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ABSTRACT:

The refined identification of urban functional zones can provide important basic data and decision-making basis for the formulation
of urban spatial development planning, effective relaxation of urban spatial development planning, effective relaxation of urban
functions, and optimal allocation of resource space. The multi-source spatiotemporal data represented by multi-source geographic
data, social perception data, and thematic data have been widely used in various fields, providing new data sources for the refined
identification of urban functional areas. However, there are significant differences in the data generation sources, collection methods,
and storage organization formats of multi-source data. In this paper, we propose a method for exploring urban functional zones based
on Multi-source Semantic knowledge and deep Coupling Model (MSCM). Our approach integrates information from multiple
sources and incorporates the semantics of urban functional zones into a knowledge graph, enabling effective fusion and mining of
multi-source data.This method can improve the credibility and precision of the results, providing a richer research perspective for
refined urban functional zoning. The results of this paper have important theoretical value and practical significance for the

construction of identification, labelling, and monitoring tools for engineering smart cities.

1. INTRODUCTION

Urban functional zones refer to areas within a city that serve
specific purposes, such as residential, commercial, industrial, or
recreational areas. The identification of functional zones are
crucial for urban development planning, resource allocation and
citizen welfare (Zhao et al., 2019). In the past, urban functional
identification methods were mainly based on field survey
statistics and remote sensing image recognition. The former was
are time-consuming and costly. Although remote sensing as a
feasible solution to consecutively monitor the physical urban
functional has been widely studied. It had a single data source
that could not meet the needs of refined urban functional area
identification. Accurately identify urban objects from remote
sensing is one of the fundamental challenges for urban
environment management. For example, remote sensing images
can only reflect low-level features such as the spectrum, texture,
and shape of ground objects, lacking semantic information
about urban functional areas (Ma et al., 2019).

With the continuous acquisition of new data, especially the
advent of the Web 2.0 era, geographic "big data" is constantly
accumulating. At present, the identification method of urban
functional areas mainly uses mobile devices, passenger flow
and crowd-sourced geographical data to establish the
relationship between urban Semantic information and data
characteristics through data mining, cluster analysis and other
technologies, so as to obtain the urban spatial structure and
Semantic information (Rabat and Kumar, 2015; Yao et al.,
2017). For example, studies using passenger flow and mobile
device data often establish probability models based on
residents' travel patterns, calculate the frequency of travel
patterns between arrival and departure points, achieve spatial

*  Corresponding author

clustering of urban residents' travel characteristics, and
conjecture the urban spatial structure and functional zoning in
combination with the distribution characteristics of POI data, so
as to obtain urban Semantic information (Liao et al., 2017; Liu
et al., 2016). In addition, some scholars have established
potential LDA and DMR models based on the combination of
OSM road network data, taxi track data and POI data, using
spatiotemporal semantic mining methods, and obtained urban
functional areas through spatial clustering methods. Finally,
combined with questionnaires and POI, urban spatial structure
and Semantic information are extracted (Barlacchi et al., 2017).
However, obtaining data on passenger flow and mobile devices
is very difficult, as it involves personal privacy and social
security, and data sharing is difficult, resulting in significant
limitations on related research.

With the onset of the “big data”, multi-source spatiotemporal
data represented by multi-source geographic data, social
perception data, and thematic data have been widely used in
various fields, providing new data sources for the refined
identification of urban functional areas. However, there are
significant differences in the data generation sources, collection
methods, and storage organization formats of multi-source data.
The coupling of multi-source data poses challenges such as
inconsistent data attributes and incompatible semantics. If
traditional spatial coupling relationships are mechanically used
to fuse multi-source data, it may amplify the negative impact of
data bias.

With the development of artificial intelligence technology, deep
learning methods have shown great application value in remote
sensing image information extraction due to their strong
autonomous feature learning ability and high level of
automation, providing a new solution for the refinement
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research of urban functional areas (Zhang et al., 2016; Zou et al.,
2015; Maggiori et al., 2016). However, most existing deep
learning methods mainly extract information by mining the
depth features of remote sensing images themselves. For
example, Convolutional Neural Network (CNN), as one of the
most representative deep learning algorithms, has been widely
used in remote sensing image feature extraction and
classification (Cheng et al., 2018; Zhao and Du, 2016b), and
automated hyperspectral image deep feature mining and
extraction (Li et al., 2017). So far, there is almost no research on
using deep learning methods to fuse multi-source
spatiotemporal data for extraction. Although some scholars
proposed to use the active learning model to improve the sample
selection problem in OSM data, and combined with the deep
network framework, the preliminary extraction of urban
regional spatial structure and Semantic information was initially
realized. But the focus is on extracting urban landmark
information, neglecting the spatial distribution and semantic
expression characteristics of urban functional areas at different
scales (such as blocks, administrative districts, etc.). Different
from the extraction of urban Semantic information at the surface
feature scale, the research based on urban functional areas
realizes the extraction of comprehensive Semantic information
at a specific scale by associating geographical data and remote
sensing image features, but ignores the distribution information
of surface features at a fine scale. Therefore, the current work
only considers the extraction and expression of urban surface
objects and Semantic information at a single scale, ignoring the
changes and uncertainties of urban functional area types brought
about by different spatial scales, which will directly affect the
extraction and analysis of urban functional areas.

In this paper, we propose a method for exploring urban
functional zones based on Multi-source Semantic knowledge
and deep Coupling Model (MSCM). First, multi-source spatio-
temporal data (such as remote sensing images, multi-source
geographic data, etc.) are acquired and pre-processed, and the
semantic knowledge base of multi-source data in urban
functional areas is constructed through knowledge extraction
and knowledge fusion methods. On this basis, a coupled model
of knowledge graph and convolutional network is constructed,
which can further enhance the interpretability of the deep
learning model based on remote sensing image semantic
segmentation. This method can improve the credibility and
precision of the results, providing a richer research perspective
for refined urban functional zoning. The results of this paper
have important theoretical value and practical significance for
the construction of identification, labelling, and monitoring
tools for engineering smart cities.

The major contributions of this paper are summarized as
follows: (1) our approach integrates information from multiple
sources and incorporates the semantics of urban functional
zones into a knowledge graph, enabling effective fusion and
mining of multi-source data. (2) In order to solve the difference
between knowledge representation and deep learning
representation, this paper proposes a deep coupling model for
integrating semantic features and visual features.

The remainder of this paper is organized as follows. Section 2
introduces the representation learning of remote sensing
knowledge graph and the deep cross-modal coupling model
MSCM in detail. Section 3 summarizes the experimental results.
Finally, the conclusion is detailed in Section 4.

2. METHODOLOGY

Our method consists of two main components: the multi-source
semantic knowledge graph construction and a deep coupling
model. Firstly, we construct a knowledge graph that integrates
the semantics of urban functional zones from multiple data
sources, including crowd-sourced geospatial data (eg.
OpenStreetMap), social sensing data, and thematic data. The
knowledge graph enables effective fusion and mining of multi-
source data and can capture the complex relationships among
urban functional zones. The knowledge graph semantically
represents and organizes different types of data, enabling
interaction and integration between them. Secondly, we embed
the knowledge graph vectors into a deep coupling network. The
deep coupling model combines multiple modalities, including
spatial, temporal, and attribute information, to learn the
distribution of different functional zones in the city. The model
utilizes a cross-modal attention mechanism to adaptively fuse
different modalities and capture the interactions among them.
Lastly, for each urban scene, we apply spatial measurements to
evaluate the attributes of urban functional in terms of their
spatial distributions. Urban functional zones can be effectively
classified based on the semantic contents and spatial properties.
The flow of processes within the proposed framework is
depicted in Figure 1.

Figure 1. Flowchart of the proposed method.

2.1 Multi source semantic knowledge extraction and fusion

The refinement research of urban functional areas based on
multi-source data still faces challenges due to the diversity and
complexity of multi-source data. In this paper, the domain
knowledge network was constructed through knowledge
extraction, spatial or non-spatial association. At the same time,
based on the entity linking method, a knowledge graph of multi-
source data was constructed to form a semantic knowledge base
of multi-source data. This knowledge base semantically
represents and organizes different types of data, achieving
interaction and integration between data, and providing a data
foundation for subsequent model training and inference.

The multi-source data involved in urban functional areas mainly
include remote sensing images, POI (point of interest) multi-
source geographic data, land use data, other statistical data, text
data, etc. This paper divides structured data, vector data and
other data according to the storage type, and uses different
knowledge extraction methods according to different data types.
For structured data, the mapping relationship between concepts
in the database and ontology in the knowledge map and rule-
based reasoning are established to automatically extract
geographical entities, attributes and their relationships from the
database. For semi-structured data, domain knowledge is
extracted from unstructured text through natural language
processing technology. Training on vector data using existing
relationships between knowledge graph entities and OSM nodes
can effectively capture the similarity between semantic nodes,
discover the relationships between entities and OSM nodes, and
achieve knowledge
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Figure 2. Multi source semantic knowledge fusion
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2.2 Deep Learning Model Construction

In order to obtain better matching results between different
modalities, this paper adopts a deep cross modal model, which
maps both visual and semantic features to the hidden space.
While achieving matching between visual features and semantic
representations, it also enhances the coupling relationship
between visual features and semantic representations. Firstly,
the cross modal framework of deep convolutional neural
networks is constructed. Secondly, complete the learning and
adjustment of deep network model parameters based on the
training samples. This model adopts a multi-layer convolutional
neural network for automatic extraction and learning of data
features. At the same time, the model also introduces a multi-
source data fusion mechanism for interaction and collaboration
between different data sources, improving the recognition
accuracy and robustness of the model. Suppose, there are N
semantic objects 5,,, , that have the spatial distribution of D
which is within scene

B, then the spatial distribution is calculated by measuring the
shortest distances between the centroids of any two objects.
Therefore, the distribution of spatial distances can be
represented as follow:

D, = 11[1}11 (disr(si,sj)} where (i,])eN

Therefore, the D, indicates the distribution of semantic
objects in terms of spatial distances. To minimize the match
error between the reference scene and the target one, the greedy
iteration procedure is applied. Finally, the land use type of the

B

whole scene “s can be determined with the minimized match

€rror.

3. EXPERIMENT

3.1 Study areas and data preparation

In this section, we test the capability of the proposed MSCM-
based scene recognition method to classify urban functional
areas. To achieve this, a high-resolution dataset was acquired by

Worldview-2 in 2010 with the ground spatial resolution of 0.5m.

In order to verify the effectiveness of the proposed urban scene
classification method, an experiment was conducted on a
research area of approximately 56 km? in a certain area of
Beijing. As the capital of China, Beijing is the representative of
land cover and land use in China. Buildings with different styles
and purposes can be observed in the image. It is difficult to
accurately predict semantic objects with heterogeneous image
patterns, especially in complex urban areas. The high-resolution
images used in this experiment were captured on November 10,
2010. There are 8 spectral bands with a spatial resolution of 2.0
m and one full color band with a resolution of 0.5 m. The pan
sharpening strategy is used to improve the spatial resolution of

multispectral bands, including selecting blue, green, and near-
infrared bands for image analysis.

=

Figure 3. Study areas located in Beijing, China.

In the CNN based classification stage, only five categories with
significant visual differences were considered, namely
vegetation, shadows, roof spacing, buildings, and roads. The
size of the selected research area is 14264 pixels high x Width
12844 pixels. In order to divide the entire image into
meaningful sub scenes, road lines were used to crop the image
into rectangular blocks. In this study, 56 commercial scenes, 4
entertainment scenes, 18 public service scenes, 18 educational
scenes, and 120 residential scenes were considered for semantic
interpretation and classification. The reference map is a website
obtained from the OpenStreetMap, which was released in June
2016. There are a total of 1742 independent buildings in the
research area, with a total area of 2.8 km?2. In order to minimize
the impact of temporal differences between OSM and remote
sensing images, we visually examined land cover and made
necessary edits in the OSM data. According to these land cover
features, training samples can be randomly extracted from the
corresponding images to improve the performance of depth
learning. In addition, in order to obtain semantic labels at the
object level, this study included 5145 POIs (provided by Baidu
Maps in 2017). Based on the attributes of POI, four different
semantic terms have been identified, namely commercial venues
(such as shopping centers, restaurants), entertainment facilities
(such as gyms, spas), public services (such as government
agencies), and educational venues (such as universities).

3.2 Experimental designs

In this study, we employed a well-studied 5-layer configuration
MSCM model. In order to automatically generate rich training
samples, the land cover vector was recognized from OSM data
(such as buildings and roads) to guide the extraction of samples
from remote sensing images. We divided all available samples
into training and testing samples in a 4:1 ratio. Set the size of
the input sample to 28 x28x 3. For the first convolutional layer,
obtain 12x12x100 outputs. Then, the second convolutional
layer contains 200 filters, each with a size of 3 x 3. Use 300
filters for convolution to generate 3 x 3x 300 feature maps.
Finally, a fully connected dense layer with 5 hidden units is
used to decompose it into 5 different labels in the softmax layer.
In this step, only objects with significant visual differences,
such as vegetation, shadows, roof slopes, buildings, and roads,
are considered as the basic classification rule set. During the
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training phase, normalization is used to set the learning rate to
0.0001 and the mini batch size to 500. In order to avoid over
fitting, a dropout strategy was also implemented in the CNN
framework. In the prediction stage, the depth features of each
sample patch were extracted by MSCN and dissolved with the
fully connected layer, and then classified as semantic labels. In
order to demonstrate the robustness of the proposed method, a
comparison was made between MSCM and Recurrent Neural
Network (CNN).

Due to the limitations of Semantic information extraction, POI
dataset was introduced to enrich the overall semantic content of
high-resolution remote sensing images. In the last step, the
high-resolution image was divided into several main types of
land cover, such as buildings and roads. The POIs were directly
integrated with the classification map, which supplements the
Semantic information at the land use level. To achieve this,
pixel level classification maps were converted into object based
predictions. In order to better represent geographical objects, the
image objects obtained through image segmentation were
merged with the predicted pixel labels. In the merging step, the
majority voting strategy was used to determine the Semantic
information of the image object. After determining the
geographical objects, introducing POIls further increased the
semantic richness of the classification map. Specifically, we
stacked POIs and image objects directly based on their
geographic location. Considering the characteristics of POI and
classified high-resolution images, we only considered POIs that
define the purpose or purpose of the building. In this experiment,
we considered five different types of buildings with different
purposes and purposes, namely residential buildings,
commercial buildings, entertainment buildings, public service
buildings, and educational buildings.

Figure 4. POI spatial distribution

As mentioned above, although the CNN based image
classification algorithm is effective for building detection, it
ignores the functional design of buildings, so it still does not use
the Semantic information of land cover. In order to enrich the
semantic content of images, POI is introduced to increase the
Semantic information of image classification. POI is

represented by a series of spatial points with rich Semantic
information. However, appropriate semantic labels should be
used to accurately classify buildings as urban spatial units in
order to obtain the semantic content of high-resolution images.
First, POI contains rich Semantic information that can be used
for image analysis. Secondly, the CNN based classification
algorithm has accurately depicted complex buildings and other
land cover from remote sensing images. In order to achieve
semantic classification, it is necessary to integrate POI with the
detected buildings. By utilizing semantic mapping, semantic
content in urban scenes can be well studied. Each type of
building represents a specific semantic content. Therefore, for a
given urban scene, the number of semantic buildings in the
scene is a direct indicator of classification.

3.3 Experimental Results

In this experiment, the -classification based on MSCM
considered five semantic elements (vegetation, water, roof slope,
buildings, and roads). Then, using object based post-processing
algorithms, pixel labels are converted into object based
geographic objects using image fragments. To achieve semantic
mapping, POIs are integrated with the detected object. Finally,
land cover objects are further classified according to the
functional design of commercial buildings, educational
buildings, etc. In this process, the category of the scene is equal
to the label of the most common land cover object, which
conforms to a certain spatial distribution pattern. For example,
if there are 56.8% commercial buildings in a city scene, with
residential buildings accounting for only 21.3% of the total area
and public service facilities accounting for 21.9%, then the city
block will be mainly considered as a commercial district. There
are a total of 10135 buildings in the research area, which can be
divided into 216 urban blocks. Five different types of urban
scenes were considered in the experiment, namely commercial
areas, entertainment areas, public service areas, education areas,
and residential areas.

3 B I T
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Figure 5. Classifications results of urban scenes of the Beijing
dataset.

The classification results are illustrated in Figure 5 and Figure 6.

The detailed information about classification accuracies is
shown in Table 1. As reported in Table 1, the proposed method
produces the highest accuracy in terms of urban functional
classification. The proposed the MSCM method is very capable
of carrying out urban functional classification, despite the
heterogeneous images patterns may contain. For example, the
classification accuracies of complex public services area are
quite low for CNN (76%). The MSCM method shows a
remarkable improvement in recognizing urban functional with
classification accuracy as high as 80%. Moreover, the results
showed that our method improved the accuracy and
interpretability of urban functional classification, especially for
fine-grained classification tasks such as urban functional zone
recognition. The study demonstrated the potential of the
proposed method, which could lead to improved accuracy and
interpretability in various applications such as urban planning,
environmental monitoring, and land resource management.

A

@

'
a2l

(b)
Figure 6. Classifications results of (a) and (b) urban scenes

Table 1. Classification results of urban functional

class Methods/ F-1

Our method CNN
Commercial area 88% 80%
Entertainment area 84% 79%
Public services area 80% 76%
Educational area 92% 87%
Residential area 93% 77%
Overall Accuracy 88% 79%
Kappa 0.85 0.78

4. CONCLUSION

We evaluated our proposed method on a High resolution remote
sense dataset of urban functional zones. The experimental
results show that our proposed method outperforms traditional
methods and achieves high accuracy in identifying functional
zones in a city. In addition, we conducted a sensitivity analysis
to evaluate the impact of different factors on the performance of
our method. The results show that our method is robust to
changes in the input data and the network architecture.

The proposed method has several advantages over traditional
methods. First, it is automated and does not require manual
surveys, which can save time and cost. Second, it can provide a
more comprehensive and accurate understanding of the spatial
distribution of functional zones in a city. In future work, we
plan to explore the use of additional data sources, such as
weather data and air quality data, to further improve the
accuracy of our method. Overall, our proposed method provides
a promising approach for exploring urban functional zones
based on multi-source semantic knowledge and cross-modal
networks.
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