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ABSTRACT: 
Annual meteorological variations and the impact of climate change in recent years impacted on agricultural production and distribution. 
Since wheat is a main food resource and the most widely grown crop in the world, it is essential to ensure the sustainability of its 
production. Therefore, accurate wheat mapping is essential for agricultural production forecasts. Multi-spectral satellite image analysis, 
including supervised machine learning (ML) methods, has been applied to wheat and other crop mapping, but such passive, optical 
imaging approaches are strongly influenced by weather conditions and cloud cover, whilst the supervised ML algorithms are highly 
reliant on manual labelling and ground control data. To avoid the limitation of weather and cloud, this research integrates Sentinel-1 
Synthetic Aperture Radar (SAR) data with Sentinel-2 multi-spectral image products to achieve more reliable and accurate winter wheat 
mapping. Normalised Difference Vegetation Index (NDVI) retrieved from multi-spectral imagery and Sentinel-1’s dual-polarisation 
radar signals, VV, VH, acquired in different time series, are used as key inputs to an unsupervised ML model based on Dynamic Time 
Warping (DTW) and hierarchical clustering to prevent time-consuming manual labelling. The chosen study area lies in Norfolk, UK. 
The result of winter wheat classification with NDVI time series data in this study reaches 72% accuracy, but the improved classification 
integrating NDVI, VH, VV and VH/VV values achieves 86% accuracy. Future research will focus on optimizing the ML model with 
multi data integration in addition additional research sites will test more complicated scenarios and multiple crop classification.  
 

1. INTRODUCTION 

1.1 Background 

Wheat is one of the most important food resources and most 
widely grown crops in the world (Giraldo et al., 2019). The 
international demand for wheat continues to grow both in the 
daily life of society and as a crop to feed livestock, but the effects 
of climate change in recent years impact on consistent wheat 
production (Langridge et al., 2022). Accurate wheat mapping can 
ensure food production and further improve estimates of yield 
and biomass to maintain the agricultural sustainability of the crop 
ultimately contributing to global food security. Remote sensing 
observations provide low-cost strategies to methods of mapping 
any crops. Multi-spectral remote sensing observations combined 
with the simple Vegetation Index (VI) based linear regression 
and supervised ML methods are applied in wheat mapping. 
Random Forest (RF), a commonly used supervised ML method 
for wheat mapping, provides higher accuracy than simple VI-
based linear regression (Hunt et al., 2019). In previous studies, 
winter wheat maps have been produced with analysis of various 
VIs, such as NDVI and Leaf Area Index (LAI), and multi-band 
reflections extracted from multi-spectral image products through 
RF (Zhang et al., 2019; Mashonganyika et al., 2021). However, 
cloud cover, poor weather conditions and cloud shadows reduce 
the number of usable multi-spectral images, and these limitations 
lead to mapping inaccuracies. To improve the accuracy of winter 
wheat mapping, SAR image products, which are reliable under 
all weather conditions have been integrated with the multi-
spectral image products through the use of RF, LightGBM and 
LSTM (Mohite et al., 2019; Luo et al., 2022; Parida et al., 2023).  
Since RF, LightGBM and LSTM are supervised ML methods 
which require plentiful ground truth data for training, these 
methods are time and labour intensive. 
In this study, the proposed unsupervised ML method achieves 
winter wheat mapping by analysing Sentinel -1 and -2 time series 

data with observations of NDVI differences throughout the 
winter wheat phenology from previous studies (Wang et al., 
2021), as shown in Figure 1. The method does not require ground 
truth as the initial input can accurately identify areas of winter 
wheat. 

 
Figure 1. Normalized Difference Vegetation Index (NDVI) 
variation of winter wheat throughout the annual growth cycle 
(Wang et al., 2021). 
 
1.2 Aims and Objectives 

This research combines two main objectives: (1) development of 
an unsupervised ML model for winter wheat mapping, and (2) 
improvement in winter wheat classification accuracy by 
integrating SAR with multi-spectral image products. This can 
reduce the impact of optical images with low quality on cloudy 
days and extend the application to data acquired at different dates 
and times. In addition, it solves the problem of the time related 
with supervised ML and the associated labour; the unsupervised 
ML model can be constructed without large amount of ground 
truths. The proposed method aims to provide an improved 
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unsupervised ML model for winter wheat mapping by integrating 
SAR with multi-spectral image products.  
 

2. METHODOLODY 

2.1 Unsupervised wheat mapping workflow 

Figure 2 shows the workflow research methodology for the 
unsupervised ML model for wheat mapping using Earth 
Observation satellite imagery, Sentinel-1 and 2 image products. 
Sentinel-1 SAR image products are co-registered to Sentinel-2 
multi-spectral images in UTM/WGS84 projection and resampled 
to a pixel size of 60 x 60 m. NDVI values from Sentinel-2 optical 
imagery and VV, VH and VH/VV SAR amplitude values from 
Sentinel-1 are extracted on a pixel-by-pixel basis and formed into 
time series. The ‘distances’ in the time series data of each pixel, 
in value and time, are calculated using DTW. Pixels are classified 
into five groups with four distance matrixes, NDVI, VV, VH and 
VH/VV through hierarchical clustering and the initial results are 
geo-referenced and exported as Geo Tiff files. By analysing the 
initial results, weights of NDVI, VV, VH and VH/VV are given 
as the input in the final ML model.  
 

 
 
Figure 2. The workflow of this research. 
 
2.2 Satellite imagery  

SAR and multi-spectral images of the Norfolk area, with a 
sensing period between December 2019 to June 2020 were 
collected from Copernicus Open Access Hub of ESA (ESA, 
2020). Sentinel-1 Level-1 Interferometric Wide (IW) Ground 
Range Detected (GRD) SAR image products and Sentinel-2 
Level-2A multi-spectral image products referenced with 
UTM/WGS84 projection are applied in this research. Sentinel-1 
Level-1 IW GRD SAR images applied in this study have 20 m in 
range and 22 m in azimuth, spatial resolution products with a 12 
day repeat cycle involving dual polarisations, VV and VH 
backscattering measurements. Sentinel-2 Level-2A multi-
spectral image products combine 13 spectral bands across the 
Coastal aerosol, Visible, Near Infra-Red (NIR), Water Vapor and 
Short-Wave Infra-Red (SWIR) spectrum, with a 5-day revisit 
time. Images depending on different spectral bands have Ground 
Sampling Distance (GSD) of 10 m, 20 m, or 60 m, as shown in 
Table 1. This research retrieves NDVI values in time series with 

10 m resolution NIR and R band image products through 
equation (1). 
 
Table 1.  Sentinel-2 MSI sensor band specifications. 

Band Spectrum Wavelength 
(nm) 

Spatial 
Resolution (m) 

B1 Coastal aerosol 433-453 60 
B2 Blue 458-523 10 
B3 Green 543-578 10 
B4 Red 650-680 10 
B5 Red edge  698-713 20 
B6 Red edge  733-748 20 
B7 Red edge 773-793 20 
B8 NIR 785-900 10 
B8A Narrow NIR 855-875 20 
B9 Water Vapor 935-955 60 
B10 SWIR Cirrus 1360-1390 60 
B11 SWIR 1 1565-1655 20 
B12 SWIR2 2100-2280 20 

 

NDVI= !"#	%#&'	
!"#(#&'	

,                                            (1) 

 
where NIR = The reflection value of Near InfraRed Band. 
           Red = The reflection value of Red Band. 
 
2.3 Dynamic Time Warping 

Dynamic Time Warping (DTW) is a method to measure the 
similarity of data in two time sequences by calculating the 
‘distances’ among discrete signals. Unlike the one-to-one 
traditional way of computing distances between two signals at the 
same time point, such as Euclidean, DTW is a one-to-many or 
many-to-one method to calculate distances among two or more 
signals at multiple time points in two time sequences, as shown 
in Figure 3. Thus, DTW is applied to analyse the similarity of the 
shapes of two or more time series data in the same time period.  

 

 
Figure 3.  DTW calculates distances among signals at different 
time points, while Euclidean calculates distances among signals 
at the same time points.  
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The method extracts NDVI values from Sentinel-2 and the VH 
and VV measurements and VH/VV values from Sentinel-1 in the 
same time series from December 2019 to June 2020. Then the 
NDVI, VH, VV and VH/VV in each pixel is set into NDVI, VH, 
VV and VH/VV time series data. The distances between the 
NDVI, VH, VV and VH/VV time series data for each pixel are 
computed with DTW. The similarities among pixels, are then 
applied using a hierarchical clustering technique, which  analyses 
by identifying the distances between the time series data in each 
pixel. 
 
2.4 Hierarchical Clustering 

Hierarchical clustering is an unsupervised ML method to 
compute the proximities among individuals and classify those 
into clusters. The clusters are merged into groups according to 
their similarities in steps. Each step merges similar clusters 
together and creates a layer in the tree-like diagram or 
dendrogram. Finally, all clusters are merged into one cluster and 
the completed dendrogram is formed. Within the dendrogram, the 
similarities among each cluster and individuals can be more 
easily visualised, as shown in Figure 4. 

Figure 4. The concept of hierarchical clustering. The distances 
among five individuals, A, B, C, D and E, are calculated and the 
closest individuals, A and B, and D and E, are grouped together. 
The distances among groups, A and B, D and E, and the 
individual, C, are calculated. In the second layer, since C is closer 
to DE, thus C, D and E are gathered, and A and B still remain in 
the same group. The final layer gathers all individuals in the same 
group and the dendrogram of A, B, C, D, and E is formed. 
 
The distance matrixes of NDVI, VH, VV and VH/VV, which are 
computed with the time series data in each pixel, are the inputs 
for the hierarchical clustering in this study. Each pixel is 
classified into five clusters with the distance matrixes. The 
number of clusters can be automatically defined with the 
hierarchical clustering ML model or limited with the manual 
settings. In this research, through the observations with NDVI, 
VV, VH and VH/VV values, the land cover is classified into five 
clusters, wheat, soil, urban, other vegetation and others.  
 
2.5 Pixel Post-processing 

Pixels are classified into five clusters with hierarchical clustering 
and the cluster number is assigned to each pixel. Numbered 
pixels are geo-referenced to UTM zone 30N/ WGS84 projection 
and exported as a Geo Tiff file.  
Four types of Geo Tiff files are produced through four 
hierarchical clustering ML models with NDVI, VH, VV and 
VH/VV individually. In analysing four results, different weights 
are assigned to distance matrixes of NDVI, VV, VH and VH/VV. 

The weighted variables become new inputs for the final 
hierarchical clustering ML model to generate the integrated final 
improved results. 
 

3. RESULTS 

East Anglia, which comprises Norfolk, Suffolk and 
Cambridgeshire and Essex, is located in the east of England, UK 
and is considered Britain’s ‘breadbasket’ and is a centre for 
horticulture, pig and poultry farming. Norfolk is ideal for 
horticultural farming methods with flat level fields, favourable 
climate and fertile soils. Norfolk has over 6,800 hectares of prime 
agricultural land and, within it, an of 600 x 600 m has been 
selected as the study area of this research, as shown in Figure 5.   
The method extracts winter wheat areas from the Sentinel-1 and 
-2 time series data with the unsupervised hierarchical ML 
models. Four types of results are presented in Figures 6 and 7 to 
analyse given weights for the classification, these are based on:  
(1) NDVI values from Sentinel-2; 
(2) VH measurements from Sentinel-1;  
(3) VV measurements from Sentinel-1; and   
(4) VH/VV values from Sentinel-1. 
Pixels within the study area are classified into five groups as 
shown in Figures 6 and 7, winter wheat is represented by green 
pixels, soil by orange pixels, urban areas by yellow pixels, and 
other classes are represented by red pixels.  
These results are referenced and therefore validated against the 
Sentinel-2 Level 2A optical image and the crop classification 
result from the Rural Payments Agency (RPA), UK. The crop 
classification result provided by the RPA, UK was classified 
using RF with Sentinel -1 and 2 dataset.   
Comparing the results from the RPA, UK, as shown in Figure 5 
with the Sentinel-2 Level-2A optical image, the classification (1) 
and NDVI values from Sentinel-2(figure 6a) shows the best 
results. For winter wheat mapping, the accuracy is 72% with only 
two pixels are misclassified as the winter wheat area. This might 
be influenced by the boundary effect of the interpolation in 
resampling, which may obtain incorrect values at the boundary 
(Yaroslavsky, 2003).  
In Figure 7a, the classification (2) with VH has a winter wheat 
mapping accuracy of 65%, but five pixels are misclassified as the 
winter wheat; in Figures 7b and 7c, The classification (3) with 
VV and the classification (4) with VH/VV do not accurately map 
the winter wheat mapping or clustering of the land cover, but still 
can represent the sensitivity of VV and VH/VV among pixels. 
Comparing the classification (1) in Figure 6a and (2) in Figure 
7a, the classification (1) with NDVI in Figure 6a is more accurate 
than the classification (2) with VH in Figure 7a. Thus, the 
improved ML model for the final result  has NDVI as the key 
factor, VH as the sub dominant factor and VV and VH/VV as the 
supplementary factors determined by the dendrogram in Figure 
6b. The improved winter wheat classification and the 
dendrogram of the ML (Figure 6b) model integrates NDVI, VH, 
VV and VH/VV. The result (5), as shown in Figure 6b, 
approaches 86 % accuracy in winter wheat mapping, which is an 
improves on result (1) in Figure 6a. The dendrograms for results 
(1) in Figure 6a and (5) in Figure 6b share a very similar grouping 
structure but slightly different in grouping of layers. 
From the Sentinel-2 optical images, it can be seen that some parts 
of the hedgerows are being defined as the winter wheat field in 
the RPA, UK results (Figure 5b). However, in this study, the 
classifications of both (1) and (5), (Figure 6), show more accurate 
classification toward the boundary of the fields, the hedgerows 
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are not included in the winter wheat area. Since this study only 
focuses on the winter wheat and does not provide detailed 
analysis for other vegetation or landcover, the accuracy of 
landcover other than winter wheat fields are not determined.  

(a) 

 
(b) 

 
Figure 5. (a)  The location of Norfolk in the UK. The yellow 
areas represent the 2020 winter wheat map in Norfolk. The red 
rectangular box shows the selected study area in this research. (b) 
Detailed view of the study area; the hexagons represent winter 
wheat areas generated from the RPA, UK. (Rural Payments 
Agency, UK, 2021) 
 

 
(a)  NDVI only (1) 

 

 

 
(b) NDVI+VV+VH+VH/VV (5) 

 
 

 
Figure 6. (a) The result generated using NDVI values and its 
dendrogram, with 72% accuracy. (b) The improved result 
(integrating NDVI, VV, VH, VH/VV values) and its dendrogram 
yielding 86% accuracy. In the maps, green pixels represent 
winter wheat areas. 
 

Dendrogram of hierarchical clustering ML model

Dendrogram of hierarchical clustering ML model

Wheat Other Vegetation Urban Soil Other 
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(a) VH (2) 

 
(b) VV (3) 

 
(c) VH/VV (4)  

 
Figure 7. (a) The result with VH measurements. (b) The result 
with VV measurements. (c) The result with VH/VV values. 
 

4. CONCLUSIONS 

The proposed method establishes an unsupervised ML model 
based on freely available Earth Observation (EO) data from 
Sentinel-1 and -2 images, for improved winter wheat mapping. 
The main outcomes of this work are:  
(1) The integration of SAR backscatter with a multi-spectral 

vegetation index improves the accuracy of winter wheat 
mapping, when compared with mapping from multi-spectral 
data alone. 

(2)  This research develops an unsupervised hierarchical ML 
model with DTW for winter wheat mapping. DTW precisely 
calculates the numerical distances among pixels in the time 
sequence, which reduces the computing time and increases 
the accuracy of clustering. 

(3) Through the winter wheat maps generated with NDVI, VH, 
VV, VH/VV, this study analyses the sensitivity of NDVI, 
VH, VV and VH/VV values toward winter wheat. NDVI time 
series data is the dominant variable and VH is the second key 
variable, VV and VH/VV are the supplementary variables for 
winter wheat classification. 

(4) The proposed unsupervised ML method, which requires zero 
ground truth provides an accurate winter wheat map as 
compared to the map produced by RPA, UK. The improved 
winter wheat map which integrates NDVI, VH, VV, VH/VV 
values show the best results, achieving an 86 % accuracy.  

which can be applied more broadly in other wheat crop areas. 
 

5. FUTURE WORK 

Future developments will focus on optimizing the unsupervised 
ML model for multiple crop type and vegetation classifications 
in the UK and beyond. The growth cycle of multiple crops will 
be analysed and more data types will be integrated in the future 
research. Three main future tasks have been identified as: 
(1)  Analysis of the phenology of multiple crop types to 

understand the conditions of the plants in various VIs and 
multi-band images and backscattered VV and VH 
polarisations. 

(2) Testing of the proposed ML model at regional scales, adding 
complexity to further validate the results. Based on the tests, 
the ML model will be optimized and available for the 
multiple crop classifications.  

(3) Integration of other complementary data types to improve the 
accuracy and precision of the proposed unsupervised ML 
model. 
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