsat and Sentinel-2, to detect and assess gains and losses. However, this presence or absence per pixel based on 
crisp classification or index thresholding offers limited information on the dynamics of mangrove growth or decline. In 

this paper, we evaluated the use of Mixture Tuned Matched Filtering (MTMF) in estimating mangrove fractional cover 

(MFC) from multispectral (Landsat-8) and hyperspectral (PRISMA) satellite images. We also examined the utility of the 

mangrove vegetation index (MVI) and enhanced MVI (EMVI) for this purpose. The images were first denoised using 

Minimum Noise Fraction (MNF). MTMF was then separately applied to the sets of MNF bands, excluding noise bands, 

to generate Matched Filtering (MF) Score and Infeasibility layers. The endmember (mangrove) spectrum was extracted 

from a pixel identified using pixel purity index (PPI) and examination of high-resolution Google Earth base image, from 

which detailed mangrove extents were also delineated. A 30-m vector grid file was created and populated with MFC, MF 

Score, and Infeasibility values using zonal analysis. Correlation analysis, exploratory regression, and ordinary least 

squares (OLS) regression were performed. MF Score is moderately and positively correlated with MFC. In contrast, 

Infeasibility, MVI, and EMVI are uncorrelated or very weakly correlated with MFC. MFC can be estimated using an OLS 
model with MF Score and Infeasibility as explanatory variables. The performance of the PRISMA-based model 

(R2
Adj=0.30, AIC=98643.20) was found to be better than the Landsat-8-based model (R2

Adj=0.36, AIC=97428.89). 
 
 

1. INTRODUCTION 

The availability of hyperspectral images is increasing, whether free 
or commercial. This can be partly attributed to the efforts of NASA, 
DLR, ASI, and other space agencies. With these hyperspectral 

satellite images, various applications are assessed vis-à-vis 
multispectral satellite images, examining whether the use of 
hyperspectral images provide significant accuracy improvements 
at various levels of information. As an example, Kokal et al. (2022) 
used PRISMA and LANDSAT-9 in land cover classification using 
Support Vector Machine classifier and PRISMA was found to 
produce slightly better overall accuracy. Land cover classes 
included industrial area, roads, residential area, airport, sea, forest, 

vegetation, and barren land. Kokal et al. (2022) concluded that this 
was due to the higher spectral resolution of PRISMA compared to 
LANDSAT-9’s spectral resolution of 20–180 nm. In forest type 
discrimination, PRISMA yielded better results compared to 
Sentinel-2 Multi-Spectral Instrument (MSI) using two different 
nomenclature systems and four separability metrics (Vangi et al., 
2021). The performance increased alongside the increasing 
complexity of the nomenclature system. PRISMA, relative to 

Sentinel-2, yielded an average improvement of 40% in 
discriminating between two forest categories (coniferous vs. 
broadleaves) and 102% for the case of five forest types based on 
main tree species groups. This highlights the utility of 
hyperspectral images in a continuum from 400 and 2500 nm, with 
high spectral resolution (<12 nm), in detailed mapping of 
vegetation, including mangroves. 
 

Mangroves provide various ecosystem services including serving 
as habitats to many species, the protection of shorelines, and the 
sequestration and storage of huge amounts of carbon the biomass 
and sediments of mangrove forests. Despite these ecosystem 
services and the increasing attention, mangroves are continually 
threatened by anthropogenic activities, typhoons, and climate 
change impacts. This underscores the critical importance of 
mapping and monitoring mangroves. Lassalle et al. (2023) 

emphasized that “remote sensing will undoubtedly become an 
essential tool to monitor the diversity of these endangered 
ecosystems in the future” and “efforts should concentrate on 
evaluating the capabilities of new and upcoming instruments and 
multisource data combination to improve mangrove species 
mapping and, more broadly, to meet conservation goals”. 
 
Remote sensing has been used in mapping extents, percentage of 

canopy closure, health, and species distribution in mangrove 
forests (Kuenzer et al., 2011). Hati et al. (2021) evaluated the 
performance of multispectral (Landsat 8 OLI and Sentinel-2) and 
hyperspectral (AVIRIS-NG and Hyperion) images in 
discriminating mangrove species. The hyperspectral classification 
yielded higher accuracies (AVIRIS-NG, 87.61%; Hyperion, 
81.98%) compared to those utilizing Landsat 8 OLI (76.42%) and 
Sentinel-2 (79.81%). Beyond genus-level, AVIRIS-NG 

hyperspectral (20-m resolution) can be used to satisfactorily 
classify mangrove species in a complex mangrove forest. Recent 
advances use a multitask convolutional neural network to achieve 
accurate classification (up to 97%) using the most comprehensive 
dataset of optical imagery (including hyperspectral) over a 
mangrove forest (Lasalle et al., 2023). Based on Lasalle et al. 
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(2023), “multispectral imagery performs well at very-high to high 

resolutions (up to 10–20 m) but suffers from the lack of spectral 
information at medium resolution (30 m)”. Utilizing hyperspectral 
imagery, the best results were obtained at sub-metric resolution 
(0.5 m) while satisfactory results (≥ 85% accuracy) were achieved 
at 30-m resolution.  
 
While mapping and monitoring extents is important, mangrove 
extent information does not include variations of mangrove cover 

within these “boundaries”. Furthermore, with the mixed pixel 
problem common in moderate and low-resolution images, low 
fractional cover mangrove areas are commonly excluded in 
mangrove extent mapping. This is a severe limitation when 
monitoring growth, expansion, and even decline in mangrove 
cover. Canopy closure/cover or fractional cover data provide 
information on the dynamics and health status of mangrove stands 
and are useful for assessing impacts of drivers and pressures on 
mangroves (Kuenzer et al., 2011, Morsef and Smith, 2017). To 

date, only a few studies on estimating fractional or percent 
mangrove cover have been carried out. Morsef and Smith (2017) 
utilized linear spectral unmixing on a stack of seven indices derived 
from Landsat-8 imagery to estimate mangrove canopy cover. The 
difficulty associated with spectral unmixing is the provision of 
most, if not all, endmember spectra. In the approach of Morsef and 
Smith (2017), the identification and extraction of endmember 
spectra from the image becomes even more difficult as the spectra 

considered is composed of the values of the seven indices and not 
the reflectance.  
 
This paper evaluated the use of Mixture Tuned Matched Filtering 
(MTMF) in estimating mangrove fractional cover (MFC). This 
method was chosen as MTMF only requires at least one 
endmember spectra. MTMF has been used in estimating abundance 
of mangrove species using EO-1 Hyperion data (Demuro and 

Chisholm, 2003). The interactive approach using scattergram was 
utilized to identify locations of selected mangrove species. 
However, Demuro and Chisholm (2003) did not estimate the 
percentage of mangrove cover. In this paper, we employed linear 
regression analysis to generate MFC models utilizing MTMF 
layers generated from Landsat-8 and from PRIMA hyperspectral 
images. Such models can be used to assess in more detail how 
mangrove forest grow and diminish or recover from damages.  

 
This paper also examined whether the mangrove vegetation index 
(Baloloy et al., 2020) for multispectral data and the enhanced 
mangrove vegetation index (Yang et al. 2022) for hyperspectral 
data can be used for mangrove fractional cover estimation. 
 

2. DATA AND METHODOLOGY 

 

2.1 Data Used in this Study 

 
This study utilized Landsat-8 and PRISMA (PRecursore 
IperSpettrale della Missione Applicativa or Hyperspectral 
Precursor of the Application Mission) images covering portion of 
Bani, Pangasinan in the Philippines (Figure 1). The area was 
chosen since it has various densities of mangrove cover ranging 
from no mangroves to full cover of mangroves.  
 

PRISMA, a satellite of the Italian Space Agency, generates 
hyperspectral images comprising of 173 bands within in the short-
wave infrared (SWIR) portion, specifically 920–2500 nm, and 66 
bands within the visible near-infrared (VNIR) portion, specifically 
400–1010 nm, of the light spectrum (Vangi et al., 2021). The 
spatial resolution is 30 m the spectral resolution is <12 nm. It also 
produces 5-m panchromatic images covering the wavelength range 
of 400–700 nm. Shaik, Periasamy, and Zeng (2023) noted that 

PRISMA hyperspectral images have been utilized in various 

applications including forest fuel mapping, forest discrimination, 
burned area mapping, prediction of methane emissions, 
agricultural applications, mapping of soil moisture, soil organic 
matter, and soil organic carbon, water quality, and geological 
applications. However, compared to other applications, PRISMA 
images have greater potential to extract vegetation biophysical 
parameters, owing to its higher reflectance spectra and 
comprehensive spectral coverage (Shaik, Periasamy, and Zeng, 

2023). 
 

        
 

Figure 1. False color composite from PRISMA hyperspectral 
bands covering the study site (mangroves and fishpond areas 

bounded by the yellow box) in the Municipality of Bani, Province 
of Pangasinan, Philippines. The study site has different sizes of 

mangrove clusters shown as dark red areas near water bodies and 
fishponds. 

 
Various levels of PRISMA products are available: Level 0, Level 
1, and Level 2. Level 0 is raw data in binary files, including 
instrument and satellite ancillary data. Level 1 images are 

hypercubes and panchromatic radiance images radiometrically 
(top-of-atmosphere) and geometrically calibrated. Level 2 has four 
sub-levels: L2A, L2B (geolocated on-ground radiance), L2C 
(geolocated reflectance), and L2D (geocoded on-ground 
reflectance) (Vangi et al., 2021, Cogliati et al., 2021). This study 
utilized PRISMA L2D image acquired on 4 March 2020 and 
provided by ASI. 
 

The Landsat-8 image (surface reflectance) was acquired on 18 
March 2020. For the delineation of the “true” extents of mangroves 
for fractional cover estimation, mangroves were delineated from 
high-resolution satellite images available in Google Earth. 
 
2.2 Methodology 

 
The methodological flow diagram is shown in Figure 2. The 

estimation of the fractional cover of mangroves in this study is 
based on the hypothesis that the Matched Filtering (MF) score can 
be used to measure the abundance of “pure” mangroves and 
hence, it can be used for the estimating MFC. 
 
Denoising 

The PRISMA and Landsat-8 images were each subjected to 
Minimum Noise Fraction (MNF) transformation in ENVI. MNF is 
a well-known technique for denoising hyperspectral imagery. A 

noisy data cube is transformed into MNF output images with 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1331-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1332



 

steadily increasing noise levels or steadily decreasing image 

quality (Luo et al., 2016). Through MNF, the components and their 
varying contrinution to the spectral variance of the original data 
and the noise present in the data are generated (Keshava & 
Mustard, 2002). In terms of noise, many bands (>20) of PRISMA 
contain too much noise (>50%) (Shaik et al., 2022) and irregular 
noise values can be found in selected bands (Shaik et al., 2021). 
Noise bands in the MNF were identified and excluded in 
subsequent processing stages.  

 

 
 

Figure 2. Methodological flow diagram for estimating mangrove 
fractional cover from Landsat-8 and PRISMA images. 

 
 
Endmenber Extraction 

The process of finding the materials in the pixel under 

consideration is called endmember extraction. One of the two 
common assumptions in endmenber extraction is the assumption 
that there are a few pixels which are pure (i.e., composed of only 
one material). For this study,  Pixel Purity Index (PPI), one of the 
algorithms based on the assumption of pure pixel (Keshava, 2003), 
was utilized to identify the purest mangrove pixel which can be 
used as source of the spectra in MNF space. The PPI step, however, 
is optional as it is easy to identify pixels with full mangrove cover 
based on high-resolution satellite or aerial images. This 

endmember spectra is then used in Mixture-Tuned Matched 
Filtering. 
 
Mixture-Tuned Matched Filtering (MTMF) 

MTMF partially unmixes pixel spectra according to a user-defined 
endmember. The reference endmember spectrum is matched to the 
pixel spectra by maximizing the endmember response and masking 
the background unknown response (ENVI, 2001). The process 

produces two output layers, namely, the Matched Filtering (MF) 
Score and the Infeasibility. The results indicate the degree to which 
the endmember was matched to the pixel spectra and the 
approximate sub-pixel response of the endmember. The 
Infeasibility layer can be used to identify the ‘false positives’ as 
high infeasibility values mean erroneous matching to the 
endmember. We suppose that Infeasibility can be used to make the 
estimation of fractional cover from MF Score more accurate. 

 

MTMF was applied to the non-noisy MNF bands derived from the 

Landsat-8 and PRISMA images using the pure mangrove spectra 
as identified using PPI and reference to high-resolution satellite 
image. The MF Score and Infeasibility (see Figure 3 for PRISMA) 
can jointly be used to identify mangrove pixels and delineate the 
extents of mangroves. This is typically done by examining the 
scatter plot of these two variables. Scatter points of high MF Score 
and low Infeasibility values are mangroves. However, accurately 
identifying the decision boundary in the scatter plot to delineate 

varying amounts of the endmember, mangroves in this case, is 
difficult. In this study, the mangrove vegetation index (MVI) and 
the enhanced mangrove vegetation index (EMVI) were used to 
delineate mangrove using the Landsat-8 and PRISMA data, 
respectively. 
 

 
 

Figure 3. Matched Filtering (MF) score (top) and Infeasibility 
(bottom) layers generated from the PRISMA hyperspectral image. 

Mangroves are generally those with high MF score and low 

Infeasibility values. 
 
Mangrove Extents from High-resolution Image 

Image interpretation of a Google Earth base map was conducted to 
generate accurate delineations of mangroves in the study area. 
Moreover, the use of Google Street View was also used in 
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conjunction to Google Earth base map to ensure that the manually 

delineated areas are mangrove stands. The MVI and EMVI layers 
were also used as reference. These mangrove extents data, as 
shown in Figure 4, were used to calculate the “true” mangrove 
fractional cover (MFC_true) within 30-m grid cells using Zonal 
Analysis. Note that these delineations are not exhaustive, i.e., some 
small and narrow cluster may have been missed. 
 

 
 

Figure 4. Mangrove extents (yellow) delineated from Google 
Earth base image as shown. 

 
Zonal Analysis 

A fishnet grid with cell of 30 m and aligned with the Landsat-8 and 

PRISMA images was created in ArcGIS Pro. Each cell was then 
populated with values from the following value rasters, namely, 
MF Score and Infeasibility images, and the raster equivalent of the 
detailed mangrove extents delineated previously.   
 
Statistics Analysis and Modelling 

Pearson correlation analysis was performed to assess the linear 
relationship between MFC and other variables, including the MVI 

and EMVI. Exploratory Regression (ER) and Ordinary Least 
Square (OLS) Regression (OLSR) with MFC_true as the 
dependent variable were implemented in ArcGIS Pro. ER evaluates 
all possible combinations of explanatory or independent variables 
in models that best explains the variability in the dependent 
variable. OLSR generates OLS models using the selected 
independent variables and outputs variables statistical reports and 
layers to evaluate model performance. The independent variables 
considered are the following: MF Score, Infeasibility, and MVI or 

EMVI as applicable.  
 

3. RESULTS AND DISCUSSION 
 
3.1 Correlation with MFC 

 
MVI and EMVI are not correlated with MFC with R equal to -0.049 
and 0.005, respectively. If only non-zero MFC values are 

considered, the MFC remains uncorrelated with MVI (R= -0.035) 
and EMVI (R= -0.022). In Baloloy et al. (2020), MVI was found 
to be correlated with Leaf Area Index (LAI) and Fractional 
Vegetation Cover (FVC) generated from Sentinel-2 using 
biophysical models implemented in SNAP. FVC corresponds to 
the gap fraction for nadir direction and can provide quantitative 

information of the vegetation coverage status on the ground (Li et 

al., 2015). It should be noted that Baloloy et al. (2020) implemented 
the correlation analysis using MVI-identified mangrove pixels 
obtained from two forest types: riverine and fringe mangrove 
forests. These mangrove pixels perhaps have greater than 40% 
mangrove cover. However, successively increasing the lower MFC 
limit did not result to significantly increase in correlation. 
 

 

 
 

Figure 5. Scatter plot of percent mangrove cover or MFC with 
PRISM-derived MF Score (top) and Landsat-8-derived MF Score 

(bottom). 
 
On the other hand, MF Score has moderate positive correlation 
with MFC. The Pearson’s coefficient of correlation between 
PRISMA-derived MF Scores and <FC is R = 0.59 (p-value= 0.0). 

This is slightly higher than the correlation for the case of Landsat-
8-derived MF Scores at R = 0.53 (p-value= 0.0). Both Infeasibility 
are weakly correlated with MFC. 
 
3.2 Spatial Variation of MF Score and Infeasibility 

 
The general distribution of mangroves, especially those dense 
mangrove stands, was captured by both MF Score layers (Figure 

6). The potentially mangrove areas in PRISMA MF Score seems to 
be more reasonably correct compared to the spatial distribution 
depicted in Landsat MF Score. It appears that more “less likely” 
mangrove areas are shown in the Landsat-8 MF Score layer. These 
areas are of low MF Score based on PRISMA. However, the line 
of mangroves bounding the fishponds are more evident in Landsat-
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8 MF Score layer. The PRISMA Infeasibility compensates for this 

as these lines of mangroves are shown in very low values. Overall, 
PRISMA Infeasibility is higher in many parts of the study area, 
particularly in areas with mangrove or with other types of 
vegetation. 
 

 
Figure 6. MF Score (top) and Infeasibility (bottom) layers 

derived from Landsat-8 image (left) and PRISMA hyperspectral 
image (right). 

 
3.3 Regression Models 

 
The inclusion of MVI and EMVI into the linear regression models 
was rejected with the P-value being much greater than the 
confidence level of 0.95. MVI and EMVI did not add explanatory 
power to the OLS models. Their inclusion resulted in models with 
significantly higher Akaike Information Criteria (AIC). Thus, 
Table 1 shows only the models with MS Score only and those with 

the corresponding Infeasibility included. The best model is based 
on PRISMA MF Score and Infeasibility with the highest Adjusted 
R2 and lowest AIC. The removal of PRISMA Infeasibility did not 
change the Adjusted R2 but it increased the AIC slightly. 
 

Model 
Adjusted 

R-Squared 

Akaike Information 

Criteria (AIC) 

L8_MF Score 0.28 98985.97 

L8_MF Score, 
Infeasibility 

0.30 98643.20 

PRISMA_MF 
Score 

0.36 97483.20 

PRISMA_MF 

Score, Infeasibility 

0.36 97428.89 

Table 1. Linear regression models for estimating mangrove 
fractional cover using mixture tuned matched filtering on 

Landsat-8 (L8) and PRISMA data. The models utilized either or 
both Matched Filtering Score (MF Score) and Infeasibility. 

 
The PRISMA MTMF-based OLS model was able to capture the 

spatial variation of MFC better compared to the OLS model based 
on Landsat MTMF. The dense mangrove areas were mapped, 
though areas with 100% cover were underestimated to around 
85%. In the Landsat-8-based estimation, these areas were severely 
underestimated to just around 45%. This underestimation can be 

addressed by using other pixels with 100% cover and with the 

lower or lowest PPI value. 
 

 
 

Figure 7. Mangrove percentage or fractional cover estimated 
using OLS regression models with MF Score and Infeasibility as 

explanatory variables based on Landsat-8 image (top) and 
PRISMA hyperspectral image (bottom). 

 

As noted earlier, the lines of mangroves along the boundaries of 
fishponds and on riverbanks were better captured in MF Score as 
well as in the predicted MFC based on the Landsat-8 image. These 
lines are not evident in the MFC predicted from PRISMA. This is 
possibly due to the noise or spatial artifacts which have remained 
even after the denoising through MNF. 
 
The predicted MFC layers were able to show mangrove areas 
which were excluded in the manual digitization from Google Earth 

base image. These areas need further validation through field 
surveys. 
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4. SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 
 
This study addressed an important topic related to mangrove 
mapping and monitoring, highlighting the significance of assessing 
fractional cover for understanding the dynamics and health of 
mangrove stands. The use of remote sensing data, specifically 
Landsat-8 and PRISMA, for estimating mangrove fractional cover 
is a relevant and practical approach. The paper introduced the 

Mixture Tuned Matched Filtering (MTMF) method and applied 
linear regression analysis to generate fractional mangrove cover 
models. This combination of methods has the potential to provide 
valuable insights into the abundance and distribution of 
mangroves. 
 
Regression models based on the MTMF of PRISMA hyperspectral 
image provided better results compared to those based on Landsat-
8 MTMF. Severe underestimations were observed in the Landsat-

8-based predicted MFC. However, narrow mangrove areas were 
captured better in Landsat-based models. 
 
Recommendations for future work include (1) improved noise 
removal, perhaps through filtering in the frequency domain in 
addition to the MNF, (2) experiments on the extraction of 
endmember spectra, and (3) explore other layers which can assist 
in explaining the variability in mangrove fractional or percentage 

cover. 
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