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ABSTRACT:

We present Continuous 3D-Label Semi-Global Matching (CoSGM), a new dense stereo matching algorithm for satellite stereo.
CoSGM overparameterizes the disparity map as an array of local planes, so it can regularize the first-order smoothness of the
estimated disparity. Furthermore, the algorithm can produce a dense normal map beside the disparity map. We show experimentally
that CoSGM could achieve denser depth maps with comparable accuracy to traditional semi-global matching algorithms.

1. INTRODUCTION

Measuring three-dimensional terrain shapes is a critical prob-
lem in photogrammetry, as the estimated terrain shape could be
broadly applied in environmental studies, national defense, nav-
igation, etc. One of the emerging approaches nowadays to re-
constructing terrain shapes is through stereo matching on satel-
lite images; this is possible thanks to the increased popularity
of very high resolution (VHR) optical imagers carried on satel-
lites (Zhao et al., 2022), which can capture images of large ter-
rain areas with resolution as high as 30cm per image pixel.

There exist satellite stereo approaches based on two-view ste-
reo (Shean et al., 2016, d’ Angelo and Kuschk, 2012, Rupnik et
al., 2018, Qin, 2016, De Franchis et al., 2014, Youssefi et al.,
2020) and multi-view stereo (Gémez et al., 2022, Ozcanli et al.,
2015), and this paper concentrates on the two-view approaches.
These methods first generate a density disparity map per each
pair of VHR images, and then fuse the 3D information together
to form a 3D representation of the entire terrain area, named the
digital surface model (DSM).

Another unique characteristic of satellite stereo is that it is non-
trivial to capture ground truth terrain shape (Patil and Guo, 2023),
which imposes challenges to training deep stereo algorithms
that require sufficient ground truth data. Currently, there are
two major types of deep stereo algorithms. The first is based
on the semi-global matching (SGM) pipeline that first gener-
ates a cost volume using deep networks, then performs cost
aggregation to produce a disparity map (Zbontar et al., 2016,
Zhang et al., 2019). The second is end-to-end, which directly
uses deep architectures to output disparity maps from rectified
image pairs (Lipson et al., 2021). A previous study has em-
pirically shown that the SGM-based approaches are more ro-
bust and generalizable to unseen regions than end-to-end ap-
proaches (Albanwan and Qin, 2022a). This suggests that the
SGM-based approaches are possibly more suitable for satellite
stereo in the current stage, when the terrain types and areas in
the ground truth data are limited. Albanwan ef al. (Albanwan
and Qin, 2022b) tried to address the generalizability issue of
end-to-end architectures by using SGM as a teacher to finetune
the model. This also advise the usefulness of SGM-based ap-
proaches for satellite stereo.

We present continuous 3D-label semi-global matching (CoSGM)
for satellite stereo. It is a new cost aggregation algorithm for

the SGM pipeline that uses an overparameterized strategy. Spe-
cifically, instead of parameterizing the disparity of each pixel as
a single value, CoOSGM parameterizes the local surface at each
pixel as a plane, and the algorithm finds the optimal local plane
for each pixel. This enables CoSGM to simultaneously out-
put a dense normal map of the scene besides the disparity map
(Fig. 1). We show that CoSGM has the same order of compu-
tational complexity as SGM and has a small memory overhead,
but it can generate denser DSM with comparable accuracy with
fewer stereo pairs when compared to using traditional cost ag-
gregation strategies.
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Figure 1. CoSGM simultaneously outputs disparity and normal
maps. The plane parameterization overcomes front-parallel bias
in SGM; the fronto-parallel bias is particularly apparent in
undulating terrains. Our experimental results show CoSGM
outperforms SGM in such regions. Additionally it produces
dense disparity maps which helps to obtain 3D reconstruction
with fewer stereo pairs than SGM.

2. BACKGROUND

SGM was originally derived from the earlier global energy min-
imizing function shown in Eq. 1. The objective is to estim-
ate the disparity map that minimizes the given energy function,
which is an NP-Hard problem (Boykov et al., 2001):

min { > <C(dp) +A ) V(dp, dq)) } )

P qEND
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where d = {dp|Vp} is a list of disparities of all pixels p. The
cost C(dp) is a unary data cost of assigning disparity dp €
{dmin, - ,dmaz} to pixel position p € R%. The cost C(dp)
for all pixels p and all possible disparities dp, is previously gen-
erated, either using traditional approaches, such as census trans-
form, or learning-based approaches. Thus, the cost C(dp) for
all pixels p and all possible disparities dp forma H x W x D
tensor C, where H and W are the height and width of the dis-
parity map, and D is the number of possible disparities. The
pairwise smoothness V(dp, dq) enforces that dy, is close to dq,
where q € Np and N, is either a 4-connected or 8-connected
neighborhood of pixel p.

Instead, SGM solves the same problem along eight cardinal 1D
directions r = {(1,0), (—1,0),(0,1) - -- }. The recursive min-
imization function £, per direction r is shown as follows:

Lr(dp) = C(dp) + min(Lr(dq) + V(d, d')) = min Le(kq),
2

where q is the previous pixel of p along directionr,q = p —r.
The loss L:(dq) is the cost of previous recursion along dir-
ection r at pixel q with disparity dq. Subtracting the term
ming L (kq) controls the maximum value of the cost Ly (dq).
It guarantees that L(dp) < Cmae + P2, where Cpas is the
maximal value of the cost volume C.

The pairwise or first-order smoothness term V(d, d’) is given
by Eq. 3, which favors front-parallel surfaces (Fig. 3(a).) The
constant penalty assumes the local variation of disparity is near
constant.

0 ifd=d'
V(d,d)y=4qpP ifld=d|=1 3)
P> 1f|d—d/| >1

If the neighboring pixel’s disparity doesn’t change then no pen-
alty is assigned. Small penalty P; is assigned if the disparity
varies by one pixel. This allows estimating slightly sloped or
curved surfaces. Larger penalty P>(P> > Pp) is assigned oth-
erwise to preserve larger disparity discontinuities. P; and P»
are input hyperparameters. These parameters are typically up-
dated as a function of image intensity (Schonberger et al., 2018,
Zbontar et al., 2016). People also tried different ways to define
the smoothness term. For example, Zbontar et al. observed
small changes in disparity to appear more frequently vertically
than horizontally. Therefore, the penalty for disparity change in
the vertical direction is lower than that of the horizontal direc-
tion.

The cost volumes £, obtained in each different direction r are
summed to obtain a new cost volume:

S(dp) = Le(dp), )

where S(dp) indicates the cost for pixel p having disparity dp.

Drory et al. (Drory et al., 2014) showed the connection between
SGM and non-loopy belief propagation on a special type of sub-
graph. They proposed overcounting correction as given in Eq.
5

S(dp) = S(dp) — 7C(dp) %)
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Figure 2. CoSGM algorithm. Given a stereo pair, first we
compute the data cost similar to SGM and then we obtain
3D-label data cost (Eq. 10). CoSGM aggregation (Egs. 12 and
13) produces disparity and normal maps. Normal map is used to
further refine the disparity map.

This is due to the fact that the cost C(dp) is added per direction
Ly (dp). The overcount correction adjust this additional count-
ing of cost before computing the disparity map.

The final disparity D(p) of each pixel p is computed by using
a Winner-Takes-All (WTA) evaluation over the volume S(dp).

D(p) = argmin S(dp). (6)
d

3. PROPOSED METHOD

The CoSGM aims to solve a similar problem as Eq. 1:

min { > (¢(fp) +A Y w(fp,fq)) } )

P q€Np

For each pixel p, the vector f, = (a, b, ¢) defines a local plane
that fits the disparity at a neighbor N}, centered at p. For a point
q € Np, the plane f, gives the disparity at q as:

dCI(fP) = [a7 b: CH%?%UT, (8)

where q = [gz, ¢y]. The first term in Eq. 7, ¢(fp), is a unary
data cost of the local plane f,, defined at pixel p, and ¥ (fp, fq)
is pairwise smoothness term between the local planes fp, fq
centered at pixels p and q. The term f indicates the list of local
planes for all pixels f = {fp|Vp}. This overparameterization
of disparity enables the optimization to exert first-order smooth-
ness regularization to the reconstructed disparity map (Fig. 3).

(b) CoSGM Motivation

(a) Fronto-parallel bias in
SGM

Figure 3. The zeroth order smoothness in SGM penalizes the
disparity value among neighboring pixels to be different from
each other. Thus, it could cause fronto parallel bias and makes it
challenging in regions with undulating terrain. CoSGM uses
overparameterized disparity planes to enable first-order
smoothness, which regularizes the first-order derivative of the
disparity map to be smooth.
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3.1 3D-Label Data Cost

The overparameterization fp introduces three unknowns a, b, ¢
to solve for each pixel p. To reduce computational complexity,
we constrain the possible planes fp for each pixel p to a finite
list of candidates { f%|d = dmin, " ,dmaz }-

Fig. 4 demonstrates how each local plane candidate fg is cal-
culated. For each pixel p and each potential disparity value for
this pixel d, we iterate every pixel p; in the neighborhood Np.
For each pixel p;, we find the optimal local disparity d; accord-
ing to:

d; = C(dp,)- )

arg min
%7’ €{d—1,d,d+1}

Then, we can build a linear system that fits a plane to the op-
timal local disparities d; of all pixels p; in the neighborhood

Np:

pi pi 1 dy
ps py 1 do

. . a

SR B % S (10)
pi p! 1 c d;

The corresponding plane is the solution of this linear system
f g = [a‘a ba C]'

= & | Cd+1)
(\a/‘“d_f\ | C(d)
e(d—1)
H P

w

Figure 4. The process of finding d; for Eq. 10 to solve the local
plane candidate ff,l .

For each local plane candidate f%, the disparity at p is not ne-
cessarily an integer. We define the unary cost at p for plane fg
by linearly interpolate cost volume C(dp) as:

$(fp) = (d — |dp(fp)])C(ldp(f3)] +1)

+ (Lo (fp)] + 1= AC(ldp(fp))). (D
3.2 CoSGM Aggregation
Eq. 12 shows our CoSGM aggregation formulation:
Lo (f) = () + min (Le(J3) +V(f5, 1)
— min Lr(fq) (12)

where V(f£2, f&') is the smoothness term between local plane
candidates fl‘,i , f(‘i’ of adjacent pixels p, q. We define the smooth-

ness term as follows:

a qdy_ )0 ifd=d
V(fpqu ) - {1/)(fg,fg’) lfd;ﬁd/ (13)
where
o1 - max(wp.q, €) - min((fy, f§ ), 7)
/ if [d—d'|=1
¢(fg7fq ) = ,
az - max(wp,q, €) - min(P(f5, fq ), 7)
if|d—d'| >1
(14)

The weight wp q = e~ MTE@7IL@IL/Y \where T, is the left
image in a given stereo pair. The term t( fl‘,i7 f(‘li/) is the dif-
ference between two adjacent local planes defined below and
illustrated in Fig. 5:

DS, 1) = dp(f) — dp(F ) + 1da(fe ) — da(F)] (15)

We obtain ¥( fy, f,‘f/) from (fy, f,‘f/) by truncating the dis-
tance by the hyperparameters 7. Multiplying with max(wp,q, €)
helps to guide the aggregation by image intensity information.

dp(fa) do(fp) _—

& dp(fa) — do( )| lda(fa) = da(fo)]

Figure 5. Smoothness cost defined over disparity planes. The
x-axis represent pixel positions in the left image (L) and the
y-axis represent pixel positions in the corresponding right image
(R) along the same row as (L).

For pixels in the horizontal paths, (a1, a2) is changed using the
following formula.

if Di<pBand D2 <p
if Dlzﬁ and DzZﬁ
otherwise

(a1, a2)
(a1/Q2,02/Q2)
(@1/Qr,2/Q1)

(a1, a2) =

(16)

For pixels in the vertical paths, following the recommendation
made in (Zbontar et al., 2016), after updating (a1, a2) using
Eq. 16, we set

a1 = OL1/V (17)

And, when a pixel is on a diagonal path in the support structure,

we set
Vv1.04+V?

% (18)

a1 = 1 *

We sum all the CoSGM 1D aggregation cost volumes L (f3).

S(f)=>_Le(fy) (19)
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We apply overcounting correction before taking WTA.

S(f) = S(f3) — 16(f3) (20)

Furthermore, we can optionally produce normal map using the
disparity plane parameters (a,b,c) as n, = 1/(1 4+ a® + b?),
ng = —an; and ny = —bn..

Some interesting similarities with SGM aggregation are as fol-
lows.

e Subtracting mingeq L (f5) ensures that £r < ¢mas +
Qg - T

e Setting aa >> «y ensures that disparity levels greater
than one from the current disparity d penalized higher.

e SGM overcount correction given by (Drory et al., 2014)
can be easily adapted for CoSGM.

3.3 Disparity Refinement

Dense stereo matching between I, and Ir produces a disparity
map D7, with respect to the left image. We obtain D'g by swap-
ping the order of the input stereo pair. Then we can perform a
consistency check to enforce the uniqueness constraint on D%,
and D’; as described in Patil and Guo (Patil and Guo, 2023).
The consistency check would produce new disparity maps Dy,
and Dpr with pixels marked invalid wherever the uniqueness
constraint failed. We further refine disparity maps using the
Joint Bilateral Filter (Yang et al., 2010). It refines the disparity
map D, while preserving the edges in Ir..

3.4 Hierarchical Optimization

Stereo pair
Search | Y% Stereo
Bounds Matching
..................... le
Search s Stereo
Bounds Matching
Search Final Stereo
|  Bounds Matching :
Disparity

Figure 6. We process large stereo pairs hierarchically and use
disparity maps from lower resolution to estimate disparity
bounds for the next level of resolution.

Rothermal et al. (Rothermel et al., 2012) proposed tSGM, which
is a hierarchical version of SGM. The tSGM processes a ste-
reo pair at a lower resolution, performs the consistency check,
and uses the low-resolution disparity map as a guide for the
next higher resolution. They showed that not only does tSGM
produce disparity maps faster than SGM, but the output dis-
parity map is also denser. Patil et al. propose a modification
to tSGM by estimating the per-pixel search bound by DEM-
Sculpting (Patil et al., 2019). Fig. 6 shows key steps of their
modified tSGM. We use a similar approach in our CoOSGM to
estimate large disparity maps efficiently.

4. PRELIMINARY EXPERIMENTS

In this section, we provide some preliminary comparisons of
CoSGM with other satellite stereo methods. We analyze the
quality of the 3D terrain reconstruction in the format of digital
surface models (DSMs), which is a raster with georeferenced
height at each point. We use the DSM generation pipeline of
Stellar (Patil and Guo, 2023) to produce the DSMs (Fig. 7).
The input to the pipeline consists of a set of multi-date and
multi-view VHR satellite images and their corresponding cam-
era parameters represented as Rational Polynomial Coefficients
(RPC) (Baltsavias and Stallmann, 1992). The images and cam-
era parameters are then preprocessed to generate stereo image
pairs, which include camera calibration and stereo pair selec-
tion. Then, the pipeline performs stereo matching to generate
disparity maps and transforms these disparity maps into pair-
wise DSMs. Finally, the pipeline aggregates the pairwise DSMs
together to generate a single DSM for the area.

Refined
RPCs

Output
DSM

1 Left ! 1 Left !
img | RPC | | Img | RPC |
7T Right " Right \

________________________

i
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1| Rectification

! Right

I

I

Rectified pair

I
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matching generation :
i

I
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i

Figure 7. Overview of DSM generation from multiple satellite
stereo pairs.

Preprocessing and Stereo Rectification Given a set of in-
put images and the corresponding Rational Polynomial Coef-
ficients (RPC) camera models. We first calibrate the camera
parameters using Bundle adjustment. Then, we perform recti-
fication for each stereo pair. The process involves first stereo
rectifying 500 x 500 tiles with affine camera model assump-
tion, then using Digital Elevation Model (DEM) from Shuttle
Radar Topography Mission (SRTM) with 30 meters resolution
to find virtual correspondences for estimating stereo rectifica-
tion tomography, and finally producing a large stereo rectified
images by stitching small stereo rectified tiles together. We use
the homography to further obtain stereo rectification which pro-
duces unipolar disparity maps. For details, refer to Patil and
Guo (Patil and Guo, 2023).

In this section, we provide two analyses of CoSGM. First, we
compare pairwise DSMs generated from CoSGM with those
from the modified tSGM (Patil et al., 2019) on the Stellar data-
set in Sec. 4.1. Then in Sec. 4.2, we run CoSGM on a subset
of the IARPA Challenge dataset, and generate an aggregated
DSM following the procedure in Fig. 7. We compare the num-
bers with two top-performing DSM generation pipelines repor-
ted by the IARPA benchmark (Bosch et al., 2017, Michel et
al., 2020). We use the following hyperparameters for SGM
and CoSGM. For SGM we set the hyperparameters as follows
P1 :24,P2 = 144,@1 :4,Q2:8,V: 1.4,5:2andfor
CoSGM a1 = 50, a2 = 300, € = 0.03, 7 = 20 and v = 10.
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We use the following evaluation metrics for both experiments.

e Completeness (Comp.): Percentage of points in the es-
timated DSM where the absolute altitude difference is less
than 1 meter with respect to the ground truth lidar DSM.
The higher number indicates the denser stereo DSM.

o RMSE: Root Mean Square Error (RMSE) over valid pixels
in both estimated and ground truth DSM. Lower RMSE is
preferred in the estimated DSM.

e MAE: Median Absolute Z-Error (MAE) over valid pixels
in both DSMs. Lower MAE indicated more accurate re-
construction

4.1 Stellar Dataset Results

Recently Patil et al. (Patil and Guo, 2023) created a very large
dataset for DSM evaluation from multi-date satellite images. It
includes ground truth Lidar DSM for five cities in North and
South America spanning more than 1500 km? and WorldView-
3 images with 30 cm resolution. They additionally provide
stereo-rectified pairs for a subset. The stereo pairs cover ap-
proximately 2 km? regions. The stereo-rectified images are
approximately 5000 x 5000. We chose three regions, includ-
ing San Diego, California, Omaha, Nebraska, and Jacksonville.
San Diego has undulating terrain, and the regions in Jackson-
ville and Omaha are relatively flatter. Jacksonville also has a
water body. Therefore, these regions are well representative of
reconstruction challenges due to topography changes. We pro-
cessed 103 stereo pairs in the region in Jacksonville, 273 in the
region in Omaha, and 253 in the region in San Diego. Table
1 shows average Completeness, MAE, and RMSE for each re-
gion. For San Diego, the average completeness score is higher
than the modified tSGM, and MAE and RMSE are comparable.
This indicates denser reconstruction without compromising ac-
curacy too much.

Region Comp MAE RMSE
(%) 1 (m) | (m) |
Z| SanDiego | 30.7 0.89 3.19
@| Omaha 28.8 1.41 9.09
s Jacksonville 30.7 0.89 7.24
=| San Diego 32.1 0.94 3.68
2| Omaha 29.8 1.54 10.23
8 Jacksonville 27.0 0.73 8.07

Table 1. Quantiative evaluation of pairwise DSMs on Stellar
dataset for the proposed CoSGM and the modified tSGM (Patil
etal., 2019).

On average, CoSGM produces denser DSM in San Diego and
comparable results in relatively flatter Omaha and Jacksonville.
Jacksonville has a water region, and we haven’t masked the wa-
ter area before evaluating the results. This could explain the an-
omaly in the average results. Fig. 8 shows sample stereo DSMs
from each region. In the San Diego region, the left image is
from 22 November 2014, and the right image is from 24 Feb-
ruary 2015. In the Omaha region, the left image is from 04
October 2014, and the right image is from 22 October 2014.
In the Jacksonville region, the left image is from 15 Febru-
ary 2015, and the right image is from 27 January 2015. All
these stereo pairs show improved results over tSGM. SGM’s

sensitivity to acquisition time difference (De Franchis et al.,
2014), baseline (Carl et al., 2013, d’Angelo et al., 2014, Zhu
et al., 2008), and sun angle difference (Qin, 2019) between
stereo pairs is well studied. However, being a new algorithm,
CoSGM'’s sensitivity to these parameters requires further future
investigation.

Stellar lidar DSM

CoSGM DSM (Ours) Modified tSGM DSM

e
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Figure 8. Stereo DSM results. From top to bottom: San Diego,
Omaha and Jacksonville. The numbers are Completeness, MAE,
and RMSE, respectively. For undulating terrain in San Diego,
the improvement in density by CoSGM is significant over the
modified tSGM.

4.2 TARPA Challenge Data Subset Results

In this experiment, we analyze the aggregated DSMs of a large
area generated by CoSGM, and compare them with two top-
performing DSM generation pipelines of the IARPA bench-
mark, S2P (De Franchis et al., 2014) and CARS (Michel et al.,
2020). Both S2P and CARS are based on variants of the SGM.
S2P uses the More Global Matching (MGM) algorithm (Fac-
ciolo et al., 2015) for stereo matching, and CARS uses the
vanilla SGM. This experiment uses six WorldView-3 in-track
images acquired on 18 December 2015 from the IARPA data-
set. Table 2 shows the quantitative comparison results. Each
method first uses a certain number of stereo pairs to generate
disparity maps, and then aggregates the disparity maps together
to produce a single DSM. The number of stereo pairs used are
listed in the table. CoSGM achieves comparable performance
to S2P (De Franchis et al., 2014) using only five stereo pairs and
get denser DSM without compromising accuracy much with
15 stereo pairs, while S2P requires 50 pairs of stereo images.
The results of CoOSGM and CARS are complementary; CoOSGM
achieves denser DSMs while having higher mean errors. Fig. 9
shows qualitative results of DSMs obtained by aggregating five
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stereo pairs and 15 stereo pairs using CoSGM. It demonstrates
how the DSM quality improves by using more stereo pairs.

Method (CO;SHTP 1(\;173131 2%115
gosst(e}rlf\:ﬁ pairs) 73 035 | 2.59
(Cl%ssct}é\r/i:o pairs) 75.6 026 | 2.65
(852(%) stereo pairs) 73.2 0.37 | 2.59
glAsthefeo pairs) 68.39 | 024 | 2.19

Table 2. Fused DSM comparison with the S2P (De Franchis et

al., 2014) and CARS pipelines (Michel et al., 2020). CoSGM

achieves comparable accuracy to and higher density than S2P
using much fewer stereo pairs.
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