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ABSTRACT:

As a representative of new energy, photovoltaic power stations have developed rapidly in China, with annual installed capacity
increasing. At present, research on photovoltaic power plants mainly concentrates on carbon neutrality based on the whole life cycle,
and there are few studies on the thermal environment problems that may be caused by photovoltaic power plants. This paper takes the
area where the photovoltaic power station is located in Quyang County, Baoding City, Hebei Province, and the surrounding
mountains as the research area. It uses Gaofen-1 and Landsat 8 remote sensing images to study the changes in land cover and surface
temperature before and after the construction of mountain photovoltaic power stations over a period of 8 years from 2013 to 2020.
Given the lack of quantitative research on the impact of mountain photovoltaic power stations on the surrounding environment using
remote sensing technology, this paper focuses on the influence of the distribution and proportion of mountain photovoltaic power
stations on the spatial pattern of the thermal environment in the region. Through experimental verification and result analysis, it can
be seen that under the geographical location and time conditions of the study area, the proportion of photovoltaic power stations
shows a strong correlation with the average surface temperature, which is one of the main factors causing the temperature rise in
mountainous areas. It is a land cover type with heat island effects in the traditional sense.

* Corresponding author

1. INTRODUCTION

With climate change and the depletion of major energy
resources, China's focus on energy development and utilization
is gradually shifting from fossil fuels to renewable energy. As a
representative of renewable energy, solar photovoltaic (PV)
power stations have been rapidly developing in China, with the
cumulative installed capacity reaching 306.56 GW by 2021. PV
power stations in China are mainly concentrated in the
northwest, central, and eastern regions. The northwest provinces
have abundant solar resources and large areas of desert and
semi-desert land, which are suitable for the construction of PV
power stations. The central and eastern regions of China are
economically developed with high electricity demand, and their
PV installation capacity also ranks among the top in the country
(Zhang et al., 2018). However, unlike the vast desert areas in
the northwest, the central and eastern regions of China do not
have large areas of desert land that can be transformed into
industrial land suitable for PV power station construction.
Instead, PV power stations in these regions are built according
to their characteristics. The large-scale construction of PV
power stations is bound to have certain impacts on the
ecological environment of these regions.

Currently, research on the ecological environmental impacts of
solar power station construction mainly focuses on aspects such
as energy balance and radiation, carbon emissions, and land use.
However, there is relatively less research on the impact of solar
power station construction on the thermal environment. Genchi
Y et al. developed a thermal balance model for photovoltaic
panels based on temperature data obtained from field
measurements. The model was used to assess the thermal effects

of large-scale rooftop solar panels in the Tokyo area. The results
indicated that the construction of rooftop solar panels did not
have a significant impact on the urban heat island effect
（Genchi et al.,2003）. Nemet G.F. et al. analyzed the extent to
which dark-colored photovoltaic panels reduce surface albedo
by a series of equations and calculated the radiative forcing
generated by solar photovoltaic plants replacing traditional
fossil fuels in terms of capacity. This study confirmed that the
construction of photovoltaic power plants does alter surface
albedo(Nemet et al.,2009). Zhai H. et al. simulated the impact
of desert photovoltaic power plants on local wind field intensity
and direction at the site, and the results indicated that the
construction of photovoltaic power plants reduces wind speed in
the downwind direction(Zhai et al.,2012). Yang L.W. conducted
field observations in 2015 to investigate the influence of the
construction and operation phases of Golmud photovoltaic
power plants on meteorological elements. The results
demonstrated that the photovoltaic power plants reduced surface
temperature at the site. Furthermore, through simulation
experiments, it was proven that the photovoltaic power plants
also moderately decrease air temperature within a 2m
range(Yang,2015). Li S. et al. selected three different
photovoltaic power plants in three cities worldwide as study
subjects and evaluated the impact of large-scale photovoltaic
power plant construction on local climate using quantitative
remote sensing methods. The results indicated that appropriate
construction and deployment of large-scale photovoltaic power
plants in semi-arid and arid regions with low annual
precipitation can reduce adverse effects and have a positive
impact on the local climate environment(Li et al.,2017). Yin
D.Y. et al. conducted field observations on the Gonghe
photovoltaic power plant in Qinghai Province and compared the
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observation data from an automatic weather station with the
basic meteorological elements at the control group photovoltaic
power plant. The results showed that the construction and
installation of photovoltaic power plants reduced soil
temperature and increased humidity in desert areas, while also
leading to a more uniform wind direction within the site and
reducing the probability of high wind speeds(Yin et al.,2017).
Broadbent A.M. et al. conducted on-site observations at the
RedRock photovoltaic power plant in the United States, and the
study indicated that the construction of photovoltaic power
plants increased daytime temperatures within a 1.5m range by
1.38 ℃ , with no significant difference in nighttime
temperatures(Broadbent et al.,2019).

Surface temperature is the result of the interaction between the
Earth's surface and the atmosphere, specifically the exchange of
energy between them. Surface temperature is involved in many
biophysical processes such as photosynthesis and
evapotranspiration and is an important indicator of surface
conditions. Different land cover types have different abilities to
absorb and reflect solar radiation, so changes in land cover often
lead to changes in surface temperature. For example, in the
process of urbanization, natural land cover dominated by
vegetation is replaced by impervious surfaces such as artificial
structures, altering the thermodynamic properties of the
underlying surface. Therefore, combining land cover changes
with changes in surface temperature and constructing a linear
relationship model between them is beneficial for in-depth
research on regional ecological and environmental changes.
Currently, there is limited research on the thermal environment
around photovoltaic power plants. Therefore, this study will
conduct a linear regression analysis and spatial analysis of land
cover changes and changes in surface temperature before and
after the construction of photovoltaic power plants, aiming to
explore the impact of photovoltaic power plant construction on
the thermal environment in the study area. This research will
provide a reference for future photovoltaic project site selection,
construction, and addressing thermal environmental issues
related to photovoltaic power plants.

2. MATERIALS

2.1 Study Area

The study area is located in Quyang County, southwest of
Baoding City, Hebei Province, at the eastern foot of the Taihang
Mountains. It has geographical coordinates ranging from
38°26′48″ to 38°57′18″ north latitude and 114°24′30″ to
114°53′54″ east longitude, as shown in Figure 1. Quyang
County is characterized as a hilly region, with the overall terrain
being higher in the northwest and lower in the southeast. The
landforms transition from mountains to hills and then to plains
in a northwest-to-southeast direction. Quyang County
experiences a semi-humid and semi-arid continental monsoon
climate. It has distinct seasons with simultaneous rainfall and
heat. The frost-free period lasts for about 190 days. The average
annual temperature ranges from 11 to 12.7°C, and the average
annual precipitation is around 550mm. The average annual wind
speed is 2.3m/s, with a predominance of north winds. Quyang
County enjoys abundant sunshine, with an annual average solar
radiation exceeding 5040MJ/m2. The average annual sunshine
duration exceeds 2600 hours, resulting in a sunshine ratio of
59%(National Bureau of Statistics of China,2021). The
vegetation in Quyang County belongs to temperate vegetation,
which is relatively simple and mainly consists of mountain
shrubs, grasses, and meadows.

Fig 1. The geographical location of the study area

The photovoltaic power station project under study commenced
at the end of 2013. It is divided into five phases to construct a
200,000 kW photovoltaic power station, utilizing nearly 8 km2
of barren hills and slopes. At that time, it was the largest
mountainous centralized photovoltaic power station in
China(Feng,2015). The central geographical coordinates of the
project site are 38°42′43″ north latitude and 114°41′8″ east
longitude. The land type in the area where the photovoltaic
panels are installed mainly consists of shrubs and grassland.

2.2 Data Source and Preprocessing

The study utilized imagery from two remarkable satellites,
namely Landsat 8 and Gaofen-1, as the primary data sources.
Launched in February 2013, Landsat 8 carried the sophisticated
Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) onboard. In this study, the OLI and TIRS sensors were
utilized to derive temperature inversion results for the
photovoltaic power plants and their surrounding areas. Gaofen-1
satellite, launched in April 2013, carried a remarkable
panchromatic and multispectral camera, capable of capturing
remote sensing images with a spatial resolution of 2m and an
impressive imaging swath of 60km. Leveraging the imagery
from this satellite, the study aimed to extract valuable insights
into land cover changes within the research area. Through
meticulous data processing and analysis, these satellite images
were transformed into valuable information, enabling the
exploration of temperature patterns and land cover dynamics in
and around the photovoltaic power plants.

Located in the northern region of China, Quyang County
experiences abundant rainfall during the summer season.
However, in the early 2010s, the region suffered from severe air
pollution, particularly during the winter and spring seasons,
leading to frequent haze and smog episodes. Therefore, this
study opted for the autumn season, known for its favorable
weather conditions, as the time frame for image acquisition,
specifically focusing on late October and early November. The
choice of 2013, 2015, and 2020 as the three stages for this study
was based on the construction timeline of the photovoltaic
power plants in Quyang County. Construction of the power
plants began at the end of 2013, with the completion of the first
three phases in 2015 and the fourth and fifth phases in 2018.
Therefore, the selected image acquisition years correspond to
the stages of pre-construction, ongoing construction, and near
completion of the photovoltaic power plants. This selection
enables a better representation of the land surface and land
cover types, facilitating the observation of the impact of the
photovoltaic power plants on the surrounding thermal
environment as a variable. The imaging times of the two remote
sensing images are detailed in Table 1.

Parameters Data Source
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Landsat 8 Gaofen-1

Imaging time
2013/10/26 2013/11/7
2015/11/2 2015/11/2

2020/10/23 2020/11/11
Table 1. Remote sensing image acquisition time

To facilitate visual interpretation, selection of areas of interest,
extraction of vegetation index and building index, as well as
surface temperature inversion, data preprocessing of remote
sensing images is required in this study. Gaofen-1 belongs to
the L1 level product and can be orthorectified without control
points using the built-in RPC file (rational function model). The
elevation data used is the DEM data with a spatial resolution of
900m provided by ENVI 5.3. Atmospheric radiometric
calibration was performed on Landsat 8 and Gaofen-1 images
using ENVI 5.3 to obtain reflectance data for each band and
rescale it to the range of 0-10000. To obtain high-resolution
multispectral images, the Gram-Schmidt method was used to
perform spectral sharpening fusion processing on the Gaofen-1
image, resulting in a fusion image with a spatial resolution of
2m.

3. RESEARCH CONTENT

3.1 Land Cover Classification and Accuracy Evaluation

To better reflect the characteristics of land use in the study area,
this article divides the study area into six land types based on
the visual interpretation of high-definition maps. These include
vegetation, plowland, bareland, water, photovoltaic power
stations, and other structures (excluding photovoltaic power
stations, mainly buildings, and roads). In this study, three high-
resolution remote sensing images captured by the Gaofen-1
satellite were used as the main data source. The land cover in
the study area was classified using the maximum likelihood
method in ENVI 5.3, and the results of the land cover
classification for three periods are shown in Figure 2. In
addition, the area of each land use was calculated using ArcGIS
10.1, as shown in Figure 3.

(a) 2013 (b) 2015 (c) 2020
Fig 2. The land cover classification results

Fig 3 Land cover classification results area statistics

The accuracy evaluation of the classification results is the
premise to judge the reliability of the classification results. The
most commonly used accuracy evaluation method is the
confusion matrix method. In this article, several random points
are set on the classified images, and high-definition images that
match the date of remote sensing image acquisition in Google
Earth Pro are used as references to judge the consistency

between the classification results and the high-definition map,
and calculate the confusion matrix. The Kappa coefficient is
then calculated using this matrix. It is found that the Kappa
coefficients of the land cover classification results in three
periods are 0.893, 0.882, and 0.923, respectively. The
classification errors mainly occur in the confusion between
photovoltaic power plants and other structures, the confusion
between mountain shadows and water bodies, and the confusion
between plowland and bareland. Overall, the land cover
classification results are relatively accurate and can be used for
further research and analysis.

3.2 Analysis of Spatial Pattern Changes in The Study Area

To analyze the spatial pattern changes in the research area
before and after the construction of photovoltaic power plants,
this article used ArcGIS 10.1 to calculate the land cover
classification results for three phases and the changes in land
cover types, as shown in Figure 4.

Fig 4. Land cover classification results -land type changes

Land-use transfer matrix can not only reflect the area data of
different land classes in fixed regions and fixed periods but also
reflect the more abundant area transfer out of each land class in
the initial stage and the transfer into the area of each land class
in the final stage. Therefore, this study also calculated the land
use transfer matrix for the years 2013 and 2020. The calculated
land use transfer matrix is shown in Table 2.

Through the analysis of land cover change information and
calculation of the land use transfer matrix, it can be observed
that there have been significant changes in land cover within the
study area from 2013 to 2020. The main changes include: with
the development of photovoltaic power station projects, the area
of photovoltaic land has greatly increased, mainly occupying
the regions that were previously bareland and plowland. The
proportion of other structures remains relatively stable, while
the average proportion of water bodies in the three-phase land
cover results is only 2.48%, and its impact on the thermal
environment is minimal, so it will not be discussed further.
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Table 2. Land-use transfer matrix

3.3 Surface Temperature Retrieval

3.3.1 Surface Temperature Inversion and Accuracy
Assessment
Based on the atmospheric correction method, we conducted
land surface temperature inversion on Landsat 8 remote sensing
images of the study area in 2013, 2015, and 2020, and obtained
land surface temperature data for the three periods within the
study area. The temperature inversion results are shown in
Figure 5.

(a) 2013 (b) 2015 (c) 2020
Fig 5. The results of surface temperature retrieval

The minimum temperature, maximum temperature, average
temperature, and standard deviation of the third-phase images
can be found in Table 3. Combined with the surface temperature
inversion results, it can be seen that the red high-temperature
areas in the study area are concentrated on the east and west
sides. The high-temperature area in the eastern part is compact

and close to the north, while the high-temperature area in the
western part is scattered and covers a wide range almost from
north to south. The surface temperature of the third-phase
images in the high-temperature area is concentrated between
23.63℃ and 25.77℃ . The surface temperature in the middle
belt and southern region of the study area is lower and appears
green in the image, with a temperature range mainly between
9.22 ℃ and 16.79 ℃ . The surface temperature in the yellow
medium-temperature area, which is between the high and low
temperatures, ranges from 15.73 ℃ to 22.53 ℃ . Overall, the
surface temperature in the study area during this season and
period mainly ranges from 9.22℃ to 27.77℃. In the time series,
the surface temperature in the study area shows a gradual
upward trend over time.

Time Max
/℃

Min
/℃

Mean
/℃

Standard
deviation/℃

2013/10/26 25.55 11.38 18.47 3.17
2015/11/02 25.68 9.22 17.78 3.46
2020/10/23 26.77 16.79 21.78 3.98

Table 3. Surface temperature values of three-phase images

We found from the historical weather website that the highest
and lowest temperatures observed at the meteorological station
in Baoding on October 26, 2013, November 2, 2015, and
October 23, 2020, were 8℃ and 24℃, 8℃ and 25℃, 15℃ and
29 ℃ respectively. The temperature reported in the weather
forecast is the atmospheric temperature near the ground surface,
and the heat mainly comes from surface radiation (the heat that
warms the atmosphere after the surface absorbs solar radiation
and reflects it into the atmosphere). The Landsat 8 remote
sensing images used in this section were all taken in mid-
October to early November, during the autumn season in North
China, where the temperature difference between day and night
is large. In addition, the imaging time of the three periods of
images is 3:00 UTM (11:00 Beijing time), when the solar
radiation is weaker. According to the principle of thermal
radiation, the heating and cooling of the surface have a process,
so the surface temperature rises slowly at this time and has not
reached the maximum value of the day. Furthermore, the
surface temperature changes significantly throughout the day,
with the morning and evening temperatures being closer to the
air temperature. The highest value is reached from noon to
afternoon, and the surface temperature in clear summer can
reach over 60℃ , which is about twice as high as the actual air
temperature. Therefore, the surface temperature is usually
higher than the local air temperature. From this perspective, the
accuracy of our surface temperature inversion is still reliable.

By comparing our experimental results with other remote
sensing temperature data and by querying historical weather
data, it can be concluded that the surface temperature inversion
results in this article are relatively close to the current
temperature, which can be used for further research.

3.3.2 Surface Temperature Index Analysis
To further analyze the spatial differences in surface temperature
caused by artificial features represented by photovoltaic power
stations in the study area and the reasons for their impact, we
calculated the Normalized Difference Built-up Index (NDBI)
and Normalized Difference Vegetation Index (NDVI) based on
Landsat 8 OLI data. Due to the large period of the three-phase
images and the fact that theoretically, the image with the highest
proportion of photovoltaic power stations should be selected to
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better present larger spatial differences, this section focuses on
the analysis and study of the most recent image in 2020. By
constructing models of the relationship between each index and
the change in surface temperature, the influencing factors of
surface temperature distribution are quantitatively studied.

Normalized Difference Built-up Index (NDBI) can accurately
reflect the information on built-up land, and the values of this
index range from -1 to 1. A higher value of NDBI indicates a
higher proportion of built-up land and a higher building density
in the region. Since it is not possible to distinguish between
solar power plants and other structures cover types using
Landsat 8 image bands, this study considers them as buildings
collectively and conducts a generalized analysis using NDBI.
The calculated NDBI results for the study area are shown in
Figure 6.

Fig 6. The result of NDBI in the study area

As shown in Figure 6, the high values of NDBI correspond to
the first phase site of the photovoltaic power station project,
Xiaomu Township County Town in Quyang County, and the
site of the third and fourth phases of the photovoltaic power
station. These three areas all have concentrated construction and
high density. The central and northern regions and the central
and southern regions of the study area are mainly vegetation,
and the NDBI values corresponding to these areas are relatively
low. Overall, the extraction results are consistent with the actual
situation, and the spatial distribution characteristics of NDBI are
consistent with the results of land surface temperature inversion.

To analyze the relationship between surface temperature and
NDBI quantitatively, we generated 2000 random points in the
study area, extracted the NDBI values and temperature values at
each random point, and then constructed a linear regression
equation:

21.66 23.64  LST NDBI (1)
where LST= land surface temperature

NDBI= normalized difference building index

The coefficient of determination R2 of the regression equation
can evaluate the degree of linear correlation between a variable
and other variables. The closer its value is to 1, the better the
fitting effect of the regression line. Whether the correlation
between two variables reaches a significant level needs to be
judged by the significance index. If the significance index Sig is
less than 0.05, it indicates that the correlation between variables
has reached a significant level. In this regression, R2=0.64 and
Sig=0.000, indicating that the surface temperature and NDBI
are significantly correlated at the 1% level. As shown in Figure
7, the surface temperature and NDBI are positively correlated,
and the surface temperature increases with the increase of NDBI
value.

Fig 7. Map of the linear relationship between land surface
temperature and NDBI

Normalized Difference Vegetation Index (NDVI) can indicate
the growth status and vegetation distribution density of plants.
The calculation results of NDVI in the study area are shown in
Figure 8.

Fig 8. The result of NDVI in the study area

From Figure 8, it can be seen that the lowest values of NDVI
appear in the northwest, southwest, and southeast of the study
area. These areas are few water bodies in the study area, and the
vegetation index of water bodies is relatively low. The
distribution of the second lowest values of NDVI is extensive,
corresponding to sporadic vegetation interspersed in built-up
areas. The highest values of NDVI appear in the central area of
the study area, where the land surface is mainly composed of
cultivated land, vegetation, and bare land. Comparing the NDVI
data with the inversion results of land surface temperature, it
can be seen that except for water bodies, the areas with high
NDVI values correspond to low-temperature areas, while the
areas with low NDVI values correspond to medium and high-
temperature areas.

We also generated 2000 random points within the study area,
extracted the corresponding NDVI values and land surface
temperature results of these random points, and then constructed
a linear regression equation:

22.80 19.32   LST NDVI (2)
where LST= land surface temperature

NDVI= normalized difference vegetation index

The calculated R2 for regression equation (2) is 0.54, Sig=0.000,
indicating a significant correlation between land surface
temperature and NDVI at the 1% level. From Figure 9, it can be
observed that there is a negative correlation between land
surface temperature and NDVI, with higher vegetation cover
corresponding to lower land surface temperature. Additionally,
by comparing the coefficients of linear regression in Figure 7
and Figure 9, it can be inferred that buildings have a greater
impact on land surface temperature.
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Fig 9. Map of the linear relationship between land surface
temperature and NDVI

3.4 Analysis of Hot Environment Space

3.4.1 Spatial Analysis of Thermal Environment in The
Study Area
The results analyzed by the normalized difference vegetation
index (NDVI) and the normalized difference built-up index
(NDBI) indicate that the surface temperature is mainly
influenced by the underlying surface properties. This article
conducts a visual comparison analysis between the temperature
inversion results in 2020 and the land cover classification
results in 2020. From Figure 10, it can be seen that except for
the southwest corner and northeast corner of the study area, the
areas above 22°C in the study area coincide with the
distribution of photovoltaic power stations, and the temperature
results obtained from the inversion of such land cover types are
significantly higher than those of vegetation, bareland, and other
areas. The land cover types in the mid-temperature zone are
mainly composed of other structures, while the land cover types
in the low-temperature zone are mainly vegetation, cultivated
land, and a small number of water bodies. The distribution of
the low-temperature zone is relatively scattered. Among them,
the surface temperature values decrease as they move outward
from the center of the photovoltaic power station.

(a) Land cover (b) Temperature inversion
Fig 10. Comparison of land cover and land surface

temperature inversion

After statistical calculations, it can be known that the average
surface temperature of artificial land area is 20.06 ℃ , among
which the average surface temperature of photovoltaic power
station area is 24.16 ℃ , the average surface temperature of
cultivated land area is 22.63 ℃ , and the average surface
temperature of residential area is 19.38℃. Due to the presence
of a large amount of vegetation between buildings in the town,
the low resolution of the thermal infrared band, and the small
size of the buildings, the surface temperature of the buildings in
the town is lower than expected. The average surface
temperature of the natural land area is 16.61℃, which is 3.45℃
lower than the average surface temperature of the artificial land
area, indicating the existence of thermal environmental changes
in the study area.

This article classifies the inversion results of surface
temperature in 2020 using the standard deviation grading
method. The specific grading method is shown in Table 4.

Level Grading Method

Low-temperature
zone

mean stdT T T 

Lower temperature
zone

0.5mean std mean stdT T T T T   

Mid-temperature
zone

0.5mean std meanT T T T  

Higher temperature
region

0.5mean mean stdT T T T  

High-temperature
zone

0.5mean std mean stdT T T T T   

Ultra-high
temperature zone

mean stdT T T 

Table 4. Classification of land surface temperature retrieval
results

where T= the surface temperature retrieved from inversion
Tmean= The average value of standardized temperature
Tstd= Standard deviation of standardized temperature

Further, combine the results of land surface temperature
classification with land cover classification results. Use zoning
statistics and overlay analysis spatial statistical methods to
calculate the average land surface temperature of each land
cover class in the 2020 image. Also, calculate the proportion of
different temperature zones within each land cover class, as
shown in Table 5.
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Table 5. The proportion of the area of different temperature
levels in different regions in 2020

According to Table 5, the results of sorting various land
categories in the study area in 2020 in terms of surface
temperature from high to low are as follows: PV, plowland,
other structures, bareland, vegetation, and water. The above
analysis shows that in the spatial analysis of the thermal
environment in the study area, the conclusions of visual
comparison, statistical average temperature, and calculation of
the area occupied by each land class in temperature zones are
consistent with each other.

3.4.2 Analysis of Thermal Environment Space in
Photovoltaic Power Plants
To further analyze the impact of the distribution and proportion
of photovoltaic power plants on surface temperature changes,
this paper first divides the study area into several grids using the
fishnet function of ArcGIS software. Then, spatial analysis
methods are used to calculate the proportion of each land cover
type in each grid in 2020 and calculate the corresponding
average temperature data for each grid in 2020. Finally, the
correlation between the proportion of photovoltaic power plant
land cover and the average surface temperature of the
corresponding grid is analyzed using mathematical statistics.
Given the small size of the study area and the small number of
pixels occupied by photovoltaic power plant land cover, this
paper uses a grid size of 210m×210m for research, aiming to
explore the relationship between the distribution of photovoltaic
power plants and surface temperature changes at a finer spatial
scale. We constructed a linear regression equation using the
proportion of photovoltaic power stations in each grid and the
average surface temperature.

 0.073* 18.21 mean LST PV (3)
where mean LST=Average surface temperature

PV=Proportion of photovoltaic power plants per grid

Fig 11. Fitting results of PV power station proportion and
mean surface temperature

According to regression equation (3) and Figure 11, it can be
seen that there is a strong correlation between the proportion of
photovoltaic power plants and the average land surface
temperature in the 210m grid. The multiple coefficient of
determination R2 of the regression equation is 0.53, Sig = 0.000,
indicating a significant correlation between the two at the 1%
level. The linear coefficient is 18.21, indicating a positive
correlation between the proportion of photovoltaic power plants
and the average land surface temperature. The average land
surface temperature increases with the increase in the proportion
of photovoltaic power plants. Therefore, the distribution of
photovoltaic power plants can reasonably explain the
phenomenon of temperature rise on the land surface. In the
geographical location and time range corresponding to the

remote sensing image (autumn daytime in mid-latitude areas),
photovoltaic power plants are one of the main factors causing
temperature rise in mountainous areas and are a type of land
cover that traditionally has a heat island effect.

We believed that this can be explained from the perspective of
the operating characteristics of the photovoltaic power station
itself and the large-scale construction of the photovoltaic power
station. First, when the photovoltaic power station is operating,
it directly converts solar radiation and scattered radiation into
electrical energy. There will inevitably be a large amount of
heat radiation around the power station, and the individual
photovoltaic panels have small areas and small heat capacities.
Therefore, the photovoltaic components need to release heat
radiation from both the top and bottom, causing a local
temperature increase. Second, the large-scale construction of
photovoltaic power stations will block the original land surface,
forming dark areas on the land surface, and reducing the
absorption of heat by the surface soil. The photovoltaic
components themselves also absorb light, further reducing the
heat absorbed by the land surface, to a certain extent, changing
the original surface albedo of the surrounding area. In addition,
the construction of photovoltaic power stations will change the
original surface roughness, affecting the long-wave radiation
received and reflected by the ground, thereby changing the
ventilation and heat dissipation conditions around the power
station and causing a temperature rise in the surrounding area.

In response to the phenomenon of increased surface temperature
in mountainous areas caused by photovoltaic power stations,
this paper believes that when planning the layout of
photovoltaic power stations, the distance between photovoltaic
components can be increased. In this way, after the photovoltaic
components are installed, the bare ground under the components
can be exposed, thereby playing a relatively cooling effect on
mountainous areas. According to the land cover situation in the
study area, it can be seen that the land features distributed from
inside to outside and from near to far around the photovoltaic
power station are other structures, bareland, and
vegetation/plowland. Therefore, it can be considered to
minimize the distance between the photovoltaic power station
and the vegetation while not affecting the normal operation of
the power station, to offset the warming effect of the power
station with the cooling effect of vegetation. According to the
land cover results map for 2020, there is still a considerable
amount of bare land in the study area, which corresponds to
actual barren mountains and hills resources. Considering the
serious hydraulic erosion in the study area, it is possible to
guide the development of mountainous fruit and forestry
industries, increase the proportion of vegetation coverage, and
reduce the thermal environmental impact caused by the
construction of photovoltaic power stations in the surrounding
areas.

4. CONCLUSION

We used Landsat 8 and Gaofen-1 remote sensing image data to
quantitatively study the thermal environment changes of a
photovoltaic power station and its surrounding areas in a
mountainous area of Hebei Province. The results show that
there is a significant positive correlation between the proportion
of photovoltaic power stations and the average land surface
temperature under specific geographical and temporal
conditions. Photovoltaic power stations are identified as one of
the main factors contributing to temperature rise in mountainous
areas and exhibit characteristics of traditional heat island effects.
In addition, this study provides a brief analysis of the reasons
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for temperature rise caused by photovoltaic power stations and
proposes effective measures to improve the thermal
environment of photovoltaic power stations and their
surrounding areas, providing valuable references for addressing
the thermal environmental issues of photovoltaic power stations.
It should be noted that there are two main sources of error in
this study: the low spatial resolution of the Landsat 8 satellite
may lead to certain errors in land cover classification results,
which may affect the accuracy of subsequent analysis results. In
the process of temperature inversion in the study area, the
selected thermal infrared image has a relatively low spatial
resolution, and the scope of the study area and the research
object is small. This may result in a certain deviation between
the inverted land surface temperature and the actual land surface
temperature, which may affect the accuracy of subsequent
analysis.
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