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ABSTRACT: 

 

The Pantanal biome is one of the most important wetlands on the planet, harboring a rich biodiversity whilst being critical in 

maintaining hydrological cycles and climate regulation. However, the occurrence of fires in the biome has represented a significant 

threat to this unique ecosystem and its multiple functions. Understanding the extent, intensity and environmental impacts caused by 

fires in the Pantanal, is of unique importance for the preservation of the biome's biodiversity. Remote sensing techniques have played 

an important role in detecting and mapping burnt areas, especially SAR (Synthetic Aperture Radar) orbital systems, that are able to 

collect data in regions with frequent cloud cover or during extreme fire events. In this context, the objective of this study was to evaluate 

the potential of the U-Net semantic segmentation network applied to SAR data in the detection of burnt areas in the Brazilian Pantanal. 

For this, a semi-automatic annotated dataset was generated and considered as ground truth to evaluate the result obtained by the 

network. Two input datasets were evaluated in the detection of burnt areas, one containing optical and SAR data whereas the other 

containing only SAR data. The predictions of the two datasets were consistent with the semi-automatically generated annotation, 

showing similar spatial distribution but presenting a greater number of burnt areas. The model using both optical and SAR data achieved 

IoU (Intersection of Union) of 0.69 whereas the SAR only model had 0.60. Considering the amount of available data and the complexity 

of burnt area detection, the predictions achieved were adequate. 

 

 

1. INTRODUCTION 

The Pantanal biome is the largest and one of the most pristine 

wetlands in the world. The biome is internationally recognized 

for its ecological richness, covering a wide variety of habitats, 

such as wetlands, rivers, lakes, forests, savannahs, and grasslands 

(WWF, 2023). The Pantanal, which is located in the central 

region of South America (150,355 km2), mainly in Brazil (about 

140,000 km2), also extending into Paraguay and Bolivia, is still 

responsible for providing a series of essential ecosystem services 

for local and national communities. Fishing, agriculture, and 

tourism are key economic activities for the Pantanal population 

(Alho et al., 2019). 

 

The Pantanal plays a crucial role in the global ecological balance. 

Its biodiversity is essential for maintaining the health of the 

planet. This important wetland is home to remarkable biological 

diversity, including hundreds of species of birds, mammals, 

reptiles, and fish, where several of them are classified as 

threatened by the global red list (IUCN, 2023), such as the Jaguar 

(Panthera onca), Giant Anteater (Myrmecophaga tridactyla), 

Giant Otter (Pteronura brasiliensis) and Marsh Deer (Blastocerus 

dichotomus). The flora of the biome is also characterized by a 

wide variety of plants adapted to the specific conditions of this 

ecosystem with strong influence from neighbouring biomes: 

Amazonia, to the north, Cerrado, to the east, Atlantic Forest, 

center-south, and Chaco of Bolivia and Paraguay, to the west. 

 

The biome works as a natural sponge, absorbing large amounts 

of water during heavy rains and gradually releasing it during 

periods of drought. This regulation of water flow is crucial for 

maintaining the balance of the rivers in the Pantanal watershed 

and for the maintenance of other adjacent ecosystems, such as the 

Amazon Forest. 

 

In recent years, the Pantanal has faced major challenges and 

threats. Forest fires, deforestation, agricultural expansion, and 

climate change have negatively impacted this important 

ecosystem. Fires in the Pantanal cause significant damage to 

vegetation, directly affecting fauna and flora. Many endemic 

species depend on wetlands for their survival and reproduction, 

and habitat loss due to fires can lead to local extinction of these 

species. In addition, fires release large amounts of carbon dioxide 

into the atmosphere, intensifying the greenhouse effect and 

contributing to climate change. 

 

In 2020, the Pantanal suffered one of the biggest wildfires in its 

history. A technical report by the Laboratory of Environmental 

Satellite Applications at the Federal University of Rio de Janeiro 

(LASA-UFRJ), showed that the fire affected more than 20% of 

its area until October, resulting in significant loss of habitats and 

the death of countless species (Libonati et al., 2020). The 

Brazilian program named Queimadas (Burned, in English), 

developed by the National Institute for Space Research (Instituto 

Nacional de Pesquisas Espaciais, INPE) for monitoring burned 

areas and active fire, estimated that approximately 40,606 km2 

was burnt in Brazilian Pantanal from January until October 2020 

(INPE, 2020). Still according to the Queimadas program, in 2019 

there was a 415% increase in hotspots compared to the average 

for the years 2010 to 2018 throughout Pantanal. The occurrence 

of fires continued at an accelerated pace, when the accumulated 

number of hotspots of 2020 increased by 223% in relation to 
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hotspots in 2019. Furthermore, among the 742,977 hotspots that 

occurred in the biome in 2020, almost 87 % were from July 20 to 

November 22. 

 

In this context, the preservation of the Pantanal is essential to 

guarantee the maintenance of its ecosystem services, its 

biodiversity, and its fundamental role in regulating the water 

cycle. Therefore, monitoring burned areas in the biome is 

essential to understand their environmental impacts and 

implement appropriate management strategies. Remote sensing 

techniques allow obtaining accurate and updated data, which 

helps in understanding the extent, intensity, propagation patterns 

and assessment of the environmental impacts caused by forest 

fires. Optical remote sensing has played an important role in 

detecting and mapping burnt areas (Bright et al., 2019; Elhag et 

al. 2020; Delcourt et al., 2021). However, this data is subject to 

adverse weather conditions. Active sensors operating in the 

microwave spectrum, such as SAR (Synthetic Aperture Radar) 

orbital systems, are capable of acquiring data regardless of 

atmospheric conditions. This allows for reliable data acquisition 

in regions with frequent cloud cover or during extreme fire events 

(Tariq et al., 2021; Zhou et al., 2019; Mastro et al, 2022). 

 

Coupled with the ability of the SAR systems of acquiring data 

regardless of illumination and atmospheric conditions, deep 

learning methods have shown great potential for extracting 

patterns of changes in images (Ban et al., 2020; Higa et al., 2022; 

Zhang et al., 2021), particularly semantic segmentation networks, 

such as the U-Net, proposed by Ronneberger et al. (2015). U-Net 

is a convolutional neural network architecture that performs 

semantic segmentation of images. The main feature of this 

network is its ability to learn to segment objects at different 

spatial scales, resulting in a more accurate segmentation of 

objects of interest. 

 

The purpose of this study was therefore to evaluate the potential 

of the U-Net semantic segmentation model applied to SAR data 

in detecting burned areas in the Brazilian Pantanal. The model 

was validated by comparing it with semi-automatically generated 

annotation data from Sentinel-2 optical images. 

 

2. METHODOLOGY 

Sentinel-1 and 2 satellite optical and SAR data were used as input 

dataset. An annotated dataset was generated semi-automatically 

from the Sentinel-2 optical data; it was used in this study as 

ground truth. The annotation was also compared with the Kernel 

density map generated from hotspots that were acquired through 

the Queimadas program (INPE, 2020). Two datasets were 

defined for the application of the U-Net network for the detection 

of burned areas in the study area, one based on optical and SAR 

data and the other using only SAR data. The results were spatially 

and thematically compared with the generated annotation. The 

overall framework of the research is shown in Figure 1. 

 

2.1 Study Area 

The continuous and increasing degradation of the Pantanal biome 

due to fires, makes clear the need to preserve the ecological 

balance of the biome. Among the forms of conservation and 

preservation of biomes, the creation of Conservation Units (CUs) 

is fundamental for the protection of natural areas and consequent 

maintenance of ecological processes (Angelsen and Kaimawotiz, 

2001). CUs are vital in responding to emerging challenges, such 

as water protection, disaster risk reduction and climate change. 

Therefore, the study area is partially inserted in a Brazilian 

Pantanal CU named Encontro das Águas State Park (EASP), 

Mato-Grosso State, as shown in Figure 2. 

 

 

Figure 1. Overall flowchart of methodology, where  and 

 refers to the SAR backscatter coefficients, PA to the 

Polarization Averaging polarimetric index, NBR and NDWI to 

the Normalized Burn Ratio and Normalized Difference Water 

Index optical indices, respectively, and dNBR to the difference 

between pre- and post-fire NBRs. 

 

 
Figure 2. Location map of the study area. 

 

The considered fire events for this study occurred in the period 

from July 20 to November 22, 2020. According to the data 

provided by the Queimadas program (INPE, 2020), during this 

period, the study area was severely affected by fire, with a total 

of 49,310 hotspots detected from satellites. The hotspots can be 

accessed from the program's database, available at the 

https://queimadas.dgi.inpe.br/queimadas/bdqueimadas portal, 

selecting the Export Data option, and configuring it for the 

country Brazil, mentioned period and Pantanal biome.  

 

To show the extent of fire occurrence in the study area, a post-

fire true color composite image (R(B4) G(B3) B(B2)) was 

generated from Sentinel-2 images acquired on November 22, 

2020, as shown in Figure 3. Comparing with Figure 2, which 

shows the study area also in true color composite but before the 

burning period (images acquired on 20 July 2020), the extent of 

the vegetation area illustrated in Figure 3, decreases 

considerably, severely degrading the EASP CU. 
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Figure 3. True color composite from the study area of Sentinel-

2 images acquired on November 22, 2020 (post-fire), where the 

yellow polygon indicates the EASP CU. Purplish areas 

represent burnt areas. 

 

2.2 Kernel density map generation 

For a better understanding of the intensity of the hotspots 

throughout the study area, a Kernel density map was generated. 

From the Kernel map, it is possible to spatially analyze the areas 

most affected by fire and compare it with the annotation 

generated using Sentinel-2 optical data, verifying its consistency. 

For the generation of the Kernel density map, hotspots were 

acquired from the database of the Queimadas program (INPE, 

2020). The period configured to obtain the hotspots was the 

intense burning period considered for this study, from July 20 to 

November 22, 2020. 

 

2.3 Image Acquisition and Preprocessing 

Sentinel-1 and 2 data were downloaded through their official 

repository, i.e., the European Space Agency (ESA) Copernicus 

Open Access Hub portal, available at 

https://scihub.copernicus.eu/ (exploiting the free, full, and open 

Copernicus License). Acquisition dates are as close as possible 

to the event dates that have been selected. 

 

2.3.1 MSI/Sentinel-2: The Sentinel-2 optical images are 

acquired by the MultiSpectral Instrument (MSI) sensor and have 

13 spectral bands, with three bands in the visible spectrum, Blue 

(492.4 nm), Green (559.8 nm) and Red (664.6 nm), and one in 

the Near InfraRed (NIR, 832.8 nm) with a spatial resolution of 

10 meters; four bands in Red Edge (RE), RE-1 (704.1 nm), RE-

2 (740.5 nm), RE-3 (782.8 nm) and RE-4 (864.7 nm) and two in 

Short Wave InfraRed (SWIR), SWIR-1 (1613.7) and SWIR-2 

(2202.4), with a spatial resolution of 20 meters; and also 3 bands 

used in the atmospheric correction of the scene, with a resolution 

of 60 meters: Aerosol (442.7 nm), Water Vapor (945.1 nm) and 

Cirrus (1373.5 nm) (ESA, 2023). 

 

For this study, pre- and post-event Sentinel-2 optical images 

calibrated in surface reflectance (Level 2, Bottom of Atmosphere, 

BOA) acquired respectively on July 20 and November 22, 2020, 

were selected. The images were resampled to 20 meters by 

nearest neighbor interpolation and the NBR (Normalized Burn 

Ratio) and NDWI (Normalized Difference Water Index) indices 

were calculated. Then, the difference (dNBR) between pre- and 

post-event NBRs was also calculated, which are used to assess 

the extent and severity of burned areas. Details in Table 1. 

 

Acronym Formulation Reference 

NDWI 
 

Mcfeeters    

(1996) 

NBR 
 

Key and Benson 

(1999) 

dNBR  
Key and Benson 

(2006) 

PA 
 

Dos Reis et al. 

(2019) 

Table 1. Formulations of used spectral indices and difference. 

ρGreen, ρNIR, and ρSWIR1, refer to reflectance in the green, Near 

InfraRed, and Short-Wave InfraRed-1 Sentinel-2 spectral bands, 

respectively. 

 

2.3.2 SAR/Sentinel-1: Sentinel-1 satellites incorporate a 

SAR (Synthetic Aperture Radar) instrument that operates in the 

C band at a frequency of 5.404 GHz. The system has four distinct 

acquisition modes: SM (Stripmap Mode), IW (Interferometric 

Wide Swath Mode), EW (Extra-Wide Swath Mode) and WV 

(Wave Mode). IW is the main mode of land data acquisition and 

data is acquired over a 250 km swath with a spatial resolution of 

5 m by 20 m. This mode acquires images in three sub swaths 

using the TOPSAR technique (Terrain Observation with 

Progressive Scans SAR). SAR images can still be provided in 

"complex" format, known as Single Look Complex (SLC), and 

Ground Range Detected (GRD), which consists of pre-processed 

SAR data projected to ground range (ESA, 2023). 

 

SAR sensors have become an important tool to assist in the study 

and characterization of burnt areas, given their characteristics of 

independence from solar radiation, and low interference from 

clouds, smoke, and fog, rain among other meteorological 

conditions. SAR image processing various information about the 

target to be extracted, such as electrical components (dielectric 

constant/ water content), roughness and geometry (Jensen, 2009). 

These characteristics determine the intensity of backscattering 

and can become great allies in the characterization and 

monitoring of areas of natural vegetation affected by fire events. 

 

For this study, GRD Sentinel-1 C-band SAR images, in IW mode 

and VV and VH polarizations, were selected. The SAR images 

were acquired only after the fire event, on November 24, 2020. 

These images were converted into the backscattering coefficients 

 and , based on the following pre-processing steps: orbit 

correction; removal of thermal noise; data calibration; 

application of the Refined Lee filter with 3 × 3 window size; and 

terrain correction based on SRTM (Shuttle Radar Topography 

Mission) digital elevation model. In this last process, the spatial 

resolution of the images was also downsampled to 20 m to grant 

consistency with Sentinel-2 data. All the processing steps have 

been carried out in the ESA SNAP software After preprocessing, 

the polarimetric index Polarization Averaging (PA) was 

calculated (Table 1). To show the sensitivity of SAR data to 

burned areas, Figure 4 illustrates the (R)PA (G)VV (B)VH color 

composite, i.e., the Red channel is assigned to the PA 

polarimetric index, the Green channel to the backscatter 

coefficient  and the Blue channel to the backscatter 

coefficient . 

 

The red channel was attributed to the PA polarimetric index due 

to its response to burned areas with brighter pixels, as opposed to 

the  and  backscatter coefficients, which present darker 
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pixels. Therefore, the areas in red in Figure 4 indicate possibly 

burned areas. 

 

 
Figure 4. Color composite (R)PA (G)VV (B)VH from the study 

area of Sentinel-1 images acquired on November 24, 2020, 

where the black polygon indicates the EASP CU. 

 

2.4 Semi-automatic annotation generation 

The dNBR calculated from the pre- and post-fire NBR index, was 

used to semi-automatically generate the annotation for the 

application of the U-Net network. For this, a threshold was first 

applied to the dNBR to select only the severely burned areas, 

defined in the range of +0.66 to +1.30, by Key and Benson (2006) 

(Table 2) and confirmed by a qualitative visual inspection. This 

threshold was applied to isolate only severely burned areas from 

other burnt severity levels, thus allowing the U-Net semantic 

segmentation network model to learn from effectively burned 

areas avoiding false positives. 

 

Severity level dNBR range 

Enhanced regrowth, high –500 to –251 

Enhanced regrowth, low –250 to –101 

Unburned –100 to +99 

Low severity +100 to +269 

Moderate-low severity +270 to +439 

Moderate-high severity  +440 to +659 

High severity +660 to +1300 

Table 2. Ordinal severity levels and range of dNBR (scaled by 

103), to the right. 

Source: Key and Benson (2006) 

 

In addition, a water mask was applied to remove water bodies 

since some of them presented dNBR values similar to burnt areas. 

The water mask was generated by applying a threshold to the 

optical-based NDWI index (Normalized Difference Water Index) 

defined by Mcfeeters (1996) as NDWI ≥ 0. Finally, the Sieve 

filter was applied to remove areas with less than 300 isolated 

pixels. The final product was a binary image, representing only 

burned and unburned areas. 

 

The generated annotation was compared with the Kernel density 

map, which was created based on the hotspots acquired from the 

Queimadas program for the period considered for this study, to 

qualitatively verify its consistency. In addition, the annotation 

was used as ground truth to compare the results obtained through 

the application of the U-Net network. 

 

2.5 U-net semantic segmentation network configuration 

and application 

For application on the U-net network, two post-fire datasets were 

tested for comparison purposes. The first set was formed by 

Optical and SAR data, i.e., the NBR optical index and the  

and  backscatter coefficients from the SAR images, while the 

second set contained only the SAR data ,  and the PA 

polarimetric index. Both datasets were stacked, forming two 3-

bands products (2666 pixels by 2349 pixels), corresponding 

exactly to the same area of the generated annotation. 

 

Due to the high memory requirement of the computer's GPU, 

images need to be divided into smaller patches for the training of 

the U-Net network. 256 pixels by 256 pixels patches were used. 

Since the dimension of the two datasets (Optical/SAR and only 

SAR) and the created annotation (2666 pixels x 2349 pixels) was 

not divisible by the size defined for the patches, they were 

cropped to the nearest size divisible by the patches size and from 

the top left corner, removing excess pixels and forming products 

measuring 2560 pixels by 2304 pixels. Thus, the data were 

divided into patches of 256 pixels by 256 pixels using the 

Patchify library and forming 90 complete patches (9 patches x 10 

patches) for each product. 

 

For the customization of the U-Net network, the Python 

segmentation-models library e was used. The patches were 

divided into a training (75%) and a validation dataset (25%) 

according to a consolidated training approach. The 

hyperparameters used are specified in Table 3. In addition, Data 

Augmentation was used to artificially increase the size of the 

dataset through 90° rotation; width and height shift and zoom 

were defined as 0.3, horizontal and vertical flips as True and the 

fill mode was set as reflection. 

 

Hyperparameter Specification 

Encoder ResNet-34 

Optimizer Adam 

Epochs 100 

Table 3. Hyperparameters used to customize the U-Net 

network. 

 

After processing the U-Net network, figures representing the 

spatial distribution of the burnt areas referring to the prediction 

of the two sets of data (Optical/SAR and only SAR) were 

generated. The area represented as burnt was calculated for the 

two predictions, as well as for the generated annotation. The IoU 

(Intersection of Union) and the processing time for each dataset 

were also calculated. Finally, the processing generated the loss 

and accuracy curves for both the training and validation data. 

 

3. RESULTS AND DISCUSSION 

The Kernel density map indicating the intensity of hotspots 

acquired from the Queimadas program (INPE), throughout the 

study area from July 20 to November 22, 2020, is illustrated in 

Figure 5. 

 

The Kernel density map (Figure 5) shows that the study area was 

severely affected by fire in the considered period, also indicating 

several areas of greater severity (stronger red). The annotation 

generated semi-automatically from optical data is presented in 

Figure 6, in which the pixels labeled as 1 (reddish pixels) refer to 

the burnt areas while the pixels labeled as 0 (white background) 

to the areas not affected by the fire. 
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Figure 5. Kernel density map of hotspots derived from the 

Queimadas program (INPE) from July 20 to November 22, 

2020, of the study area. The stronger the red, the greater the 

density of hotspots. The black polygon indicates the EASP CU.  

 

 
Figure 6. Annotation generated semi-automatically from the 

high burnt severity threshold, water mask and Sieve filter 

applied to the dNBR, that indicates the burnt areas in reddish 

pixels. 

 

Comparing the Kernel density map (Figure 5) and the generated 

annotation (Figure 6), the two products showed a qualitative 

consistency in the spatial distribution of areas affected by fire, 

confirming the intensity of the event in the study area. This 

spatial distribution is also confirmed from the (R)PA (G)VV 

(B)VH color composite of the post-fire SAR images acquired on 

November 24, 2020, shown in Figure 4. It is also important to 

highlight that the SAR images are capable of not representing 

water bodies as burnt areas, which can be seen mainly in the 

lower part of the EASP in Figure 4. The opposite was seen in the 

dNBR optical product that was used to generate the annotation, 

as it was necessary to apply a mask for removing water bodies 

due to spectral similarity between targets. 

 

Regarding the application of the U-Net network, Figure 7 a and 

b, respectively, illustrates the predictions of burnt areas referring 

to the optical/SAR (NBR,  and ) and SAR ( ,  and 

PA) datasets. 

 

The prediction of the two datasets presented in Figure 7, showed 

spatially similar results with the generated annotation (Figure 6), 

however, detecting a greater number of burnt areas in relation to 

the annotation (false positives). Despite the annotation used to 

train the U-Net network was generated only from a high burn 

severity threshold, the false positives can be attributed to the 

sensitivity of SAR images in detecting burned areas with a lower 

severity. Considering the defining characteristics, especially of 

the backscatter of the radar signal, such as water content and 

surface roughness, SAR images may present a more sensitive 

detection compared to optical images.  

 

 
Figure 7. Predictions resulting from the application of the U-

Net network to the (a) optical/SAR and (b) SAR datasets, where 

the reddish pixels indicate the burnt areas. 

 

Comparing Figures 3 and 4, which show the response from 

optical and SAR data, in true color composite and (R)PA (G)VV 

(B)VH color composite, respectively, Figure 3 shows the burned 

areas scattered throughout the area. Figure 4, on the other hand, 

presents different characteristics, better defining the burned 

areas, due to the dominant mechanisms of the response of the 

radar signal after the fire. Zhou el al. (2019) explains that the 

dominant backscattering mechanism of vegetation before fire is 

volume scattering from the canopy layer of the vegetation. After 

a fire, as the vegetation is burned leaving part of the ground 

exposed, the dominant mechanism becomes surface scattering, 

which mainly depends on the roughness and moisture content of 

the soil. Furthermore, Mastro et al. (2022) and Tariq et al. (2021) 

state that the C-band backscatter coefficients are capable of 

detecting fire disturbances efficiently due to their sensitivity to 

changes in the structure of the vegetation affected by fire. 

 

To reduce the number of false positives, an alternative could be 

to adjust the burn severity range applied to the dNBR, from which 

the annotation was generated, to an interval that comprises areas 

that were effectively burned, i.e., decrease the interval of burn 

severity level proposed by Key and Benson (2006). Thus, optical 
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data would possibly detect a smaller burned area to generate the 

annotation, enabling the network to learn from SAR data directly 

from very severely burned areas. 

 

The processing of the U-Net network also generated the Loss 

(Jaccard loss function) and Accuracy curves resulting from the 

training and validation of the two sets of data (optical/SAR and 

only SAR data), shown in Figure 8. 

 

 
Figure 8. Loss (Jaccard loss function) and accuracy curves 

resulting from training and validation data for the optical/SAR 

dataset (a and c) and the SAR dataset (b and d). 

 

The loss and accuracy curves show that the validation data of 

both datasets adjusted well to the model and the model's 

performance stabilizes after a few dozen epochs. In addition, both 

validation loss curves (orange curves in a and b) continuously 

converge to zero without much oscillation, which indicates a 

consistent result. The IoU measure and processing time for each 

dataset, in addition to the areas presented as burnt in the two 

datasets and the annotation, are presented in Table 4. 

 

Data 
Area labeled as 

burned area (ha) 
IoU 

Processing 

time * 

Original 

Annotation 
54,789.44 - - 

Optical/SAR 72,045.68 0.69 1414 

SAR 79,200.20 0.60 1412 

Table 4. Results obtained after processing the U-Net network in 

both datasets. * Desktop Workstation Specifications: Intel Core 

i9-12900K Processor (3.2GHz / 5.2GHz); RAM Memory of 

64GB DDR4; Video Card Specification: Nvidia RTX A5000 

24GB DDR6, 8192 CUDA CORE. 

 

The dataset including optical and SAR images (NBR,  and 

) presented higher performance with an IoU of 0.69. 

However, the dataset with only SAR data ( ,  and PA) 

presented an IoU of 0.60. In addition, both datasets lead to similar 

results in terms of burnt areas with similar processing times, as 

detailed in Table 4. The data set with the best performance 

contains the NBR optical index, which was developed by the 

author in order to detect burned areas, and was also used to 

calculate the dNBR difference, which in turn was used to 

generate the annotation. Even so, the difference of the IoU 

compared to the dataset containing only SAR data was 0.09. 

 

Considering the small data set involved in the detection of burnt 

areas applied in a deep learning approach, the level of accuracy 

achieved of the predictions were adequate. The result indicates 

consistency and potential in using only SAR data in detecting 

burned areas, compared to the use of optical data together with 

SAR data. 

 

4. CONCLUSIONS 

The Pantanal biome plays an essential role for Brazil and the 

world, providing vital ecosystem services, harboring unique 

biological diversity, and regulating hydrological and climate 

cycles. However, fires represent a serious threat to this valuable 

ecosystem, causing significant environmental and 

socioeconomic impacts. It is essential to adopt effective fire 

prevention and control measures and implement appropriate 

management strategies in areas affected by the fire to ensure the 

preservation of the Pantanal biome and its multiple functions. 

This study showed a semi-automatic way of generating the 

annotation to be used in a deep learning approach, the U-Net 

semantic segmentation network, since this is a manual and time-

consuming step. Additionally, two datasets (Optical/SAR and 

only SAR data) were evaluated in the detection of burnt areas 

using the U-Net. The predictions of the two datasets were 

consistent with the semi-automatically generated annotation, 

showing similar spatial distribution but presenting a greater 

number of burnt areas (Figure 7 and Table 4, respectively), i.e., 

false positives. However, this study indicates the potential of 

using SAR data in the detection of burnt areas in the absence of 

optical data, due to the characteristics that define its response, 

such as moisture content and surface roughness. The research 

also showed a promising result for a small data set that can be 

explored more intensively with larger datasets. 

 

Further planned developments are to exploit the Rapid Mapping 

vector dataset produced by the Copernicus Emergency 

Management Service (CEMS) in case of Fire events as training 

dataset for the U-Net model. A portion of the same data not used 

in the training phase can be used to validate the trained model in 

different areas, to also evaluate the generalisation capabilities, in 

addition evaluate the use of different SAR features for the 

application in the U-Net network. 
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