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ABSTRACT: 
 
Both machine learning (ML) and deep learning (DL) algorithms require high-quality training samples as well as precise and thorough 
annotations in order to work effectively. The 3D building indoor-outdoor dataset (BIO dataset), which is a highly accurate, high level 
of detail, and high coverage dataset for 3D building point cloud and mesh semantic segmentation, is established as a canonical 
benchmark dataset. It contains 100 building models, in which building structural elements are annotated into 11 semantic categories. 
Each building in this dataset has an average of 75,587 triangular faces, and the total area of the dataset is 481,769 square meters. 
Furthermore, semantic segmentation of the dataset was carried out using the Random Forest ML algorithm to verify the dataset’s 
accessibility. A weighted F1 score of 96.64% was obtained with 10% of the segments of each building randomly chosen as training 
data. For applications involving building geometry data, the BIO dataset can support a broad class of recently developed ML and DL 
methodologies. 
 
 

1. INTRODUCTION 

Recent developments in artificial intelligence (AI) have 
demonstrated great promise for enabling a variety of applications 
that need an accurate and thorough understanding of complex 
environments, including indoor navigation (Isikdag et al., 2013), 
autonomous driving, energy efficiency (O’Donnell et al., 2019), 
disaster response (Nikoohemat et al., 2020), cultural heritage 
building digitalization (Cao et al., 2022), and sustainable urban 
planning (Schrotter and Hürzeler, 2020). High-quality datasets 
with precise and thorough annotations are crucial for the training 
and testing of AI models for these applications.  
 
Both machine learning (ML) and deep learning (DL) algorithms 
require millions of training samples to work properly (Géron, 
2022). Unlike 2D images that comfortably exist on the Internet, 
collecting real-world 3D scene datasets usually involves 
traversing the environment in real life and scanning with 3D 
sensors. Therefore, the number of building scenes that can be 
scanned might be limited, and current 3D indoor-only or outdoor-
only labeled building datasets are often limited in their coverage, 
diversity, and accuracy, hindering the development of new AI 
applications that require a detailed understanding of complex 
indoor-outdoor environments. 
 
There has been substantial growth in the number of 3D models 
available online over the last decade, with repositories like the 
Trimble 3D Warehouse providing millions of 3D polygonal 
models covering thousands of object and scene categories. In this 
paper, we present a new building indoor-outdoor dataset (BIO 
dataset) consisting of 100 labeled building models in both mesh 
and point cloud formats. The motivation behind this work is to 
provide a comprehensive and accurate dataset that can enable 
new AI applications that require a detailed understanding of 
complex indoor-outdoor environments. To generate our indoor-
outdoor labeled building dataset, we first collected 3D building 
models from online repositories such as 3D Warehouse. These 
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models were then pre-processed (e.g., data format conversion, 
mesh repair, etc.) using an automatic pipeline. 
 

 
Figure 1. An example of BIO Dataset. Top row is labelled 

mesh of a residential building, left is the outside, while right is 
the indoor part. Bottom row is labelled point cloud of the same 
building, left the exterior part, and right is a slice of indoor part. 
 
After the models were pre-processed, they were manually labeled 
and checked for accuracy. The labeling process involved 
identifying and labeling polygons of the building models as 
indoor or outdoor structural elements in 11 categories, including 
wall, roof, column, door, ceiling, windows, balcony, floor, stairs, 
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slab, and beam. The labeling was done by using an existing 
annotation platform (Gao et al., 2022) that was designed for 
urban dataset labeling to ensure accuracy and consistency across 
the dataset. 
 
To facilitate the use of the dataset in AI applications, we also 
generate point cloud samples from the labeled meshes using a 
uniform sampling method. This allowed us to represent the 
complex geometry of the buildings in a more efficient and 
manageable format. As shown in Figure 1, the resulting dataset 
contains both mesh and point cloud versions of each building 
model, along with their corresponding indoor and outdoor labels. 
The use of automated mesh repair and point cloud sampling, 
combined with manual labeling and checking, ensures a high 
level of detail, accuracy, and consistency in the dataset. 
 
We also propose a pipeline with the state-of-the-art ML method, 
Random Forest (Breiman, 2001), to evaluate the availability of 
the established dataset. When we trained classifiers with the 
extracted geometric features (Weinmann et al., 2017) based on 
the covariance matrix and annotations of a portion of each 
building, our averaged results reached 96.64% in terms of the F1 
score, which demonstrates the feasibility and effectiveness of the 
proposed pipeline. In addition, the results also suggest that the 
RF algorithm can be combined with new online models to 
quickly generate larger and more diverse datasets, enabling the 
dataset to be scaled up in the future. 
 
In summary, our new indoor-outdoor labeled building dataset and 
pipeline can enable new indoor-outdoor AI applications that 
require accurate and detailed understanding of complex 
environments. By providing a large-scale, richly annotated 
dataset, we can also promote a broad class of recently resurgent 
machine learning and neural network methods for applications 
dealing with geometric data. 

 
2. LITERATURE REVIEW 

Buildings in urban scenes, indoor scene datasets, and building 
exterior datasets are a few different types of 3D building datasets 
that are frequently used for AI applications. The following list 
includes several widely used datasets: 
 

• The Stanford Large-Scale 3D Indoor Spaces (S3DIS) 
dataset (Armeni et al., 2016) contains labeled point 
cloud data for 271 rooms in six indoor spaces. The 
S3DIS dataset offers a sizable, high-quality dataset for 
tasks involving object recognition and understanding 
indoor scenes. However, it excludes outdoor scenes 
and only depicts indoor environments.  

• There are 4 billion points in the Semantic3D (Hackel 
et al., 2017) dataset that have semantic labels for 
outdoor urban scenes. It consists of a variety of 
building types, including residential, commercial, and 
industrial structures. When compared to indoor 
datasets, it offers useful information about the outdoor 
environment but is labeled in LoD1 with insufficient 
detail. 

• ScanNet (Dai et al., 2017): The ScanNet dataset 
consists of 1,500 labeled 3D scans of indoor 
environments and textured meshes, as well as 
pointwise semantic labels and 3D object instance 
labels. The ScanNet is frequently used for indoor scene 
understanding tasks like semantic segmentation and 
object recognition because it has high-quality 

annotations and comprehensive coverage of actual 
indoor objects. 

• DublinCity is the first labeled dataset of high-density 
aerial laser scanning (ALS) point clouds at the city 
scale (SM Iman Zolanvari et al., 2019). This dataset, a 
benchmark in the field of computer vision, consists of 
over 260 million manually annotated point clouds. 
Using hierarchical levels of detail, objects are 
classified into 13 classes, ranging from the coarse level 
of buildings, vegetation, and ground to the fine level of 
windows, doors, and trees. 

• SensatUrban (Hu et al., 2018): SensatUrban is an 
extensively used urban-scale photogrammetric dataset 
acquired by unmanned aerial vehicle (UAV) cameras. 
This dataset includes three cities in the UK and covers 
an area of 7.6 km2. The availability of this dataset can 
facilitate the development of new applications and 
services that will be useful to researchers and urban 
planners alike. 

• BuildingNet (Selvaraju et al., 2021): BuildingNet is a 
sizable collection of 2K building models and 513K 
annotated mesh primitives in 3D building models with 
consistently labeled exteriors. The dataset includes 
data regarding a variety of building types, such as 
homes, churches, town halls, and castles. BuildingNet 
dataset makes an important contribution to building 
understanding. 

 
For researchers working on building-related AI applications, 
these datasets collectively provide a useful resource. These 
datasets have a few coverage limitations. To be more precise, 
many existing 3D building datasets only include a small number 
of buildings or only include interior or exterior scenes, which 
may not accurately represent the entire range of building types 
and environments. 
 

3. DATASET  

In this section, we outline the process used to create the 
annotation pipeline for defining, collecting, processing, labeling, 
and evaluating the BIO dataset. The primary objective that 
inspired the development of our framework was to enable, with 
the assistance of the defined pipeline, the quick generation of 
semantically labeled meshes and point clouds of indoor and 
outdoor building scenes (see Figure 2). As a result, the 
framework must be easy to use, the data pre- and post-processing 
techniques must be reliable and automatic, and the semantic 
annotation process must be straightforward and quick. The 
following subsections provide descriptions of the details. 
 

 
Figure 2. Annotating Pipeline. 
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3.1 Building Types 

As depicted in Figure 3, the constructed BIO dataset consists of 
100 indoor-outdoor building models, with each model 
representing one of the four most typical building types 
according to the building’s intended use:  
 

1. Residential buildings are those used by residents as 
living space, such as single-family houses (e.g., 
bungalows and cottages), multi-family houses, and 
public official residences. 

2. Commercial buildings are those occupied by 
businesses, including office buildings, shopping 
centers, and some special purpose buildings like 
theaters. 

3. Industrial buildings are used primarily for the 
manufacturing, storage, and distribution of goods. 
Buildings such as manufacturing plants, warehouses, 
and storage facilities. 

4. Institutional buildings are mainly built for public use, 
such as medical spaces, educational facilities, libraries, 
religious premises, and government places (e.g., city 
halls). 

 
When collecting building models, the scales of buildings and 
orientation information are checked and corrected in the 
SketchUp Software. 
 
3.2 Annotations 

Although semantic annotation can be applied to all different 
kinds of architectural elements, at this point we specifically focus 
on the enrichment of structural elements. A common semantic 
information model for the representation of 3D urban objects is 
defined by the CityGML Conceptual Model Standard and can be 
used by various applications. Furthermore, IFC (ISO 16739-
1:2018) is a standardized, digital description of the built 
environment, including buildings and civil infrastructure. It is an 
open, global standard that is intended to be vendor-neutral, or 
agnostic, and usable across a wide range of hardware devices, 
software platforms, and interfaces for many different use cases, 
enabling faster and more effective utilization. The semantic 
annotations of our BIO dataset are identified in accordance with 
CityGML 3.0 (Kutzner et al., 2020) and IFC standards (ISO, 
2018) to emphasize the reusability of information within lifecycle 
thinking. In addition, the classes included in the ArCH dataset 
(Matrone et al., 2020) and the indoor S3DIS dataset (Armeni et 
al., 2016) were taken into account to identify the semantic 
annotations in our study. As a result, 11 classes — wall, roof, 
window, door, balcony, floor, stairs, column, ceiling, beam, and 
slab — have been selected.  
 
3.3 Dataset Preprocessing 

Prior to semantic enrichment, a series of automatic data pre-
processing steps were performed. The PyMeshLab (Muntoni and 
Cignoni, 2023) and Trimesh (Dawson-Haggerty, 2022) libraries 
are employed in this step. Specifically, these steps include data 
format conversion, material and texture information transfer and 
geometric error repair. 
 
3.4 Dataset Annotating 

In 3D point clouds, pointwise annotation will take an enormous 
amount of time and effort, so we use the UrbanMeshAnnotator 
(Gao et al., 2021) as our annotation tool to directly label buildings 

on the mesh. This tool, however, was made specifically for 
labeling massive urban mesh scenes. As a result, we customized 
this tool for our dataset. For instance, the original system requires 
the input of a manifold mesh, which is then segmented using a 
region-growing algorithm (Lafarge and Mallet, 2012), and the 
segments are finally labeled. However, 1) the majority of the 
building models downloaded from online repositories do not 
comply with the manifold geometry requirement; 2) the 
effectiveness of the current manifold repair algorithm is not 
ensured; and 3) the texture information is not preserved. 
 
As a result, we changed the tool’s semantic annotations to 
conform to our specifications. As a result, our annotation system 
does not require a manifold mesh or over-segmented segments. 
In our study, we directly labeled the faces of the input 3D model 
without the segmentation step, taking advantage of the fact that 
each face in a mesh belongs to only one category and the faces of 
building models are very easy to label. Figure 4 depicts a sample 
of annotated meshes. As you can see, each category is 
represented by a different color. 
 

 

 

 

 
Figure 3. Four different building types. From top to bottom: 

commercial building, industrial building, institutional building, 
and residential building. 
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Figure 4. MeshLab Software’s visualization of a mesh with 
annotations. Top: Building’s front view; bottom: Building’s 

back view. 
 
3.5 Dataset Post-processing 

3.5.1 Point cloud sampling: As seen in Figure 5, Point clouds 
are densely and uniformly sampled on the labeled meshes. We 
employed a method of sampling point clouds in accordance with 
the size of each mesh face in a mesh to produce a uniform point 
cloud on each building, yielding 3,500,000 points per building. 
The point densities between various buildings vary depending on 
the scale of the buildings, as seen in Figure 6. The semantic labels 
and color information on each mesh face were converted into 
points within the corresponding face during the sampling process, 
in addition to maintaining the geometric information. Following 
sampling, the small faces without labels are classified as the 
unclassified category. 
 
3.5.2 Data Augmentation: It is important to provide the data 
augmentation methods used in future research rather than the 
augmented data itself, so that others could use their own 
augmentation techniques if they desired. In the context of the 
building dataset, some examples of data augmentation techniques 
that could be used are provided along with the dataset: 
 

1. Rotation: randomly rotating the building models in 
different directions to simulate changes in viewpoint. 

2. Translation: randomly translating the building models 
in different directions to simulate variations in 
location. 

3. Scaling: To simulate size variations, the building 
models were scaled arbitrarily. 

4. Flip: randomly flip the building models in either a 
horizontal or vertical direction to simulate changes in 
orientation. 

5. Adding noise: randomly introducing Gaussian noise to 
the building models to simulate variations in real-world 
conditions. 

 
By using these types of data augmentation techniques, 
researchers can create a more diverse and comprehensive dataset 

for training ML and DL algorithms. However, it is important to 
note that not all data augmentation techniques are applicable or 
suitable for all types of ML/DL algorithms or building-related 
tasks. 
 

 

 

 
Figure 5. Sampled point clouds on labelled meshes. Top: 
outdoor of a building, bottom: indoor part of a building. 

 

 

Figure 6. Different point densities in different buildings. Two 
buildings are displayed with the same point size in the 

CloudCompare Software. 
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4. BENCHMARK DATASET 

By counting the area of the labeled meshes, the total area of this 
dataset is 481,769 m2, including the indoor part. An average of 
75,587 triangular faces in each building. The distribution of 
semantic categories in this dataset is depicted in Figure 7. 
 

 
Figure 7. Category distribution. 

 

To establish the benchmark for the BIO dataset and check the 
availability of our benchmark dataset, we used 1% and 10% 
portions of each building as training data and tested the outcomes 
with the remaining portions. It should be noted that we randomly 
chose 1% and 10% of the training data rather than manually 
choosing a few segments for each building. To be more precise, 
we divided each building into 1𝑚×1𝑚 blocks and then randomly 
sampled 8,192 points from each block. After generating the 
blocks, we randomly selected 1% or 10% of the blocks (see 
Figure 8), and then trained on the selected blocks. The semantic 
segmentation was carried out on the remaining test data for each 
building after the ML model had been trained on the training data 
for each building. The final dataset can be classified by the RF 
classifier without the need for a sizable amount of manually 
annotated data, but it needs significant geometrical features as 
input that can draw attention to the discontinuities between 
elements. 
 
Following earlier research (Weinmann et al., 2017), we first 
chose a set of features that are relevant to the problem in order to 
determine the most effective set of features. These features place 
a strong emphasis on the point cloud’s structure within the 
predetermined radius of the points. We then rank the significance 
of each feature in predicting the target variable using the random 
forest feature importance method. Finally, 16 features are used in 
our experiment, including x, y, z, r, g, b, normalized color, 
verticality_0.1m, verticality_0.2m, anisotropy_0.2m, 
surface_variation_0.2m, omnivariance_0.2m, verticality_0.4m, 
linearity_0.4m, and planarity_0.4m (see Figure 9). The search 
radii used when calculating geometric covariance features are 
indicated by the numbers that come after the name of the 
geometric features. 
 
To choose the RF algorithm’s hyperparameters, such as the 
number of trees and the maximum depth of each tree. We use the 
weighted F1 score to compare the performance of models and 
choose the model with the best performance and the most suitable 
hyperparameters using the grid search technique. 

 

 
Figure 8. Training data in a building: the blue blocks denote the 

blocks randomly selected as training data (for better 
visualization, we just visualize 1% blocks here). 

 

 

 
Figure 9. Examples of geometric features. Top: 

verticality_0.2m, bottom: linearity_0.4m. 
 
We evaluated their overall accuracy and weighted F1 score using 
the test data. Table 1 displays the outcomes of semantic 
segmentation using different numbers of generated building 
blocks. According to the findings, the semantic segmentation 
achieves an average weighted F1 score of 86.02% when only 1% 
of the blocks are used as training data. Additionally, with 10% of 
the blocks serving as training data, we were able to produce 
results that were encouraging, with an average weighted F1 score 
of 96.64%. 
 

Data Percent Weighted_F1 Overall Accuracy 

1% 86.02%  87.84% 

10% 96.64%  96.87% 

Table 1. Semantic segmentation results. 
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Figure 10 demonstrates the prediction errors using training data 
with 1% and 10% portions of building. A three-building school 
complex serves as the chosen demonstration site. As you can see, 
when only using 1% of the blocks as training data, the RF model 
has some difficulty in correctly predicting the regions containing 
windows and doors. With 10% of the blocks are used as training 
data in each building, the RF model can perform accurate 
classification on complex building models. 
 

 

 

Figure 10. Prediction errors of a complex of school buildings 
(indicated in green), top: training with 1% blocks of this 

building, bottom: training with 10% blocks of this building. 

 
5. CONCLUSION 

We have introduced a new indoor-outdoor labeled building 
dataset in this paper, which includes a variety of building types 
and was created using a semi-automatic framework that includes 
data collection, pre-processing, manual labeling, and automatic 
post-processing. Using the machine learning (ML) algorithm 
Random Forest (RF), we then assessed the applicability of this 
dataset for the semantic segmentation task. The outcomes of our 
tests show that the RF algorithm attained a high level of accuracy. 
To sum up, our research makes a significant contribution to the 
field of creating datasets for AI applications. 
 
More ML and deep learning algorithms will be tested on the BIO 
dataset in the future. Additionally, the possibility of using this 
dataset to improve the performance of real-world datasets will be 
investigated. In order to define and develop the BIO dataset as a 
crucial dataset with lasting impact, we would like to involve the 
larger research community. 
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