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ABSTRACT:

The mapping of slum areas is an important task when considering the necessity for an inclusive, safe and resilient cities. While many
methods exist in this regard, the use of machine learning and more specifically deep learning has gained traction in recent years. In
this paper, we present a systematic comparison of existing deep learning architectures and backbones. The experiments in the paper
investigate the question of which architecture and backbone combination and which configuration of dataset preparation is best for use
in slum mapping. In another experiment we implemented the trained model to predict slums in existing open data. The experiments
in the paper used public open data provided by Helber et al. (2018). Results show that FPN with vgg16 backbone showed the most
potential in this particular application. The results of the semantic segmentation also shows promise, although the discrepancy in slum
characteristic still hinders a proper generalization of its use.

1. INTRODUCTION

The 11th Sustainable Development Goal (SDG) calls for sustain-
able cities and inclusive, safe, and resilient settlements by 2030.
The proportion of the urban population living in slums, informal
settlements, or inadequate housing is one of the indicators for this
agenda. According to UN-Habitat (2022), 20% of the world’s
population, approximately around 1.6 billion people, live in sub-
standard housing, with one billion living in slums and informal
settlements. The Millennium Development Goals (MDGs) de-
fined a slum as an area that combines several characteristics such
as a lack of access to clean water and sanitation, as well as poor
housing quality, overcrowding, and insecure residential status to
varying degrees (UN-Habitat, 2018, 2007). The ability to locate
and monitor these areas would support both governmental and
non-governmental organisations in taking necessary decisions in
reducing slums.

Kuffer et al. (2016) demonstrated the possibility of using very-
high-resolution (VHR) remote sensing data to map slums over
large areas in a repeatable manner. Several other studies em-
ployed machine learning approach, such as Random Forest (RF)
(de Mattos et al., 2021; Owusu et al., 2021) and Support Vector
Machine (SVM) (Duque et al., 2017; Prabhu and Parvathavarthini,
2022). These methods requires preliminary feature extraction
that describes the physical, morphological, and contextual char-
acteristics of slum areas in order to recognise its pattern both geo-
metrically and spatially. Convolutional Neural Networks (CNNs)
on the other hand, have the ability to learn high-level spatial fea-
tures automatically.

The use of AI (artificial intelligence) in classifying satellite im-
ages has seen a recent surge in interest. In AI parlance, the act of
classifying pixels is analogous to semantic segmentation (Mur-
tiyoso et al., 2022), although it may also involve instance seg-
mentation and eventually panoptic segmentation (Kirillov et al.,
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2019). Slum area classification using deep learning approach
had been conducted by Mboga et al. (2017); Persello and Stein
(2017); Gram-Hansen et al. (2019); Liu et al. (2019); Fisher et al.
(2022). Mboga et al. (2017) shows that a pixel-wise CNN tech-
nique for slum classification in Tanzania resulted in higher accu-
racy than SVM using texture features. Persello and Stein (2017)
assessed deep fully convolutional networks (FCN) to detect in-
formal settlements over the same area as Mboga et al. (2017) and
pointed out that FCN perform better than conventional convolu-
tional networks. Liu et al. (2019) also used FCN to study slum
mapping, but from a temporal dynamics perspective on tempo-
rary slums in Bangalore, India. Gram-Hansen et al. (2019) pro-
vides high-resolution images and annotation data pairs over slum
areas in different countries and trains the data with canonical cor-
relation forests and the DeepLabv3+ model. Fisher et al. (2022)
used Sentinel-2 images in Mumbai, India, to map slum areas with
uncertainty quantification at the pixel level by incorporating a
Monte Carlo dropout in the U-Net model.

In this study, we used publicly open data provided by Helber et al.
(2018) and investigated the performance of three different deep
learning architectures for semantic segmentation of slum areas
from VHR satellite images, including U-Net (Ronneberger et al.,
2015), FPN (Lin et al., 2017), and Linknet (Chaurasia and Cu-
lurciello, 2018). Performance will be assessed based on several
parameters, including the intersection-over-union value and over-
all elapsed time.

2. MATERIALS AND METHODS

2.1 Data

Helber et al. (2018) provided several image-target pairs from VHR
satellite data for informal settlements in Medellin (Colombia),
Kibera (Kenya), Makoko (Nigeria), and El Daein and El Geneina
(Sudan). The data pairs include three natural spectral Red-Green-
Blue (RGB) images with binary annotation images of slum and
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non-slum pixels. The VHR images were provided by Digital-
Globe through the Satellite Applications Catapult with a 30-50
cm spatial resolution (Gram-Hansen et al., 2019). This paper
only used datasets in Kibera (Figure 1a) and Makoko (Figure 1b)
due to several justifiable reasons. Firstly, the area coverage in
Medellin is too small thus provided insufficient training data for
our purposes. Secondly, although El Daein and El Geneina cover
larger informal settlements than others, their ground truth data
proved to be unreliable when setting up the initial experiments.
A notable problem observed is the existence of similar spectral
objects that appear in different classes.

2.2 Method

This study used three different semantic segmentation architec-
tures, including U-Net (Ronneberger et al., 2015), FPN (Lin et
al., 2017), and Linknet (Chaurasia and Culurciello, 2018). The
name U-Net comes from its characteristic U-shaped architecture
which consists of an encoder that captures features at different
scales and a decoder that restores the spatial resolution using skip
connections. FPN, Feature Pyramid Network, addresses the issue
of handling objects at different scales by creating a feature pyra-
mid. It enables the network to capture both fine-grained details
and high-level semantic information. Linknet is a lightweight
and efficient architecture that utilizes an encoder-decoder struc-
ture with skip connections to capture both local and global con-
text. These skip connections preserve fine-grained details and
enable efficient information propagation.

These networks are arguably the three most popular models for
semantic segmentation based on literature review. Although ini-
tially developed for computer vision and biomedical tasks, these
networks have been used lately for remote sensing-related work,
such as detecting generic land cover classes, e.g. road, build-
ing, vegetation, and water classes. Generally, these networks are
similar by having the encoder-decoder mechanism. The differ-
ences are in the small details when the networks link the encoder
and the decoder for the upsampling purpose to result in high-
resolution prediction. In this paper, we adopted the segmenta-
tion models library developed by Iakubovskii (2019) to run those
networks combined with 32 different backbones. The codes im-
plemented in this paper are available in https://github.com/

yustisiardhitasari/slum_orei (last accessed 3 July 2023).

The experiments were conducted in three consecutive stages:

Experiment 1 Aims to assess the model performances to select
a network-backbone pair which will be used for the next
experiment.

Experiment 2 The second stage focuses on investigating model
performances with different configurations.

Experiment 3 Finally, a new location is introduced to evaluate
the stability of semantic segmentation networks to classify
slum pixels in different locations.

The initial experiment used the Kibera data set (Figure 1a). The
data preparation is described in Figure 2. Patches were generated
by cropping the image into 512 x 512 pixel crops after resampling
it into a 1 m resolution to avoid homogeneous classes in the indi-
vidual patches. In the end, 189 patches were thus generated and
used to train the networks. They were then split into 80% training
and 20% validation sets and trained with 50 epochs and a batch
size of four. We trained this data using three networks with 32

different backbones, resulting in 96 training models. The compu-
tational process was conducted using a workstation equipped by
an NVIDIA A100 GPU with 40GB VRAM.

The experiment in the second stage still used the Kibera data
set but employed different configurations of the resolution, patch
size, and overlapping pixels in the patches. The objective is to
assess the effect of area coverage per patch and the number of
training data to the model performance. Meanwhile, the last ex-
periment applied Kibera and Makoko data which were prepared
using the same configurations. The second and third experiments
were conducted using a laptop with an NVIDIA GeForce RTX
3060 6GB GPU. All experiments were analyzed quantitatively
based on the IoU values from each training model. In addition,
the computational efficiency in the initial experiment was also
determined based on the duration of each training.

3. RESULTS AND DISCUSSION

3.1 Experiment 1: Model performances

Preliminary observations depicted in Figure 3(a) suggest that the
pretrained senet154 backbone was able to achieve comparable
results across networks, with IoU scores of 80.84%, 80.49%, and
80.45% for FPN, Linknet, and U-Net, respectively. The op-
timum IoU score was generated when using the seresnet152

backbone on FPN, with an IoU score of 80.85%, similar to the
senet154 backbone but with a faster training process. Mean-
while, the same backbone resulted in IoU scores of 80.41% on
FPN and 80.18% on U-Net. However, compared to the seresnet-
152 backbone, the training process using senet154 took roughly
six times longer in all networks. Note that a more detailed numer-
ical result can be found in Figure 6 in the appendix section.

Overall, using the FPN architecture yielded an average IoU score
of 80.14%, with Linknet giving 77.40% and U-Net 79.35%.
Based on this performance, FPN was chosen as the deep learning
model to be investigated further for slum mapping. Figure 3(b)
shows a graph of FPN IoU results plotted against training duration
for the different backbones. Based on this figure, vgg16 scored
a good balance between IoU (third best) and training duration,
even when compared to seresnet152. The combination of FPN
and vgg16 was therefore chosen to be investigated further in Ex-
periment 2.

3.2 Experiment 2: Effect of training configurations

Based on the IoU and computational time during training in the
initial experiments and considering the processing unit capacity,
the FPN network with the vgg16 backbone was selected to re-
process the data with different configurations. Table 1 shows the
different set-ups over the same dataset. The first row of the ta-
ble describes the configurations and the IoU value of the initial
experiment. Using the 1 m resolution data and a patch size of
512 with many overlapping pixels in the patches produced IoU
of about 80%. However, using the 0.5 m resolution images with
a reduced percentage of overlapping pixels shows that the IoU
decreases dramatically to below 50%. A patch’s area coverage is
likely to affect model performance since the probability of having
a homogeneous class in a single patch is higher when using the
0.5 resolution data than the 1 m, thus hinting at the averse effect
of oversampling the original image.

Nevertheless, to understand the effect of training sets, the patch
size was further reduced to 256 pixels. Consequently, the same
issue rose. This is probably due to the probability of having a
homogeneous class inside one patch being still higher whether
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Figure 1: Original dataset of VHR image and slum annotation in Kibera, Kenya with a 30 cm resolution (a) and in Makoko, Nigeria
with a 50 cm resolution (b). Source: https://frontierdevelopmentlab.github.io/informal-settlements/, last accessed 3
July 2023.

Figure 2: Overview of the methodology conducted in this paper.

Table 1: IoU metric of experimental results using different con-
figurations on the Kibera dataset.

Resolution
(m)

Patch size
(pixel)

Overlap
(%) Train/Val

IoU
(%)

1 512 75 151/38 80.83
1 512 50 60/15 81.11

0.5 512 12.5 86/22 48.82
1 256 50 217/69 54.25

0.5 256 50 927/290 47.44
0.5 256 12.5 374/94 44.27

using 256 or 512 pixels, especially considering that the 256 patch
size was combined with the lowering of the resolution into 0.5 m.
The experimental results using a patch size of 256 with different
resolutions and overlapping percentages generated more training
data, but the results indicate low IoU values of between 44% and
54%. The 1 m resolution data has better IoU values than the 0.5
resolution image, even though the smaller resolution has training
sets three times more than the 1 m resolution with the same num-
ber of overlapping pixels. This observation shows that the quality
of the training data is as important as the amount fed during the
training. In this particular case, a larger patch is recommended to
ensure that each patch represents enough diversity of classes.

To better understand the number of training sets’ effect on the
model performance, we used a second dataset in Makoko, Nige-
ria. We created two training data sets using the 1 m resolution
image of Makoko with a patch size of 256 and 50% overlapping
pixels. The first set consists of 136/35 train/val numbers, while
the second has smaller sets, which are 108/35. The larger sets
resulted in an IoU of 57.06%, approximately 20% higher than
the smaller ones, which only yielded an IoU of 38.61%. These
results suggest that more training data can increase the model
performance.

3.3 Experiment 3: Semantic segmentation for slum map-
ping

To bring the semantic segmentation model performance into the
context of slum mapping, the model was tested on patches not
included in the training process, therefore presenting an indepen-
dent check. The 1 m resolution data with 50% overlapping pixels
and a patch size of 256 was used since it produces more datasets
for splitting. Using this configuration, 55 patches to test on the
Kibera site and 28 on Makoko were established. The computed
IoU values when testing using the pretrained model in each area
are 64.52 and 51.80 for Kibera and Makoko, respectively.

Figure 4 and Figure 5 illustrate results of the semantic segmenta-
tion on the test data. Although the Kibera pretrained model was
able to detect vegetation and open bare as non-slums quite well
(Figure 4b, Figure 4d, and Figure 4e), its capability to separate
slums and other built up objects is still limited (cf. Figure 4a,
Figure 4c, and Figure 4e). The RGB images also show that some
built-up objects, such as roads, are classified inconsistently. For
example, roads in Figure 4b and Figure 4d annotated as non-
slum pixels while in Figure 4a and Figure 4e labeled as slums.
This inconsistency comes invariably from the the model training
process, considering the results depend on the input for training.
Note also that the ground truth data was included for validation
during training.
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Figure 3: IoU vs training duration colored by architectures (a) and backbones for the FPN architecture (b).

Figure 4: Results of the prediction for the slum class on the Kib-
era test dataset.

Makoko data also shows similar issues. Figure 5a and Figure 5d
show some vegetated area labeled as slum pixels. Figure 5b
presents buildings in a coastal area where coastal water pixels
are labeled as slums. Moreover, Figure 5c imply that there is an
error in the labeling process, while Figure 5e suggests that there

Figure 5: Results of the prediction for the slum class on the
Makoko test dataset.

should be more slum pixels in the ground truth data, so the predic-
tion is not completely misclassified but was nevertheless labeled
as misclassified pixels.

Furthermore, the trained model tends to work only in the area
of training. Using the pretrained model in Kibera to do seman-
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tic segmentation in Makoko, or vice versa, does not work. The
pretrained model on one failed to predict slum pixels in the other
area. This illustrates another important challenge on the use of
deep learning for slum mapping: the transfer model and model
generalization are often hampered by different characteristics of
slums in different areas, which depends strongly on both cultural
and geographical factors. This in turn showcases the need for a
larger and more inclusive training datasets encompassing differ-
ent characteristics from different parts of the world, which is an
immense challenge in its own right.

4. CONCLUSIONS AND FURTHER WORK

This work compared three deep learning architectures for seman-
tic segmentation of slum areas from VHR satellite images: U-Net,
FPN and Linknet. Using a dataset from Kibera, Kenya for train-
ing we found that FPN networks with different backbones showed
better IoU scores than others, with backbones having shallow lay-
ers resulted in shorter training duration than others having deep
layers. The initial experiments demonstrate that the model can
reach up to 80% IoU score. However, using a smaller patch size
or resolution decreased the IoU, indicating that limited coverage
of patches caused more homogeneous classes in patches, which
in turn affected training results. This observation was empirically
supported by the results of the second experiment.

In the third experiment, semantic segmentation was performed
on independent test datasets. The achieved IoU scores of 64.53%
(Kibera) and 51.80% (Makoko) were supported by visual inspec-
tion; indeed the distinction between certain classes with strong
resemblance proved difficult. This is, however, a preidentified
challenge when working with slum areas.

Despite the limitations of the current open data set, creating a data
set for the slum is not an easy task, especially to create a pixel-
wise annotation. This is more so when considering the changes
in slum characteristics depending on cultural and geographical
factors. However, the ever increasing availability of open data
may prove to be the key in implementing this promising solution
for slum mapping.
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APPENDIX

Figure 6: Model performances based on IoU metric and computational time during training from the initial experimental results on the
Kibera dataset.
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