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ABSTRACT:  
 
Despite the increasing interest in the bathymetry mapping in the context of the sea level rise and storm intensification, only 10% of 
the worldwide bathymetry has been mapped with reliable sonar and lidar, due to their high cost. The satellite-derived bathymetry 
(SDB) has therefore grown for the last decades, due to its affordability, but also to its gain in radiometric, spatial, spectral and 
temporal resolutions. Nevertheless, SDB products leveraging both a high spatial and a high temporal resolution are still expected by 
stakeholders responsible for cloudy or tidal coastal areas. This research tests the contribution of the Planetscope SuperDove CubSats 
(eight-band, 3 m, 1 day) four novel bands in bathymetry extraction, along a turbidity gradient (the islands of Bréhat in Channel Sea, 
Saint-Barthélémy in Caribbean Atlantic Ocean, and Teti’aroa in South Pacific Ocean), using neural networks calibrated, validated, 
and tested with recent topobathymetric lidar data. In Bréhat (turbid) and Saint-Barthélémy (clear), water depth was best modelled 
using the eight-band dataset with good contributions of yellow and green 1 for Bréhat (R2=0,77), and purple and green 1 for Saint-
Barthélémy (R2=0,95). The very clear waters of Teti’aroa were best modelled using the combination of base (blue, green 2, red and 
near-infrared) + yellow (R2=0,68). The lower accuracy of bathymetry mapping in Teti’aroa revealed biases due to satellite-lidar 
collection time difference, lidar data specificities, and/or control quality. 
 
 

 
*  Corresponding author 
 

1. INTRODUCTION 

1.1 Bathymetry Meaningfulness 

Oceans and seas are meshed of trade roads, energy pipes and 
communication cables, that strongly structure today’s global 
human processes. Nevertheless, in 2023, less than 10% of the 
world’s oceans and seas have been mapped using reliable 
technology, according to the authoritative United States 
National Oceanic and Atmospheric Administration. This lack of 
fundamental knowledge might yet considerably exacerbate 
geopolitical and social-ecological issues in the context of 
ongoing human pressures and ocean-climate changes.  
The coastal fringes of oceans and seas host 40% of the 
worldwide human population, according to the United Nations, 
and concentrate one of the highest rates of biodiversity in 
estuaries, tidal and salt marshes, mangroves, coral reefs, and 
seagrasses’ ecosystems. Those social-ecological systems are 
increasingly vulnerable to extreme sea levels, predictable by 
bathymetry-based numerical modelling (Collin et al., 2020). 
 
1.2 Satellite-Derived Bathymetry 

Airborne lidar (Collin et al., 2022a) and waterborne sonar 
(Bulot et al., 2022) surveys of coastal waters are deemed as 
reference technologies for accurately and precisely bathymetry 
mapping. However, these techniques are time-consuming and 
expensive in material and person costs. While the flight 
missions are restricted to mild and visible air conditions, 
navigation in shallow coastal waters can be challenging and 
even dangerous in turbulent waters (Guenther et al., 2000). 

The development of spaceborne platforms and sensors, as well 
as ocean optics have jointly laid the foundation for remotely 
deriving bathymetry from light backscattering in coastal milieus 
where both clarity and depth enable it. Satellite-derived 
bathymetry (SDB) has therefore increased in spatial resolution 
for the last five decades: from 100 m (Polcyn, 1976) to 0.3 m 
(Collin et al., 2021a). SDB has also gained in reliability thanks 
to the refinement in spectral resolution, inherent to the 
multiplication of spectral bands (Brando et al., 2009). In parallel 
with hyperspectral-based analytical modelling, the empirical 
approaches have improved the SDB performances using 
machine learners, such as linear models (Collin et al., 2017), 
shallow neural networks (Collin and Hench, 2015), or deep 
neural networks (Wilson et al., 2020). Despite those significant 
advances, the mapping of coastal bathymetry in cloudy or tidal 
areas is still restricted to coarse spatial scenes, such as 30-m 
Landsat-8 (Pacheco et al., 2015) or 10-m Sentinel-2 (Collin et 
al., 2016) acquisitions, provided with high temporal resolution 
(15-day and 10-day, respectively). Finer SDB products 
leveraging a high or even a very high temporal resolution are 
expected by policy makers and managers responsible for those 
cloudy or tidal zones of interest. 
 
1.3 SuperDove-Derived Bathymetry 

The very high temporal resolution provided by Planetscope 
Dove and Dove-R imagery (world’s land mass at 3 m pixel size, 
every day, with four spectral bands, blue, green, red and near-
infrared, Table 1) has significantly improved the satellite 
capabilities to observe the ground or surface water on areas 
regularly covered by clouds for the last five years (Collin et al., 
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2022b). Some researchers have tested that 4-band CubeSat 
constellation to derive the SDB in the coastal areas (Gabr et al., 
2020, Li et al., 2019, Poursanidis et al., 2019). The vertical 
accuracies of the results varied between 0,32 and 1,58 m RMSE 
(root mean squared error), depending on the age of constellation 
(Dove or Dove-R) and the methodology used (empirical or 
semi-empirical modelling).  
Since two years, the SuperDove satellites augmented the 
constellation from a spectral viewpoint. A dataset of eight 
spectral bands (purple, blue, green 1, green 2, yellow, red, red 
edge and near-infrared, Table 1) is now acquired with the same 
spatio-temporal specificities (3-m pixel size and 1-d revisit). A 
single study has been conducted for river bathymetry mapping 
using SuperDove (Niroumand-Jadidi et al., 2022). The 
accuracies of the results ranged between 0,35 and 3,44 RMSE 
depending on the type of river (Potomac and Colorado) and 
retrieval algorithm (band ratio and neural network). Regardless 
of both previous parameters, SuperDove extractions 
systematically outperformed Dove-R ones.  
 

Band details Lower 
band (nm) 

Upper 
band (nm) 

Ground 
Sample 

Distance (m) 
Dove (Classic) 

Blue 455 515 3 
Green 500 590 3 
Red 590 670 3 
Near-infrared 780 860 3 

Dove-R 
Blue 464 517 3 
Green 547 585 3 
Red 650 682 3 
Near-infrared 846 888 3 

SuperDove 
Purple (Coastal 
Blue) 431 452 3 

Blue 465 515 3 
Green 1 513 549 3 
Green 2 547 583 3 
Yellow 600 620 3 
Red 650 682 3 
Red Edge 697 713 3 
Near-infrared 845 885 3 

Table 1. Spectral specifications of the three Planet’s sub-
constellations (3 × 130 Planetscope CubeSats). 

 
That is why this research will test the contribution of the four 
novel bands in bathymetry extraction, along a turbidity gradient, 
using neural networks calibrated, validated, and tested with lidar 
data. The islands of Bréhat (Channel Sea), Saint-Barthélémy 
(Caribbean Atlantic Ocean) and Teti’aroa (South Pacific Ocean) 
are selected to represent that gradient, given the availability of 
recent topobathymetric lidar data. 
 

2. METHODOLOGY 

2.1 Study Islands 

Three islands were investigated:  
• Bréhat (48°50’N, 03°00’W; 0,2 m-1 in 2003-2023 average 

diffuse attenuation coefficient, KD2) in Brittany (France),  
• Saint-Barthélémy (17°54’N, 62°49’W; 0,05 m-1 in KD2) in 

French West Indies, and  
• Teti’aroa (17°00’S, 149°33’W; 0,01 m-1 in KD2) in French 

Polynesia (Figure 1). 

 
Figure 1. (A) Global 2003-2023 turbidity map with the three 

islands: (B) Bréhat, (C) Saint-Barthélémy, (D) Teti’aroa. 
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2.2 SuperDove Imagery 

2.2.1 SuperDove Imagery Specifications: The 130 
CubeSats (10 cm × 10 cm × 30 cm), related to the 3rd generation 
of the Planetscopes sun-synchronously orbit at 475 km, collect 
scenes with ±25° imaging angles, thus covering Earth’s land 
mass from 81,5° South latitude to 81,5° North latitude at 3 m 
pixel size. 
 
2.2.2 SuperDove Imagery Processings: SuperDove 
imagery of the three islands were firstly filtered out by 
incidence angle (<10°), scene percent (100%) and cloud 
coverage (<1%). Since the acquisition of the imagery usually 
happens on late morning (local solar time), imageries were 
collected on: 
 

• 6 March 2021 (11h15 min UTC) for Bréhat,  
• 5 March 2021 (14h04 min UTC) for Saint-Barthélémy, 

and  
• 16 October 2022 (19h12min UTC) for Teti’aroa 

islands. 
 
Bréhat’s date corresponds to early spring (temperate northern 
hemisphere), Saint-Barthélémy’s and Teti’aroa’s dates fit with 
dry tropical season. 
 
Imageries were secondly corrected for geometric distortions 
(orthorectification), and thirdly radiometrically-corrected, from 
digital numbers to top-of-atmosphere radiance until bottom-of-
atmosphere reflectance (unitless).  
 
2.3 Lidar Data 

2.3.1 Lidar sources: The three islands were selected 
according to the availability of recent topobathymetric airborne 
lidar provided with multiple soundings per m2. Specifications of 
the campaigns could be found out at the finest details: 
 

• Bréhat was surveyed in 2021 by French Hydrographic 
Service, Shom, jointy with IGN and Brittany Region 
(Shom, 2022, Figure 2A),  

• Saint-Barthélémy was monitored in 2018 by Shom 
jointly with IGN and Saint-Barthélémy’s collectivity 
(Shom-IGN, 2019, Figure 2B) to characterize the 
impacts of devastating hurricanes (including category 
4 Harvey and Jose, and category 5 Irma and Maria),    

• Teti’aroa was mapped in 2017 by ETH Zurich (Ural 
et al., 2019, Figure 2C).  

 
2.3.2 Lidar processings: A procedure of layer stacking 
enabled to combine eight-band SuperDove corrected imagery 
with lidar topobathymetric data (0 m as the mean sea level) for 
every island in order to focus on marine areas. First, the near-
infrared reflectance derived from SuperDove imagery was 
meaningful to distinguish immersed (<0,1 reflectance) from 
emerged (>0,1 reflectance) areas during the satellite imagery 
acquisition. Second, the topobathymetry elevation (altitude and 
depth) was retrieved under the near-infrared sea-land boundary. 
The sea level elevation was finally validated with the closest 
tide gauge (Saint-Quay-Portrieux, Deshaies, and Papeete, 
respectively). The sea level of the SuperDove imagery was 
thereafter quantified at: 
 

• 3,74 m for Bréhat, 
• 0,19 m for Saint-Barthélémy, and 
• 0,1 m for Teti’aroa. 

 

 
Figure 2. Lidar topobathymetry (0 m as the mean sea level) for 

(A) Bréhat, (B) Saint-Barthélémy, (C) Teti’aroa islands. 
 
2.4 Neural Network Modelling 

Sea level-adjusted lidar measurements were sliced at 0,1 m lag 
according to associated vertical accuracy statements, resulting 
in 100, 250 and 120 water classes, for Bréhat, Saint-Barthélémy 
and Teti’aroa islands, respectively. Density slices were exported 
as vector files then imported as regions of interests using ENVI 
software. The regions of interests were screened based on a 90-
pixel equalized random sampling in order to balance the 
calibration of the regression learner, or regressor. Every slice 
was then split into 30 calibration, 30 validation and 30 test 
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pixels. For every island, an array of six neural networks were 
each designed with one layer and three neurons (hyperbolic 
tangent as activation function, Figure 3):  
 

• blue + green 2 + red + near-infrared, as the base,  
• base + purple,  
• base + green 1,  
• base + yellow,  
• base + red edge,  
• base + four novel bands. 

 

 
Figure 3. Architecture of the neural network bathymetry model. 

 
3. RESULTS AND DISCUSSION 

3.1 Model Accuracy 

Bathymetry neural network modelling of Bréhat, Saint-
Barthélémy, and Teti’aroa started with R2test of 0,76, 0,94, and 
0,65 for the four-band base datasets, respectively (Figure 4). 
The best models were achieved with the base + yellow for 
Tetia’roa (R2test = 0,68), and with the eight-band datasets for 
both Saint-Barthélémy and Bréhat (R2test of 0,95 and 0,77, 
respectively).  
 

 
Figure 4. Bathymetry model accuracy based on the SuperDove 
datasets for the three islands (P: purple, B: blue, G1: green 1, 

G2: green 2, Y: yellow, R: red, RE: Red edge; IR: near-
infrared). 

The SuperDove SDB modelling showed significantly better 
results (µ=0,94±0,002) for Saint-Barthélémy (clear tropical 
waters) than for Bréhat (µ=0,76±0,005, turbid temperate 
waters). This comparison indicates that the neural network 
modelling is better for clearer waters. However, this tendency 
was not found in Teti’aroa (µ=0,67±0,014), where the water 
was even clearer than in the lagoon of Saint-Barthélémy (see 
Figure 1A). This might be explained by three potential factors: 
water depth, lidar data, and time acquisition. The three islands 
displayed three distinct maximal depths: 12 m for Teti’aroa, 25 
m for Saint-Barthélémy, and 10 m for Bréhat. It will be 
informational to further examine the results of the models for all 
10 m or even from 1 to 10 m gradually. Another explanation 
may be the differences in lidar acquisition and processing 
methods amongst the study sites. While Saint-Barthélémy’s and 
Bréhat’s zones leveraged the Leica HawkEye-3 sensor (Shom 
2019, 2022) providing 1,5 × Secchi Depth, Teti’aroa used the 
Riegl VQ-820-G system (Ural et al., 2019) providing 1 × Secchi 
Depth. Even if the point density was greater for Teti’aroa (15 
pts.m-2), compared to both other islands (4 pts.m-2), the quality 
of the cleaning procedure (removal of outliers) might explain 
the weaker results in Teti’aroa, especially given that the lidar 
processing was not supervised by an official hydrographic 
office, like both other islands. Finally, Bréhat and Saint-
Barthélémy islands benefited from shorter time differences 
between lidar and SuperDove data collections (0 and 3 years, 
respectively) than Teti’aroa one (5 years), likely to bias SBD 
over mobile sand banks. 
 
3.2 Band-Scale Contribution 

In-depth analyses of the SuperDove novel band contribution 
highlighted greater improvements for Teti’aroa, then Bréhat, 
and finally Saint-Barthélémy (Figure 5). Yellow, red edge, 
purple and green 1 decreasingly augmented the base SDB. It 
might reflect that improved areas were primarily tied to 
shallower zones, like mobile sand banks. Teti’aroa’s eight-band 
did not produce the best results, perhaps due to confusion 
generated between conflicting purple-green 1 and yellow-red 
edge groups.    
 

 
Figure 5. Bathymetry model gain of the SuperDove four novel 

bands for the three islands. 

 

Regarding Shom’s quality level products, the eight-band 
datasets yielded the best results. Purple and green 1 bands were 
the best contributors for Saint-Barthélémy (clear waters) and 
yellow and green 1 bands enhanced Bréhat (turbid waters). The 
first outcome corroborates the great interest of the so-called 
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“coastal” band to refine bathymetry with more energetic 
wavelengths when water clarity enables it. The second outcome 
underlines the importance to get information in yellow 
waveband to estimate colored dissolved organic matter in 
unclear coastal waters (Collin and Planes, 2011).  
 
3.3 Best Model For Bathymetry Mapping 

Bréhat and Saint-Barthélémy’s best models were based on the 
eight-band neural networks (Figure 6A and 6B, respectively), 
while the base + yellow was selected for Teti’aroa (Figure 6C). 
Their respective vertical accuracies were 1,19; 1,57 and 1,58 m. 
 

 

Figure 6. Best bathymetric neural network predictions for (A) 
Bréhat, (B) Saint-Barthélémy, (C) Teti’aroa islands. 

The three best formulae, derived from the models, allowed each 
to rasterize the three neurons to finally map the water depth for 
Bréhat, Saint-Barthélémy, and Teti’aroa (Figure 7A, 7B, and 
7C). The well predicted maximum depth revolves around 8 m 
for both Bréhat and Teti’aroa, and 25 m for Saint-Barthélémy. 
Deeper investigations over the waters of this island might reach 
30-m estimates of the WorldView-2 in Moorea (Collin and 
Hench, 2012). The development of richer (neurons) and/or 
deeper (layers) neural networks, such as convolutional ones 
(Collin et al., 2021b), holds great promise. 
 

 
Figure 7. SuperDove-based bathymetry (0 m as the mean sea 

level) for (A) Bréhat, (B) Saint-Barthélémy, (C) Teti’aroa 
islands. 
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4. CONCLUSIONS 

SuperDove-based bathymetry was modelled over three island 
waters (from 0,01 to 0,2 m-1 in KD2) using one-layered three-
neuroned models calibrated / validated / tested with lidar data. 
Bréhat turbid and Saint-Barthélémy clear water depths were 
best modelled using the eight-band dataset with good 
contributions of yellow and green 1 for Bréhat (R2=0,77), and 
purple and green 1 for Saint-Barthélémy (R2=0,95). The very 
clear waters of Teti’aroa were best modelled using the base + 
yellow combination (R2=0,68), revealing biases due to satellite-
lidar collection time difference, lidar data specificities, and/or 
control quality. 
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