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ABSTRACT:

Land surface temperature (LST) is widely used in research fields such as numerical forecasting, global circulation models, and
regional climate models. For the remote sensing data from satellites with thermal infrared detection capability, the land surface
temperature (LST), land surface emissivity (LSE), and atmospheric influence are mixed together. Using different assumptions and
approximations for the radiative transfer equations and surface emissivity, various LST algorithms have been proposed. Among these
algorithms, the split-window (SW) algorithm is currently most widely used. Besides, with the rapid development of machine learning,
new ideas have been emerged for quantitative remote sensing inversion. For a hyperspectral remote sensing satellite with over 20
thermal infrared channels, machine learning methods such as random forest and artificial neural network can be selected to build an
integrated separation and inversion algorithm for LST and LSE.

In this paper, the influencing factors of LST inversion using thermal infrared hyperspectral satellites data is discussed, taking the SW
algorithm and integrated machine learning algorithm as examples, and the contribution of these factors to the LST inversion error is
analysed. We hope this paper could provide valuable reference for the design, index analysis and error calculation for remote sensing
satellites with thermal infrared hyperspectral detection capability.

1. INTRODUCTION

Research on the use of infrared remote sensing satellites began
in the early 1960s. In the decades since then, with the increasing
number of satellite sensors with infrared detection capability,
various applications have been developed for infrared remote
sensing data.

Thermal infrared remote sensing data has a wide range of
applications, such as land and earth science, fire detection,
security monitoring, and land surface temperature inversion.
Land surface temperature (LST), as a key parameter in many
application fields, can provide spatiotemporal changes in the
state of surface energy balance, and is widely used in research
fields such as numerical forecasting, global circulation models,
and regional climate models. Accurate land surface temperature
can not only help to evaluate the assessment of surface energy,
hydrological balance, thermal inertia and soil moisture, but also
to obtain global surface temperatures and grasp their long-term
variability.

For the remote sensing data from satellites with thermal infrared
detection capability, the land surface temperature, land surface
emissivity (LSE), and atmospheric influence are mixed together
in the pupil radiance of the sensor. Using different assumptions
and approximations for the radiative transfer equations and
surface emissivity, various LST inversion algorithms have been
proposed, such as single-channel algorithm, dual channel
algorithm, split-window (SW) algorithm, multi-angle algorithm,
Temperature and Emissivity Separation (TES) algorithm, and
SW-TES algorithm.

Among these algorithms, the split-window (SW) algorithm is
currently most widely used. This algorithm needs land surface
emissivity of the detection area as a prior knowledge. The basic

principle of the SW algorithm is to utilize the differences in
atmospheric  absorption (especially the difference in
atmospheric water vapor absorption) between two channels
within the atmospheric window, and to perform land surface
temperature inversion by various combinations of brightness
temperatures on these two channels. This method does not
require any atmospheric profile information, and has high
accuracy and fast calculation speed.

With the rapid development of machine learning, new ideas
have been emerged for quantitative remote sensing inversion.
Machine learning can directly describe the complex nonlinear
relationship, so as to build the relationship between the satellite
pupil radiance, land surface temperature and emissivity, which
can provide great convenience for the separation and retrieval of
LST and LSE. Thus, for a hyperspectral remote sensing satellite
with over 20 thermal infrared channels, machine learning
methods such as random forest and artificial neural network can
be selected to build an integrated separation and inversion
algorithm for LST and LSE. Using the much abundant data of
hyperspectral remote sensing data, without the need of prior
knowledge of LSE or atmospheric profile, this algorithm can
eliminate the influence of these two factors, and achieve
accurate inversion of LST.

In this paper, the influencing factors of LST inversion using
thermal infrared hyperspectral satellites data is discussed, taking
the SW algorithm and integrated machine learning algorithm as
examples, and the contribution of these factors to the LST
inversion error is analysed. We hope this paper could provide
valuable reference for the design, index analysis and error
calculation for remote sensing satellites with thermal infrared
hyperspectral detection capability.
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2. LAND SURFACE TEMPERATURE INVERSION
ALGORITHMS

2.1 Principle of Thermal Infrared Radiation Transmission

In the thermal infrared band, the solar radiation energy could be
ignored. Assuming that the land surface is Lambert body, the
thermal infrared radiation transfer equation can be expressed as
(Becker and Li, 1990):

L(0) =7,()Ls(60) + L] (6) )

where, @ is the observation zenith of the sensor,
7/(0) is the atmospheric transmittance of Channel 7 in the
direction from the target to the sensor,
L'(0) is the upward atmosphere thermal radiation of
Channel i,
Ls(0) is the surface thermal radiation observed on the
ground in Channel 7, which can be expressed as:

L(0)=&,(0)B(T,) +(1- £, (O)L} ®

where, &i(0) is the angular radiance of Channel and angle 6,
Bi is the Plonk function,
T; is the land surface temperature (LST),
L is downward atmosphere thermal radiation of Channel
L

2.2 Land Surface Temperature Inversion Algorithms

The key of LST inversion is to complete the decoupling of earth
atmosphere parameters and eliminate the influence of LST, LSE
and the atmosphere. Different algorithms for land surface
temperature inversion have been developed. Below is an
introduction to the typical surface temperature inversion
algorithms.

2.2.1 Single-channel algorithm: This algorithm uses the
single channel data received by satellites at the atmospheric
window to correct the atmospheric attenuation and emission
using the atmospheric transmittance/radiation program in which
the atmospheric profile data is needed as an input (Ottlé and
Vidal-Madjar,1992; Jiménez-Muiioz and Sobrino, 2005; Zhang
and Li, 2022). Then, under the condition that LSE is already
known, the LST can be obtained by inverse calculation of
Equation (1) and (2). It should be noted that the this algorithm is
useful provided that the LSE and atmospheric profile are known,
which is difficult to obtain in practical applications.

2.2.2  Split-window algorithm: This algorithm is currently
the most widely used algorithm for LST inversion. The basic
principle is to utilize the differences in atmospheric absorption
(especially the difference in atmospheric water vapor absorption)
between two channels within the atmospheric window, and to
perform land surface temperature inversion by various
combinations of brightness temperatures on these two channels.
This method does not require any atmospheric profile
information, and has high accuracy and fast calculation speed,
thus has been widely applied to different thermal infrared
satellites, such as AVHRR (Becker and Li, 1990), MODIS
(Wan and Dozier, 1996), and GOES (Sun and Pinker, 2003).
However, all split-window algorithms have been developed on
the assumption that the LSE is already known so far.

2.2.3 Temperature emissivity separation algorithm: This
algorithm (TES) was proposed by Gillespie (1998) for ASTER
data. TES algorithm absorbs the advantages of Normalized
Emissivity Method (NEM, Gillespie, 1996) , Spectral Ratio
Method (SR) and Maximum-Minimum Apparent Emissivity
Difference method (MMD, Matsunaga, 1994) , and makes some
improvements. This method is more suitable for ground objects
with large spectral differences in emissivity (such as rock and
soil) . However, the inversion error is relatively large in areas
where the spectral difference of emissivity is small, such as
vegetation, water, ice and snow, and in humid and hot
atmosphere. Hulley and Hook (2011) developed a TES
algorithm using three MODIS thermal infrared bands (bands
29,31 and 32) .

2.2.4 Integrated machine learning algorithm: With the
rapid development of machine learning, new ideas have been
emerged for quantitative remote sensing inversion. Machine
learning can directly describe the complex nonlinear
relationship, so as to build the relationship between the satellite
pupil radiance, LST and LSE, which provides great convenience
for the separation and retrieval of LST and LSE. Thus, for a
hyperspectral remote sensing satellite with over 20 thermal
infrared channels, machine learning methods such as random
forest and artificial neural network can be selected to build an
integrated separation and inversion algorithm for LST and LSE.
Using the much abundant data of hyperspectral remote sensing
data, without the need of prior knowledge of LSE or
atmospheric profile, this algorithm can eliminate the influence
of these two factors, and achieve accurate inversion of LST.

2.2.5 Other inversion algorithms: Limited by the length of
this article, other inversion algorithms, such as Multi-angle
algorithm (Chedin et al., 1982; Soria and Sobrino,2007), Day /
night algorithm (Wan and Li, 1997, 2011), SW-TES algorithm
(Zheng et al., 2019), et al, will not be explained in detail here.

2.2.6 Inversion algorithms comparison: Table 1
summarizes the applicability, advantages, and disadvantages of
commonly used LST inversion algorithms, including Single-
channel algorithm, Split-window algorithm, Temperature
emissivity separation algorithm, Integrated machine learning
algorithm, Multi-angle algorithm, Dual channel algorithm, and
SW-TES algorithm.

3. INFLUENCING FACTORS TO LST INVERSION
ERROR OF SPLIT-WINDOW ALGORITHM

3.1 Optimal band combination

The basis of the Split-Window algorithm is the different
absorption effects between two channels within the atmospheric
window. These channels usually refers to the two thermal
infrared bands between the 10-12.5 um atmospheric window,
but it can also include the bands between 8-9.5 u m. The split
window algorithm used in this article is as follows:

Ae T +T,

_ T-T.
A (b b E A
& 2 &

—-)
&

LST =b, + (b +b, =% 45, +b,(T -T,)
&

3)
where, 7; and 7} are the top atmospheric brightness temperatures
of the two split window bands,
¢ is the average emissivity of two bands, é=0.5(¢/+¢)),
bo~b7 are the SW coefficients that need to be determined
from simulated data
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Algorithms Se_nsor External input Advantages Disadvantages Accuracy
requirement needed
columnar water Atmospheric correction needed
Single- Only 1 thermal vapor (CWYV) Only one channel p .| 1.5-25K (CWV
. ; low accuracy when CWV is >
channel infrared channel | or atmospheric needed hi <3g/cm?)
igh
profile, LSE
. . Simple algorithm, fast lK(Dense
Split- 2 channels in . . vegetation and
. LSE speed, automatic Very sensitive to LSE .
window 10~13pum atmospheric correction water bodies);
P 2~3K (others)
Temperature |3 ¢ onnelsin | Atmospheric | LST and LSE inversed | ‘‘tmospheric radiation transfer 1.5K
emissivity . models needed for atmospheric .
. 8~12um profile simultaneously . theoretically
separation correction, slow speed
Integrz}ted Hyperspectral LST and LSE inversed Large number of infrared .
machine thermal infrared No need simultaneously, no . 2K theoretically
. . . channels required
learning data external input required
Observations . Difficult to obtain multi angle
. Automatic . 1.5K
Multi-angle from two or LSE . . observation data, only .
atmospheric correction . . theoretically
more angles applicable to uniform surfaces
A thermal . .
infrared and a Sultabl.e f_or data with During the day, mid infrared Day: 3K
Dual channel L LSE both mid infrared and . s
mid infrared . can bring some errors Night: 2K
thermal infrared
channel
5 specific LST and LSE of 3
channels (8.6, channels inversed High requirement for sensor, no Day: 3K
SW-TES 9.0,10.4, 11.3, No need simultaneously, no space sensor could meet yet Night: 2K
and 12.5 um) external input required

Table 1. Applicability, advantages, and disadvantages of commonly used LST inversion algorithms.

This algorithm is the official LST product of MODIS. The main
advantages of this algorithm are: 1) it is a physics based
algorithm, as it applies the radiation transfer equation to two
different bands and minimizes experience; 2) It takes into
account the effects of observation angle, LSE and atmospheric
water vapor; 3) The accuracy is high and relatively simple,
requiring minimal computational time.

Different band combinations can be selected in the range of 8-
10.5um and 8-12.5um. In order to obtain the performance of
different configurations, we constructed a complete simulation
dataset. The simulated sensor radiance (or onboard brightness
temperature) is calculated using formula (3) combined with
surface parameters (LST or LSE) and atmospheric parameters.
The atmospheric parameters used are calculated using the
atmospheric profile database Thermodynamic Initial Guess
Retrieval (TIGR) profile library (including information on
altitude, pressure, temperature, and relative humidity of
atmospheric profiles), and the atmospheric radiation transfer
model MODTRAN. The LSE is extracted from ASTER spectral
library (ASTERIib) and UCSB spectral library (Baldridge,
Hook, Grove, and Rivera, 2009). The spectral response function
of the the sensor (Jiménez-Muiloz & Sobrino, 2003) is
simulated by the following formula:

A

— |- FWHM

FWHM [ FWHMJ Ay —FWHM <A< A, —
2-2)

()= exp _AoA) 20) AO—FWHM<A<AO+FWHM 4)

20 2

B +[ .y ] /10+FWHM<A<ZO+FWHM

FWHM FWHM

where, FWHM is the half width of the spectral channel.
Firstly, the band combinations within the detection range of 8~

10.5 um range are analyzed, with a central wavelength range of
8.0-9.5um and 9.0-10.5 pum, respectively. The step size is 0.1pum.
Root-mean-square deviation (RMSE) is used to select the best
band combination. Then the the band combinations within the
8~12.5um range are analyzed, with a central wavelength range
0f9.5-11.0pum and 10.5-12.0um, respectively,.

OFWHM1=0.25um and FWHM2=0.25um in 8~10.5um: the
inversion error corresponding to 241 band configurations is
shown in Figure 1(a), indicating the optimal central wavelength
ranges is 8.0~8.1um, and 9.0-9.1um, respectively, with a
theoretical inversion error of the SW algorithm as 1.02K.

@FWHMI1=0.5um and FWHM2=0.5um in 8~10.5um : the
inversion error is shown in Figure 1(b), indicating the optimal
central wavelength ranges is 8.0~8.1um, and 9.0-9.1pm,
respectively, with a theoretical inversion error of the SW
algorithm as 1.12K.

@FWHMI1=0.25um and FWHM2=0.25um in 8~12.5um : the
inversion error is shown in Figure 1(c), indicating the optimal
central wavelength ranges is 10.4~10.8pum, and 11.4~11.9um,
respectively, with a theoretical inversion error of the SW
algorithm as 0.68K.

@FWHMI1=0.5um and FWHM2=0.5um in 8~12.5um: the
inversion error is shown in Figure 1(d), indicating the optimal
central wavelength ranges is 10.4~10.8um, and 11.6~11.9um,
respectively, with a theoretical inversion error of the SW
algorithm as about 0.68K.

B®FWHMI1=0.7um and FWHM2=1.0um in 8~12.5um : the
inversion error is shown in Figure 1(e), indicating the optimal
central wavelength is 10.4~10.8um, and 11.6~11.9um,
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respectively, with a theoretical inversion error of the SW
algorithm as about 0.76K.

From the different FWHM within the above two band ranges, it
can be seen the theoretical inversion errors of the SW algorithm
are similar when the FWHM is 0.25um and 0.5 pum, but increase
with higher FWHM. In order to meet the needs of different

sensors, the optimal band combinations within 8~10.5 um and
8~12.5 um range are summarized in Table 2.

Range: §-10.5um Range: 8-10.5um

RMSE in LST (K)
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Figure 1. Error values corresponding to band combinations.
(a)F WHM1=0.25um and FWHM2=0.25um in 8~10.5um,;
(b)FWHM1=0.25pum and FWHM2=0.25um in 8~10.5um;
(c)FWHM1=0.25um and FWHM2=0.25um in 8~12.5um,;

()FWHM1=0.5um and FWHM2=0.5um in 8~12.5um;
(e)FWHM1=0.7pum and FWHM2=1.0pm in 8~12.5um

Detection Bandl | FWHM 1 | Band2 | FWHM2
range (pm) (pm) (pm) (pm)
8~10.5um 8.1+0.1 0.5£0.1 | 9.0£0.1 | 0.5%0.1
8~12.5um | 10.6£0.2 | 0.5+0.15 | 11.9£0.2 | 0.5+0.15

Table 2. Optimal band combinations of SW algorithm.

3.2 Inversion error analysis

The factors that affect the accuracy of LST inversion using SW
algorithm include the algorithm error itself, the noise equivalent
temperature difference (NEAT) of the sensor, LSE uncertainty,
and absolute calibration accuracy on inversion accuracy. The
final error calculation formula of the SW algorithm is as follows:

e(LST) = +/6(alg)’ + S(NEATY +5(¢)’ +5(cal)’  (5)

where, 0 (alg) is the error of the split window algorithm itself,
0 (NEAT), d(¢), 9 (cal) are the error caused by NEAT,
LSE, and absolute calibration accuracy, respectively.

Taking the SW band of 8.1/9.0 um and 10.6/11.9 um with
FWHM=0.5um as the window channel, the influencing factors
are elaborated in 3.2.1~3.2.3.

3.2.1 NEAT: The impact on the inversion error of SW
algorithm of NEAT can be expressed as :

oT.. , 0
OxEar = \/(5;;)6 (T)+ (6

T,

(7)) (©)
TVj J

Figure 2 shows the increase of LST error when NEAT
increases, when other items d(¢) , (W), ¢ (cal) remains
constant. In this simulation scenario, The relationship between
NEAT and ¢ (NEAT) is linear, with almost no y intercept, and
the slope is around 3, indicating that LST error caused by NEAT
is approximately three times value of NEAT. For a sensor with
NEAT of 0.02K, the NEAT caused error o (NEAT) is about
0.06K.

3.5

3.0F

error LST (K)
= doN
o =] o

oy
=)

N =]

~a-total
0.0 e TR
00 01 02 03 04 05 06 07 08 09 1.0 1.1
NEAT (K)

Figure 2. LST error caused by NEAT

3.2.2 Absolute calibration accuracy: The absolute calibration
accuracy can be directly applied to the inversion error
calculation. For the application seeking high inversion accuracy
(less than 1.5 K) , the absolute calibration accuracy should be be
ensured to better than 1K.

3.2.3 LSE: From Formula (3), it can be seen that the uncertainty

of LSE error is mainly reflected in (1-¢)/e and Ae/e®. Their

coefficients can be expressed as:

n+1, LT, ;

) @)

gl 0 8

=6 (I (®)

Thus, the influence of LSE error on LST inversion can be
expressed as:

5(e) = \/aza(l‘ff N ﬂzcs(%f ©)

Using the simulated data set, the a and f in Formula (9) can be
calculated, and the LST inversion error caused by LSE error can
be estimated.

a=b, +b;

The spectra of 119 natural samples are selected to build the
natural LSE library, which includes spectra of vegetation, water,
ice, snow, rock, sand, and soil, as shown in Figure 3(a).At the
same time, to simulate some unnatural objects, especially some
artificial objects, a low LSE library with an average emissivity
below 0.2 was constructed, as shown in Figure 3(b).
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The coefficients and errors of the SW algorithm simulated by
using the natural surface emissivity library and the low
emisssivity library are shown in Table 3.

LSE Mean < 0.2
35
L Number =29

LSE

™ i | LSE Mean > 0.8
L2 | Number = 119 0.15

8 9 10 1 12 13 : 8 9 10 1 12 13
‘Wavelength (um) Wavelength (um)

(@) (b)
Figure 3. Natural Emissivity samples(a) and low Emissivity
samples(b) used in SW algorithm simulation

Library Natural library Natural &Low library
range(um) | 8~10.5 8~12.5 8~10.5 8~12.5
bo 1.591 -8.055 -48.517 -4.039
by 0.994 1.032 1.208 1.025
by 0.127 0.121 0.014 0.027
bs 0.088 -0.322 -0.004 -0.016
by -2.113 4.397 0.455 1.962
bs -1.276 2.97 -0.233 0.268
bs -0.914 -1.082 0.082 0.235
by 0.015 0.123 0.038 0.031
RMSE(K) 1.129 0.699 4.966 6.903

Table 3. SW Coefficient and algorithm error.

THe LST inversion error of natural samples is simulated. The
error ranges of LSE within the range of 8~10.5um and
8~12.5um are 0.03-0.06 and 0.005-0.02 and the step sizes are
0.01 and 0.005, respectively. The analysis results are as follows.

3.2.3 Summary: Suppose the emissivity error of 8~10.5um is
0.05 and that of 8~12.5um is 0.015, the absolute calibration
accuracy is 1K, the NEAT of the sensor is 0.02K, the overall
inversion error of LST is shown in Tabel 5.

Natural library Natural &Low library

Band 1(um) 8.1 10.6 8.1 10.6

Band 2(um) 9.0 11.9 9.0 11.9

d(alg)(K) 1.129 0.699 4.966 6.903

J(e)(K) 2.165 1.382 0.187 0.122

Jd (NEATY(K) 0.06 0.06 0.06 0.06
d (cah(K) 1 1 1 1

e(LST) (K) 2.64 1.84 5.07 6.97

Range LSE Min Max Average RMS
(pm) error (X) (X) (X) (X)
0.030 0.738 1.976 1.299 0.238
0.040 0.984 2.635 1.732 0.317
8105 5050 1.230 3.294 2.165 0.396
0.060 1.476 3.952 2.598 0.475
0.005 0.358 0.598 0.461 0.053
6125 0.010 0.716 1.196 0.921 0.106
0.015 1.074 1.794 1.382 0.159
0.020 1.432 2.391 1.842 0212
(@)
Range LSE Min Max Average RMS
(pm) error ) (X) ) )
0.030 0.007 0.220 0.112 0.046
0.040 0.009 0.294 0.149 0.061
8-10.5
0.050 0.012 0.367 0.187 0.076
0.060 0.014 0.440 0.224 0.092
0.005 0.028 0.057 0.041 0.005
0.010 0.055 0.114 0.081 0.011
8-12.5 0.015 0.083 0.172 0.122 0.016
0.020 0.111 0.229 0.163 0.021
(b)

Table 4. LST inversion error caused by d(¢). (a)natural
library; (b)natural & low emissivity library

Table 5. Overall error analysis results of SW algorithm.

It can be seen that for natural objects, the error of 8~10.5um is
significantly higher than that of 8~12.5um. The main source is
LSE, because the emissivity fluctuates more between 8.1 and
9.0um, which may cause greater error when estimating LSE.
After adding low emissivity samples, the SW algorithm itself is
difficult to achieve high accuracy, and the inversion error is
rather high for both detection ranges, thus the SW algorithm is
no longer applicable then.

4. INFLUENCING FACTORS TO LST INVERSION
ERROR OF INTEGRATED MACHINE LEARNING
ALGORITHM

For thermal infrared hyperspectral remote sensing data, there
are more channels available for LST inversion. We selected two
thermal infrared spectral bands, 8-10.5um and 8-12.5um, with a
channel interval of 0.1 pm, thus 26 channels and 47 channels
are obtained respectively to analyze the inversion error of LST.
Based on the previous research experience and the
characteristics of machine learning methods, we chose two
machine learning methods for LST inversion, Random Forest
(RF) and Artificial Neural Network (ANN), which both support
the training of multiple output models and have similar research
experience.

4.1 Construction of Datasets

To comprehensively consider the typical situation of the global
atmosphere, 946 atmospheric profile data are selected using the
TIGR database. To avoid excessive distribution of atmospheric
profile at low water vapor content, we randomly select a certain
number of atmospheric profiles within each water vapor content
interval based on atmospheric water vapor content. Based on the
selected atmospheric profiles, we use MODTRAN to further
calculate the corresponding atmospheric transmittance and
atmospheric upward and downward radiation.

For LSE spectrum, 383 emission spectra of rock, soil, artificial
surface, vegetation and water are selected. In order to ensure
that the sample set can cover a variety of ground object types of
emissivity spectrum, we have further screened the emissivity
spectrum set. A total of 100 emissivity spectra of typical
landforms were selected, including 51 rock emissivity spectra,
30 soil emissivity spectra, 8 water emissivity spectra, 4
vegetation emissivity spectra, and 5 man-made surface
emissivity spectra.

The disturbance settings of the surface temperature are as
shown in Figure 4: based on the atmospheric bottom
temperature, with a step size of 3K, perturb up and down 5
times.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1431-2023 | © Author(s) 2023. CC BY 4.0 License. 1435




The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023
ISPRS Geospatial Week 2023, 2-7 September 2023, Cairo, Egypt

-15+Thottom: 3: 15+ Thottom

0 20 40 60 80 100 120

Figure 4. Surface temperature dataset

For spectral response function of the hyperspectral sensor, The
central wavelengths of the two regions are generated with
0.1um as the channel interval. Integrating the simulated data
into the channel response, the final channel simulation data are
obtained

4.2 Inversion results based on Random Forest algorithm

Random Forest algorithm has two most important super
parameters, the maximum number of the decision tree, N-
estimators, and the maximum number of features that can be
selected when dividing attributes, Max-features. After
debugging, the N-estimators is set as 200 and the Max-features
is set as 20.

First the algorithm model inversion results is simulated. Then
Then we add two kinds of noises to the data: NEAT of 0.09K,
and absolute radiometric calibration error of 1K, to verify the
sensitivity of the random forest model to different noises. Both
types of errors are Gaussian white noise and are added 50 times
randomly.

scatter of train set scatter of test set

209 pjas=-0.0319 209 pias=-0.0819
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300
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& ! T
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Figure 5. Inversion results of RF algorithm of 8~10.5pm.
(a)training set; (b)test set; (c)test set with NEAT noise; (d)test
set with calibration noise

As shown Table 6 (a) and Figure 5, the inversion LST error of
train set and test set are 1.68K and 2.23K, respectively. When
the detection spectrum is extended to 12.5um, the RMSE of
temperature inversion can be reduced by about 1K. The
inversion RMSE is not sensitive to NEAT noise, but will

significantly increase with the intervention of absolute
radiometric calibration error.
Range(um) 8-10.5 8-12.5
Data set Train set Test set Train set Test set
w/0 noise 1.68 2.23 0.90 1.20
w/ NEAT 1.90 2.27 1.00 1.22
w/ Calibration 2.41 2.50 1.66 1.67
WNEAT& 2.45 2.53 1.67 171
calibration
(a) RF algorithm

Range(um) 8-10.5 8-12.5
Data set Trainset | Testset | Trainset | Test set
w/0 noise 3.42 3.44 3.00 3.00
w/ NEAT 3.48 3.49 3.01 3.01
w/ Calibration 3.61 3.63 3.17 3.17
WNEAT& 3.67 3.68 3.18 3.18
calibration

(b) ANN algorithm

Table 6. Inversion error of Integrated machine learning
algorithms. (a)RF algorithm; (b)ANN algorithm.

4.3 Inversion results based on Artificial Neural Network
algorithm

It is generally considered that the three-layer ANN model is
sufficient enough for the application of remote sensing to the
inversion of surface radiation, and the neural network model
with two hidden layers has better results for some extreme cases
and discontinuities of the model. Therefore, we trained the MLP
network model with two hidden layers, with the number of
nodes in layer 1 and Layer 2 set to 100 and 80, respectively.

The simulated results is listed in Table 6(b).The inversion
precision of ANN model is 3.7 K for LST at 8-10.5 um, and
3.2K at 8-12.5 um range. It can be seen that the LST inversion
accuracy of ANN model is much lower than that of RF model.

5. CONCLUSION

This paper takes the SW algorithm and integrated machine
learning algorithm as examples to analyze the influencing
factors of LST inversion using thermal infrared hyperspectral
remote sensing data.

Firstly, typical LST inversion methods are introduced and their
applicability, advantages, and disadvantages are compared.

Subsequently, the factors affecting the inversion accuracy of the
SW algorithm that requires two channels are analyzed. From the
simulation results, the LST inversion effect of the two channels
from 8 to 12.5um is significantly better than that of 8 to 10.5um.
After the SW band is selected, the LSE error, absolute
radiometric calibration error and algorithm error will have a
greater impact on the overall inversion accuracy. Specifically,
when conducting artificial ground object detection whose LSE
is low, this algorithm is no longer applicable.

Next, the influencing factors of integrated machine learning
algorithms are analyzed. This algorithm does not require
additional input, making it more suitable for hyperspectral
remote sensing applications with multiple spectral bands. The
inversion results were evaluated by constructing a dataset and
adding disturbances. The application of Random Rorest
algorithm performs better, and the construction accuracy of data
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sets and absolute radiometric calibration error have a great
impact on the inversion accuracy.

In summary, in order to achieve good LST inversion results, the
detection spectrum should be extended to above 12.5um, and
precise absolute radiometric calibration should be carried out.
When observing natural features, the SW algorithm is
applicable. For artificial ground objects, integrated detection
can achieve better results.
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