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ABSTRACT:

The concept of sustainable intensification in agriculture necessitates the implementation of management practices that prioritize
sustainability without compromising productivity. However, the effects of such practices are known to depend on environmental
conditions, and are therefore expected to change as a result of a changing climate. We study the impact of crop diversification
on productivity in the context of climate change. We leverage heterogeneous Earth Observation data and contribute a data-driven
approach based on causal machine learning for understanding how crop diversification impacts may change in the future. We
apply this method to the country of Cyprus throughout a 4-year period. We find that, on average, crop diversification significantly
benefited the net primary productivity of crops, increasing it by 2.8%. The effect generally synergized well with higher maximum
temperatures and lower soil moistures. In a warmer and more drought-prone climate, we conclude that crop diversification exhibits
promising adaptation potential and is thus a sensible policy choice with regards to agricultural productivity for present and future.

1. INTRODUCTION

Globally, agriculture faces the unique challenge of reconciling
a growing demand for its products with the substantial pres-
sures stemming from climate change and environmental deteri-
oration. As such, the sustainable intensification of agriculture
(Tilman et al., 2011) calls for the application of management
practices that are sustainable and can adapt to climate change
without sacrificing productivity. It encompasses agricultural,
social, and environmental dimensions of farming, including its
profitability and resilience.

As a popular sustainable practice, crop diversification (i.e., cul-
tivating different crops in space and/or time) has been studied
extensively, with various positive consequences reported (Lin,
2011). At the same time, the effects of crop diversification have
been found to vary across different environmental conditions
(Beillouin et al., 2021). When analyzing the impacts of crop
diversification, it is thus desirable to employ tools that allow
for the impacts to depend on relevant environmental variables,
such as temperature and soil moisture. An indirect benefit of
doing this, is that we may also study questions relating to cli-
mate change: will the effects of crop diversification change in a
warmer, more drought-prone planet?

With the volume and quality of Earth Observation (EO) data
rapidly increasing, data-driven assessments of crop diversifica-
tion impacts can benefit in terms of scale and reliability (Gian-
narakis et al., 2022b). Earth Observations are frequently used
to engineer large-scale datasets featuring diverse information
on agriculture, climate, society and economy (Choumos et al.,
2022, Drivas et al., 2022). Artificial Intelligence (AI) tech-
niques including Machine Learning (ML) are used to analyze
such datasets, extract insights, and inform stakeholders (Sitokon-
stantinou et al., 2023, Sitokonstantinou et al., 2020). Since
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impact assessment studies are fundamentally concerned with
cause and effect, researchers have been recently using causal
machine learning techniques to valorize EO data (Jerzak et al.,
2023, Giannarakis et al., 2022a, Tsoumas et al., 2023, Nanushi
et al., 2022) while avoiding the caveats of correlation based ML
methods (Pearl, 2009). Even if geospatial data provide ideal in-
formation for such analyses, the application of causal ML to
tackle questions relating to climate change remains underex-
plored.

In this work, we propose a causal machine learning approach
for investigating the impacts of crop diversification in the con-
text of climate change. In particular, we use geospatial data
to train a machine learning model that estimates the effect of
crop diversification on productivity as a function of multiple
environmental variables. We focus on the relationship of the ef-
fects with temperature and soil moisture, and in that way draw
insights on the future performance of crop diversification in a
warmer, more drought-prone planet.

2. DATASET AND METHODOLOGY

We focus on the country of Cyprus from 2019 to 2022 (4-year
period). We use the annual MODIS Net Primary Productivity
(NPP) product (MOD17A3HGF v006, gridded at 500m) that
captures the difference between carbon sequestrated by crops
during photosynthesis and carbon released during respiration
(in kg C / m2 / year) (Running and Zhao, 2019). We then use a
dataset with all agricultural fields of Cyprus and their crop type
from the Cypriot Land Parcel Identification System (LPIS). For
each MODIS grid cell and crop type, we compute an annual
“crop abundance” feature by calculating the percentage area of
the cell that was covered by the crop type, and then calculate
a “crop diversification” value equal to the number of different
crops with non-zero abundance in it. We note that, in that sense,
crop diversification is defined on a spatial basis. Similar work
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can be done by considering crop diversification in a temporal
context, akin to crop rotation analyses (Gan et al., 2015).

We join this dataset with climate (Abatzoglou et al., 2018) and
soil information (Karydas and Panagos, 2016) that we down-
scale to the MODIS grid cell level (see Table 1). We finally
temporally aggregate all features to obtain an average value for
each cell throughout the 4-year study period, and binarize the
crop diversification variable at its median value. Figure 1 con-
tains the binary crop diversification values over the agricultural
areas of Cyprus. Bright grid cells indicate the presence of crop
diversification on the final dataset (value greater than median),
while dark grid cells indicate the absence of crop diversification
(value smaller than median).

Figure 1. Crop diversification presence (red) and absence (blue)
visualized over the main agricultural areas of the country of

Cyprus. Both groups are generally found throughout all areas of
interest. Moreover, a propensity score filtering is done prior to

the analysis to ensure that the groups are comparable.

Id Variable Description Unit

ws Wind speed m/s
ppt Precipitation mm
q Runoff mm
def Climate Water Deficit mm
srad Downward Surface Shortwave Radiation W/m2

tmin Minimum Temperature °C
tmax Maximum Temperature °C
soilm Soil Moisture mm
soile Soil Erosibility unitless

Table 1. Environmental variables used in the study and their unit
of measurement.

In the context of climate change, we approach the task of com-
prehending the influence of crop diversification on Net Primary
Productivity (NPP) as a Conditional Average Treatment Effect
(CATE) estimation task. Using the Potential Outcomes (Im-
bens and Rubin, 2015) framework, let Y (T ) denote the value
of a random variable Y if we were to treat a unit with a treat-
ment T ∈ {0, 1}. Given a vector of features X describing the
units, we want to learn the CATE function:

θ(x) = E[Y (1)− Y (0)|X = x] (1)

We use Double Machine Learning (DML) (Chernozhukov et
al., 2018) to learn θ(x) from data, where T is a binary variable
for crop diversification, Y is the NPP, and X are the environ-
mental parameters of Table 1. DML captures the data generat-

ing process using the Partially Linear Model (Robinson, 1988):

Y = θ(X) · T + g(X) + ε (2)
T = f(X) + η (3)

where θ(X) is the CATE, and g, f are arbitrary functions. Not-
ably, (3) monitors confounding as features X affect both the
treatment T and outcome Y . The CATE θ(X) is learned though
a two-stage estimation process. In the first stage, the outcome
Y and treatment T are independently predicted from features
X , using any ML model. In the second and final stage, θ(X)
is estimated by predicting the residuals of the first model from
the residuals of the second model. In the context of the Partially
Linear Model shown in (2) and (3), this translates to solving the
following optimization problem:

θ̂ = argmin
θ∈Θ

E
[
(Ỹ − θ(X) · T̃ )2

]
(4)

Here, Θ is the search space of CATE functions, Ỹ are the re-
siduals of the Y ∼ X regression, and T̃ are the residuals of the
T ∼ X regression. The linearity assumption imposed by (2)
can be relaxed, allowing for non-parametric CATE estimation.

Before applying Double Machine Learning, we standardize the
feature vector X by subtracting the mean and dividing by the
standard deviation of each variable. We also fit a Gradient
Boosted Propensity Model (Chen et al., 2020) to estimate the
propensity score P(T = 1|X = x) of each sample, and filter
extreme scores (< 0.2 or > 0.8) to aid the overlap between the
treatment and control groups (Imbens and Rubin, 2015). The
distribution of propensity scores prior to filtering is shown in
Figure 2. After filtering, there are 14201 samples left, out of
which 6661 belong to the treated (crop diversification) group
and 7540 are part of the control (no crop diversification) group.

Figure 2. Estimated Propensity scores of the data.

We split the dataset into train (80%) and test (20%) sets to fit
the first stage DML models. We carry out a 3-fold cross valida-
tion on the train set and separately model E[Y |X] and E[T |X].
A Random Forest model was selected for both the regression
(Y ∼ X) and classification (T ∼ X) tasks, outperforming
Lasso regression, Logistic regression, and Gradient Boosting
models. To diagnose overfitting, we then use the held-out test
set to assess the predictive performance (R2 for regression, F-1
score for classification) of the trained models and compare it to
the performance of the train test. Table 2 contains the results of
the first stage models.

The predictive performance on the train and test sets were com-
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Figure 3. CATE point estimates for crop diversification visualized over all areas of Cyprus for which we had LPIS, environmental, and
net primary productivity data. The estimated crop diversification impacts range from 44 to 382 kg C / m2 / year, with an average

treatment effect of 157 kg C / m2 / year. Considerable spatial heterogeneity is found, consolidating the importance of targeted
agricultural policy making.

Task Train Test

E[Y |X] 0.78 0.80
E[T |X] 0.59 0.60

Table 2. Performance (R2 for E[Y |X], F-1 score for E[T |X]) of
the selected first stage Random Forest models. Outcome Y is

Net Primary Productivity, (binary) treatment T is crop
diversification, X is the vector of features.

parable for both first stage DML tasks indicating the lack of
overfitting. Having selected the Random Forest models through
this procedure, we proceed to the final stage of DML, where we
predict the residuals of Y ∼ X from the residuals of T ∼ X .
To retain model interpretability, we fit the Linear DML model
shown in equations (2) and (3).

3. EVALUATION AND RESULTS

A significant Average Treatment Effect (ATE) of crop diver-
sification on NPP is found (point estimate = 157, 95% CI =
[137, 177]). This indicates that, on average, diversifying crops
had a positive impact on their primary productivity (i.e., it in-
creased it by 157 kg C / m2 / year). Interpreted in the context of
the mean net primary productivity (which was equal to 5544 kg
C / m2 / year), this translates to an estimated average increase of
2.8% due to the implementation of a crop diversification prac-
tice on a cell over a single year. The effect is both positive and
statistically significant (p-value < 0.001), corroborating grow-
ing evidence on the productivity benefits of the practice (Beil-
louin et al., 2019).

Figure 3 shows all CATE estimates (i.e., expected crop diversi-
fication impacts) provided by the trained model. As expected,
spatial proximity coincides with similar crop diversification im-
pacts (Tobler, 1970). The geospatial information featured in
Figure 3 can be exploited for targeted agricultural policy mak-
ing, e.g. by incentivizing the implementation of crop diversific-
ation on the basis of its predicted impact.

The relationship between maximum temperature, soil moisture
and crop diversification impacts on NPP is seen in Figures 4
and 5. We observe a linear trend for both relationships, albeit
of opposite slope; the impact of diversification on productiv-
ity appears to increase with temperature and decrease with soil
moisture. Because both maximum temperature and soil mois-
ture variables are standardized, the horizontal axis unit is the
number of standard deviations away from the variable mean.
Table 3 features these statistics for both variables.

Variable Mean Std. Deviation Unit

Maximum temperature 25.2 1.7 °C
Soil moisture 45.9 9.2 mm

Table 3. Observed mean and standard deviation of maximum
temperature and soil moisture variables, averaged over

2019-2022 and over all grid cells of Cyprus.

Examining Figure 4, we are therefore able to study crop diver-
sification impacts in the context of climate change. Due to the
increasing trend found, we can infer that an increase in max-
imum temperature by 1.7°C (i.e., by 1 standard deviation) will
generally lead to higher crop diversification impacts. We note
that an increase of this magnitude is associated with low GHG
emissions scenarios (RCP1.9, RCP2.6). For higher emission,
less optimistic scenarios that lead to greater maximum temper-
ature values the extrapolation needed is larger. In this case,
while the overall outlook for future crop diversification impacts
remains positive, more uncertainty is introduced.

Similar insights are derived from Figure 5, by interpreting the
relation between soil moisture and crop diversification impacts
in climate change terms. An increase in maximum temperat-
ure will lead to dryer soils that are associated with higher crop
diversification impacts on productivity. The decreasing trend
of crop diversification impacts as a function of soil moisture
is stable for more than 1 standard deviation to the left of the
mean. This remark provides confidence on the robustness of
crop diversification (with regards to productivity) against dryer
environmental conditions that may be encountered in the future.
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Figure 4. The relationship between crop diversification impacts
on net primary productivity and maximum temperature.

Figure 5. The relationship between crop diversification impacts
on net primary productivity and soil moisture.

The DML model also provides uncertainty estimates on the grid
cell level CATE predictions of crop diversification impacts in
the form of standard errors. Figure 6 shows the standard error
that corresponds to each CATE estimate. We remark that com-
pared to the average crop diversification effect of 157 kg C / m2

/ year, standard error values are small, ranging from 15 to 50
kg C / m2 / year for most areas. This translates to statistically
significant individual CATE estimates, with 99.9% of the grid
cells having a p-value < 0.05.

Figure 6. Standard error map for each crop diversification CATE
estimate, measured in kg C / m2 / year. Standard errors are
generally uniform throughout the map. Higher values are

concentrated at the centre of the country that do not correspond
to agricultural areas (see Figure 7).

It should be noted that for visualization purposes, we so far
chose to visualize CATE results throughout the entire Cyprus
area over which we had data (Figures 3 and 6). For sensible ag-
ricultural policy making, we should exclusively focus on agri-

cultural areas and derive insights based on them. Here we define
“agricultural areas” as the grid cells whose area is covered by
agricultural parcels by at least 50%. Figure 7 visualizes those
areas, and reports the corresponding crop diversification im-
pacts over them. The distribution of the estimated impacts does
not differ significantly from the one reported across the entire
country in Figure 3.

Figure 7. Map showing the estimated crop diversification
impacts over the agricultural areas of Cyprus. Each grid cell area

is covered by at least 50% agricultural land, as declared in the
official Land Parcel Identification System (LPIS).

The trained Double Machine Learning model can also be inter-
preted using explainable AI (XAI) methods in order to reveal
the conditions that determine the magnitude of crop diversifica-
tion impacts. Here, we are using a tree interpreter (Battocchi et
al., 2019) to reveal the environmental factors (Table 1) that are
driving the estimated effect magnitudes (Figure 8). Soil erosib-
ility is found to be the most influential environmental para-
meter for crop diversification impacts, followed by soil mois-
ture. In particular, higher soil erosibility conditions, combined
with lower soil moisture lead to the highest diversification pro-
ductivity impacts, while lower soil erosibility combined with
high soil moisture lead to lower crop diversification impacts.

4. CONCLUSIONS

This study investigated the effect of diversifying crops in space
on the net primary productivity of land. We combined satel-
lite remote sensing data with geo-referenced crop type maps to
engineer a heterogeneous Earth Observation dataset. We then
trained a Double Machine Learning model that is able to estim-
ate the impacts of crop diversification on productivity, as a func-
tion of environmental conditions. The trained model provided
robust uncertainty estimates, and was analyzed with an explain-
able AI method to unveil the environmental drivers of crop di-
versification performance.

A statistically significant Average Treatment Effect of crop di-
versification on net primary productivity was found, that was
further modified by both maximum temperature and soil mois-
ture. Results were robust from the statistical perspective, as
indicated by small standard errors of estimates, and by the over-
whelming majority of estimates (99.9%) having a p-value smal-
ler than 0.05.

Overall, our work contributes to the growing literature on the
effects of crop diversification across multiple dimensions (Feli-
ciano, 2019, Louhichi et al., 2017, Kumar et al., 2019). While
the average effect of crop diversification on NPP is found to
be both positive and statistically significant, we note that ana-
logous works in other areas of the world do not report similar
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Figure 8. Unveiling the environmental drivers of crop diversification impacts with a tree interpreter. To be read from top to bottom,
going left if the Boolean condition at the top of each box is true, and right if it is false. The tree reports the sample size of each leaf, its

mean crop diversification impact, standard deviation and 95% confidence intervals on the mean.

productivity gains due to diversification, either of crops (Gi-
annarakis et al., 2022b) or of biodiversity (Dee et al., 2023).
In the context of the European Union’s Common Agricultural
Policy, this remark highlights the importance of targeted policy
making, as a crop diversification measure might be significantly
positive for ecosystem productivity in one area, and fail to de-
liver any tangible benefits in another.

Importantly, our approach also allows for the interpretation of
crop diversification in the context of a changing climate. From
the perspective of climate change adaptation in particular, the
impact of crop diversification on productivity appears to benefit
from the imminent increase in maximum temperature and de-
crease in soil moisture. We thus conclude that encouraging the
diversification of crops in Cyprus is a sensible policy choice
as far as productivity is concerned, for both present and fu-
ture. Enriching the analysis with other environmental, social,
and economic parameters to obtain a more holistic view of crop
diversification impacts towards the sustainable intensification
of agriculture is future work.
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