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ABSTRACT:

Monitoring vessel activity in the ocean plays an essential role in ensuring maritime safety, environmental monitoring, and fisheries
management. This article explores the importance of vessel tracking and investigates the potential of using open data for ocean
monitoring using AI analysis. As satellite data demand increases, new technologies are being developed to address challenges and
improve accessibility for a wider user base. This article discusses the use of AI analytics to process multiple datasets, identify
ships, and track their movements. In addition, it emphasises the importance of cloud geoprocessing for accessing and analysing
vast spatial data, resulting in improved decision-making and operational efficiency. In general, this article provides information on
how vessel tracking can be improved for maritime safety, security, and environmental protection using open remote sensing and
AI-based analysis datasets.

1. INTRODUCTION

The South African Exclusive Economic Zone (EEZ) covers an
area of 1.5 million square kilometres and is an important part
of the country’s economic resources and trade routes (Struwig
et al., 2023). Effective surveillance and protection of South
Africa’s coastal waters and EEZ requires advanced knowledge,
forecasting capabilities, and the ability to assess environmental
impacts, such as oil spills, harmful blooms, and coastal ero-
sion, which can have severe consequences for human health,
economic activities, and the environment (Vreÿ et al., 2021).

The tracking of ships is a critical component of maritime trans-
portation management and plays an essential role in improv-
ing the safety, efficiency, and sustainability of maritime op-
erations (Kristiansen, 2013). It allows authorities to monitor
vessel movements and respond to emergencies, such as acci-
dents or piracy incidents, in a timely manner. However, there
are challenges when tracking vessels such as those related to
illegal fishing or pollution. Open data and artificial intelligence
can play a crucial role in improving vessel tracking and protect-
ing our oceans (Brett et al., 2020, Katija et al., 2022, Nordling,
2017).

1.1 AIS and Open-Data for Ship Detection

The use of Automatic Identification System (AIS) data has ex-
panded beyond studies related to navigation, including trade
flow estimates, emission tracking, and vessel performance mon-
itoring. Satellite AIS data offers extensive coverage of the global
commercial fleet, providing real-time positioning and identifi-
cation information for ships. AIS enhancements can be achieved
through the integration of additional data sources and advanced
analysis techniques, driving the digital transformation of the
shipping industry (Yang et al., 2019).

Although the high cost and limited availability of satellite data
can present challenges, there are multiple open data sources
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Figure 1: A success story of using satellite data to tackle crime
at sea. Source (Nordling, 2017)

that have proven successful in tracking vessel activity in the
oceans (Bo et al., 2021, Hoeser et al., 2020). Figure (1) shows
an example of a successful story of tracking illegal vessel ac-
tivity using satellite data (Nordling, 2017). These open data
sources include satellite imagery from providers such as ESA
Sentinels, Planet, Digital Globe, and NOAA. These satellites
capture high-resolution optical imagery or synthetic aperture
radar (SAR) data, enabling the detection and tracking of ves-
sels based on their visual characteristics or radar reflections.
By leveraging open satellite data, researchers and practition-
ers can overcome the cost and accessibility barriers associated
with proprietary datasets, facilitating a wider range of appli-
cations in maritime monitoring, safety, and management (Bhat
and Huang, 2021, Li et al., 2022).
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1.2 Open-data and AI Analytic for Vessel Tracking

Monitoring and analysing vessel activity in the vast oceans poses
significant challenges due to their immense size and the high
number of vessels traversing them. However, the use of AI an-
alytics enables the extraction of valuable information from the
locations and movements of vessels, facilitating improved sit-
uational awareness, risk assessment, and decision-making pro-
cesses.

The effectiveness of AI analytics in ship identification has been
demonstrated through the successful implementation of multi-
ple machine learning (ML) classifiers, including support vec-
tor machine (SVM), random forest classifier (RFC), linear dis-
criminant analysis (LDA), logistic regression (LR), K-nearest
neighbours (KNN) and Gaussian Naive Bayes-based classifiers.
These ML classifiers employ features derived from the histogram
of orientated gradients (HOG) to achieve accurate identification
and classification of ships (Wang et al., 2021, Li et al., 2022).

1.3 Cloud-based Geoprocessing

Cloud-based geoprocessing platforms offer significant advan-
tages in terms of data accessibility and processing capabili-
ties (Huang, 2020). Researchers no longer need to download
and manage large data sets, as data search and browsing can be
easily performed in cloud-based archives. These platforms en-
able the processing and analysis of large volumes of data, pro-
viding valuable insight into various aspects of the ocean (Nde-
hedehe, 2022). With the availability of cloud solutions, such as
Google Earth Engine, NASA Earth Exchange, or ESA Cloud
Toolbox, accessing and processing large datasets has become
easier for a wider range of users. By eliminating barriers asso-
ciated with data management, these platforms facilitate efficient
access to data (Klein et al., 2017).

1.4 Research Objectives

The tracking of the activity of vessels in our oceans plays a cru-
cial role in various domains, including maritime safety, environ-
mental monitoring, and fisheries management. In this paper, we
explore the potential of open data combined with cloud-based
geoprocessing and AI analytics to track vessel activity in our
oceans, exploring the benefits and challenges associated with
this approach, and highlighting its implications for maritime
monitoring and management.

2. STUDY AREA

South Africa’s extensive coastline, which touches the Indian
Ocean to the east and the South Atlantic to the west, provides
three-way access for cargo and cruise ships of all sizes. Along
this 1,739-mile stretch, several major ports have emerged as
crucial drivers of the country’s economy. Four of these ports
were selected for the study, based on their vital role in facil-
itating trade, supporting industries and contributing to overall
national development, see Figure (2).

• Port of Durban: Located on the eastern coast of South
Africa, the Port of Durban has the highest vessel traffic
in Africa and is the largest port in the country.

• Port of Cape Town: Located in the southwest region of
South Africa, Cape Town is a major port and an important
container and cargo hub. It serves as a key point for both
regional and international trade.

Figure 2: The study areas of interest for the selected South
Africa Ports.

• Port of Richards Bay: Located on the northeast coast of
South Africa, Richards Bay Port is a specialised port pri-
marily dedicated to the export of bulk commodities. It is
one of the largest coal export terminals in the world and
facilitates the shipment of significant volumes of coal to
various destinations throughout the world.

• Port Elizabeth (Gqeberha): Located in the Eastern Cape
province of South Africa, Port Elizabeth is a major seaport
that serves as a gateway to trade in the region. It offers a
variety of facilities and services for various types of cargo,
including containers, dry bulk, and liquid bulk shipments.

Table 1: South Africa Ports of interest parameters.
Port Location Area of Interest

(Lon,Lat) (min/max lon,lat)

Durban (31.0316,-29.8832) (30.5000,-29.4516,31.5854,-30.2354)
Cape Town (18.4462,-33.9185) (17.5131,-33.5314,18.6545,-34.1873)
Richards Bay (32.0556,-28.8082) (31.5656,-28.4588,32.6624,-29.2001)
Gqeberha (25.6431,-33.9628) (25.1228,-33.5523,26.1936,-34.3232)

3. METHODOLOGY

The study aims to explore the potential of open data to moni-
tor ocean ships using cloud and artificial intelligence analytics.
To do this, we analyse the availability of open data for vessel
monitoring in strategic areas of interest.

The methodology follows several important steps. First, we
define the areas of interest that we are studying. The second
step is to collect open data from local and cloud sources within
the study areas. For each data source, we preprocess the data
on the cloud platform, clean up the datasets, and converting
them to a standard format. Once all datasets are ready, we pro-
ceed to perform processing and analysis tasks on the cloud plat-
form and evaluate the results using a combination of local and
cloud resources, see illustration in Figure (3). By following
this methodology, we aim to leverage cloud geoprocessing and
open data sources’ capabilities to improve ocean vessel moni-
toring efficiency and effectiveness. The following sections de-
scribe and implement each step in detail and highlight potential
advantages and challenges associated with this approach.

3.1 Open-Data Collection

Numerous cloud-based platforms are available for geospatial
processing and analysis. These platforms offer the advantage
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Figure 3: Cloud Environment Architecture

Figure 4: Sentinel-2 Natural Colour with Cloud Mask (orange)
image.

of storing remote sensing or spatial big data at the server level,
eliminating the need for extensive data downloads. Google
Earth Engine, Amazon Web Services, Microsoft Azure, Ali-
Cloud, and Sentinel Hub are among the leading cloud platforms
that specialise in Earth observation data (Loukili et al., 2022).
In this study, we used Google Earth Engine (GEE) remote sens-
ing data collection platform.

The GEE data catalogue consists of a large collection of pub-
licly accessible geospatial datasets that include observations from
various satellite and aerial imaging systems. In addition, users
access and analyse private data using the Earth Engine API.
The study used the following subsequent satellite remote sens-
ing data:

3.1.1 SAR Data Synthetic Aperture Radar (SAR) imagery
can penetrate cloud cover and provide all-weather vessel moni-
toring capabilities. The Sentinel-1 mission, operated by the Eu-
ropean Space Agency (ESA), provides radar satellite data that
can be used for vessel detection.

3.1.2 Optical Data Optical data enable the identification of
ships through visual attributes. Despite its dependence on clear

Figure 5: A closer look of Sentinel-2 Natural Colour with ships
visible at the Cape Town Port.

or favourable weather conditions, its high spatial resolution and
ability to differentiate vessel characteristics make it invaluable
for vessel detection and monitoring applications, see Sentinel-2
data in Figures (4 and 7). The Sentinel-2 mission, operated by
the European Space Agency (ESA), provides high-resolution
optical satellite data suitable for vessel detection.

3.1.3 Other Datasets The Visible Infrared Imaging Radiome-
ter Suite (VIIRS) Day/Night Band (DNB) sensor on the NASA
(partnered with NOAA) satellite captures low-light imaging data,
allowing the detection of illuminated vessels at sea. This ca-
pability improves vessel detection and monitoring, particularly
during nighttime operations, by analysing emitted light signa-
tures. The DNB data contribute to improved situational aware-
ness, surveillance, and maritime safety.

3.2 Setting up cloud environment

In this study, we used Google Colab to analyse data collected
from Google Earth Engine (GEE) remote sensing data collec-
tion platform(Bisong, 2019). Geemap, a Python package, was
for interactive mapping with Google Earth Engine (GEE), and
to convert existing GEE JavaScripts to Python scripts(Wu, 2020).
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Figure 6: Monthly average radiance composite image using
nighttime data from the Visible Infrared Imaging Radiometer
Suite (VIIRS) Day/Night Band (DNB) for January 2023

The Colaboratory, or ”Colab” for short, is a product developed
by Google Research. Colab allows users to write and exe-
cute Python code using the Jupyter notebook service through
a browser, making it especially well-suited for machine learn-
ing, data analysis, and education. Colab provides free access
to computing resources, including GPUs. (Bisong, 2019). To
begin using Google Colab, follow these steps:

1. Go to the colab.research.google.com website and open a
new notebook. Ensure that you are logged in with your
Google account.

2. In the first code cell of your notebook, import the neces-
sary libraries for your analysis. The commonly used li-
braries for Google Earth Engine (GEE) data analysis in-
clude:

• ”ee” for the Google Earth Engine Python API.

• ”folium” for visualisations.

• ”geemap” for the Google Earth Engine Python pack-
age, which provides interactive mapping capabili-
ties.

3. Authenticate your Google Earth Engine account and ini-
tialise the Earth Engine Python API by executing the code
snippet provided in the algorithm.

These steps will enable you to configure your environment and
access the required libraries and resources to work with Google
Earth Engine in Google Colab. The snippet of the code is illus-
trated in Algorithm (1).

1 # Import Libraries

2 import ee

3 import folium

4 import geemap

5

6 # Trigger the authentication flow.

7 ee.Authenticate ()

8

9 # Initialize the Earth Engine API.

10 ee.Initialize ()

11

Algorithm 1: Jupter notebook code example.

3.3 Preprocessing

The preprocessing of remote sensing satellite data for vessel
detection typically involves several steps to improve the quality

Figure 7: A) SAR imagery coverage for the selected ports of
interest in South Africa. B) Mosaic SAR image coverage of
the Durban and Richards Bay Ports. C) A closer look at ships
(bright spots) near Richards Bay Port.

of the imagery and improve the accuracy of the detection algo-
rithm. To prepare satellite imagery for vessel detection algo-
rithms, several preprocessing steps are applied to the datasets.
These steps aim to improve vessel detection by improving im-
age quality and ensuring that all images have a standard format.
The pre-processing workflow for each dataset is as follows:

• Preprocessing of optical data includes correcting sensor-
specific effects by radiometric calibration and removing
distortion by geometric correction to align images with
real-world coordinates. Enhancing visibility can be achieved
by improving image quality, and data normalisation en-
sures consistency across bands.

• For SAR data, radiometric calibration addresses system-
specific parameters, speckle filtering reduces noise while
preserving vessel details, and geometric correction com-
pensates for topographic variations.

• For VIIRS DNB data, radiometric calibration converts raw
values and refines spatial alignment, taking into account
atmospheric influences with geometric and atmospheric
corrections. Stray light correction minimises contamina-
tion, increases visibility, and reduces noise, thus contribut-
ing to improved image quality.

3.4 Processing and Analysis

AI-based vessel detection algorithms use artificial intelligence
techniques to autonomously detect and identify ships across
various data sources, including satellite imagery, radar data, and
the Automatic Identification System (AIS) data. These algo-
rithms are purposefully designed to handle various types of data
and provide comprehensive information about the presence and
activity of ships. Through data analysis using artificial intelli-
gence methods, these algorithms can identify unique vessel pat-
terns, characteristics, and anomalies, thereby enabling efficient
and accurate vessel detection. Using the cloud-based Google
Colab, we were able to access GPU computing, which improves
AI-based analytics, see resource usage in Figure (8

To visualize and analyse the results of the we:
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Figure 8: Python 3 Google Compute Engine backend (GPU)
Showing resource usage

• Utilise tools like geemap on a cloud platform for visualis-
ing the detected vessels on an interactive map.

• Generate plots and use different visualisation parameters
to analyse the results.

• Overlay the detected vessels on a basemap to gain insight
into their distribution and patterns.

Following these steps, the performance of the vessel detection
algorithm can be evaluated. Furthermore, visualising and analysing
the results using tools such as geemap provided a comprehen-
sive understanding of the detected vessels and assisted to iden-
tify areas for further improvement. This process ensures the
accurate evaluation of the algorithm’s performance, validation
of the detected vessels, and continuous enhancement of the al-
gorithm’s capabilities.

4. RESULTS AND DISCUSSION

In order to investigate the potential of open-data for ocean ves-
sel monitoring with AI analytics, the study established the fol-
lowing objectives:

1. Explore the technical requirements necessary for effective
vessel tracking and comprehensively review the available
sensors that can meet these requirements.

2. Emphasis is placed on the importance of cloud geopro-
cessing and the integration of spatial data access and AI
analysis, aimed at improving decision-making processes
and operational efficiency.

3. Provide valuable information on how ocean monitoring
can significantly improve maritime safety, security, and
environmental protection measures using open remote sens-
ing data using AI analytics.

The use of AI-based vessel detection algorithms is a major ad-
vancement in maritime surveillance, fisheries management, and

environmental monitoring. This technology offers essential in-
formation to improve maritime safety and security. We used
the Google Earth Engine (GEE) remote sensing data collection
platform to acquire geospatial data). Furthermore, we investi-
gated the possibility of using Google Colab to analyse the GEE
data obtained.

Our experiment used Google Colab to demonstrate the power
of cloud technology for geospatial datasets. This platform high-
lighted the advantages of cloud integration, including scalabil-
ity, enhanced accessibility, multiple storage options, and strong
data integration features. The Colab cloud platform, combined
with the Google Earth API, allowed for the smooth combina-
tion of various geospatial datasets, such as Optical, SAR, and
Day/Night Band data, from sources like ESA and NASA. Ac-
cessing data is the first step to enable a complete analysis and
gain meaningful insights. This gives users the opportunity to
make the most of their geospatial datasets.

Cloud-based geoprocessing platforms have helped make data
more accessible, but they may not be as effective as dedicated
software tools such as SNAP (Sentinel Application Platform)
when it comes to processing ESA Sentinel data. These spe-
cialised tools are designed to perform specific data processing
and analysis tasks. To bridge the gap and improve the capabili-
ties of geoprocessing platforms, more work needs to be done.

5. CONCLUSION

The tracking of ships in the oceans is essential for a variety of
purposes, such as maritime safety, environmental monitoring,
and fisheries management. This article examines the potential
of open data combined with cloud-based geoprocessing and ar-
tificial intelligence (AI) analytics to track vessel activity in our
oceans. We explore the advantages and difficulties of this ap-
proach and its implications for maritime monitoring and man-
agement. The study was conducted to gain insight into the po-
tential benefits and possibilities of using open data and AI ana-
lytics for comprehensive ocean vessel monitoring. Cloud-based
analysis makes it easier to access high-performance computing
resources to process large geospatial data sets. The cloud not
only serves as a repository for vast datasets but also a platform
for efficient computation and analytics. Moreover, the integra-
tion of AI-driven vessel detection algorithms within this frame-
work increases analytical capabilities, allowing for real-time in-
sights and predictive modelling. By combining cloud technol-
ogy and AI tools, researchers and practitioners can effectively
address complex challenges in maritime surveillance, fisheries
management, and environmental monitoring, leading to safer
and more sustainable maritime activities.

Cloud-based geoprocessing platforms, such as Colab, offer sub-
stantial advantages in terms of data accessibility, storage, and
processing capabilities. However, there is a need for data anal-
ysis tools and libraries for decision support, especially AI-based
models for maritime applications. Future work includes ex-
panding the data sets and investigating specialised geoprocess-
ing software, such as SNAP Tools, and how they can be inte-
grated for cloud-based analysis.
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