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ABSTRACT 

The study focused on Mediterranean orchards and aimed to explore different remote sensing data (Sentinel 2 data (2016–2023), 1 
Pleiades image (2022) and the extraction of Google-satellite-hybrid images (GSH,2017)) to compute key variables affecting water 
requirements such as tree age and density per plot, leaf development, the inter-row management. Surveys were conducted on 22 
farms where accurate information on agricultural practices was collected. The results have shown that a thresholding on the NDVI 
Sentinel 2 in the summer period allowed the identification of young orchards with an accuracy of 98%. The analysis of temporal 
profiles of FAPAR allowed the identification of key phenological stages such as flowering and fruit set. Supervised classification 
was employed to separate grassed and non-grassed plots using three spectral bands of Sentinel 2. Classifications performed from 
GSH images gave more accurate results (81% well classified) compared with Sentinel 2 (79%) and Pleiades (57%) when identifying 
grassed plots. The methods presented in this study propose methods easily accessible based on free-to-download data, making them 
applicable in diverse orchard contexts.

1. INTRODUCTION

Orchards represent one of the emblematic crops of the 

Mediterranean region. They have high water requirements 

increasing significantly due to climatic changes (Ramos et al., 

2023). The water consumption of orchards depends on various 

factors, among them, soil and climate, and temporal variations 

of leaf development and farming practices (Ahumada-Orellana 

et al., 2019; Dian et al., 2023). Many approaches have proposed 

to use remote sensing (RS) to characterize the crop and surface 

variability (Abubakar et al., 2022; Courault et al., 2021). With 

the arrival of new data at increasingly fine spatial and temporal 

resolutions such as the Sentinel missions from Copernicus 

program or Pleiades and SkySat images, it becomes possible to 

monitor crops systems with more and more accuracy 

(Jafarzadeh and Attarchi, 2023). Thus (Abubakar et al., 2023) 

have shown that orchards can be well classified from Sentinel 2 

data using deep learning methods. The combination of both, 

high temporal and spatial resolution of Sentinel 2 images (pixel 

10m and time revisit 3-5 days), enables to monitor in-season 

vegetation phenology through the analysis of time-series. 

Recent studies from (Meroni et al., 2021) have demonstrated 

the potential of Sentinel data to derive phenological dates of 

herbaceous crops through the analysis of vegetation indices 

time-series. In tree orchards, by contrast, the presence of grass 

in the soil background joint with differences in management 

practices (e.g. weed control, mowing frequency, type of 

irrigation, pruning…) can introduce large uncertainties in the 

interpretation of satellite time-series. The presence of grass in 

the inter-row can also impact the water consumption of 

heterogenous crops (Ruiz-Colmenero et al., 2011). In period of 

water shortage, there can be competition for water between trees 

and grass which can lead to significant yield losses. The major 

challenge for irrigation is to deliver water to the crops at the 

right time according to their requirements. Different tools have 

been proposed in literature to help farmers for water 

management based on various crop models (Battude et al., 

2017; Richard et al., 2022). (Le Page et al., 2012) have 

proposed a decision tool based on the combined use of remote 

sensing data and model to help irrigation strategies. Recent 

papers have shown that irrigation events can be assessed from 

Sentinel 1 and Sentinel 2 data and soil moisture products 

derived from RS (Bazzi et al., 2021; Hamze et al., 2023). If 

these last studies showed good performances on cereals, these 

methods do not apply yet to vineyards or orchards because of 

the complex structure of these crops. A lot of bibliography has 

explored RS acquired at very high resolutions from drones 

(UAV) to detect pruning for example (Johansen et al., 2018) or 

count trees (Dong et al., 2020), or information on orchard 

structure from Quickbird satellites (Panda et al., 2010) and 

LIDAR (Dian et al., 2023). Various models have been 

developed to assess evapotranspiration of orchards (Elfarkh et 

al., 2023; Nieto et al., 2019; Ramos et al., 2023). Some of them 

such as Qualitree model (Miras-Avalos et al., 2013) can take 

into account a lot of processes and can simulate the fruit quality. 

However, most models require a lot of parameters for their 

calibration, from in situ sensors to characterise the 

microclimatic and/or soil conditions. They are consequently 

difficult to spatialize at larger scale.  

The objective of our study was to propose an approach based on 

RS data to estimate unique orchard characteristics impacting 

water consumption. The following variables are focused:  

- the leaf development,
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- the inter-row management: the main output was the detection 

of grassed and non- grassed plots, 

- the separation of young (< 5 years) and old orchards,  

-  and the tree density per plot.   

 

 

 

2. DATA AND METHODS 

 

2.1 The Ouvèze watershed and ground 

observations 

 

A typical Mediterranean watershed was chosen in Southeastern 

France, where various observations were conducted on orchards 

(the Ouvèze-Ventoux watershed, 880 km², centered 44° 13.050' 

N, 5° 8.579'E). The altitudes vary between 209 and 1558m 

(Figure 1). The climate is Mediterranean with cold and moist 

winters and dry and hot summers (yearly rainfall 650mm; mean 

temperature 15° from the Carpentras weather station).  

 

 

 Figure.1. Location of the Ouvèze basin. 

 

Orchards cover 307 ha (1430 small plots, mean size <2ha). 

Most are drip irrigated, less than 10% are irrigated by sprinklers 

or micro-sprinklers. A wide variety of cultivars can be found: 

earlier, seasonal and late cherry or apricot trees, and plume 

trees. Various surveys were conducted by the INRAE team to 

better understand the farming practices besides different farmers 

(22 farms, 749 fields).  

From these surveys, it appeared that irrigation started after the 

flowering stage at the end of March for the earliest varieties, 

then decreased generally after the harvest (at the end of June), 

and lasted for varying durations (3-300 hours/year). The applied 

doses for cherry trees could vary from to 57 mm to 525mm/year 

(for the year 2021). The largest distances for the inter-rows 

were 9 m for young plum trees, and the lowest up to 3.5m most 

(often observed for old apricot orchards).  

In situ annotations of tree phenology were performed as well 

between budburst and fruit growth stages in a set of 13 plots for 

3 years (2021-2022-2023) including cherry trees with different 

ages, cultivars, tree density and management practices (bare soil 

and grass as background). Observations were done at the tree 

scale on two opposite branches, and for 3 trees per plot. 

Hemispherical photos were taken at the same locations, both 

towards the ground aiming the surface in the interrow, and 

towards the sky aiming the tree canopy (Figure 2). All photos 

were processed with the Can-eye software 

(www6.paca.inrae.fr/can-eye/) to derive the main biophysical 

variables (Baret et al., 2007): FAPAR (Fraction of Absorbed 

Photosynthetically Active radiation)  and FCOVER (Fraction of 

vegetation cover).  

 

 
Figure 2. Protocol used to monitor leaf development from 

hemispherical photos taken on different orchards with grass or 

without grass in the inter-row. All photos were processed using 

classifications separating green parts from the background 

based on deep learning methods and an algorithm developed by 

EMMAH Team. 

 

 

2.2 Image dataset and processings 

Images from various sensors (Sentinel 2, Pleiades, UAV and 

Google Satellite hybrid (GSH)) were acquired on the study area 

(Table 1). Sentinel 2 data (tile T31TFJ at level 2, corrected 

from atmospheric effects according method described in 

(Hagolle et al., 2008), were downloaded each week 

automatically from the THEIA platform (https://catalogue.theia-

land.fr/) and the same biophysical variables than described in 

section 2.1 (LAI, FCOVER and FAPAR) were computed from 

the BVNET model described in (Lacaze et al., 2015; Weiss et 

al., 2002). Additionally, spectral indices such as NDVI were 

computed for each date. R functions have been developed to 

extract for each monitored field, the mean values of all indices 

for each date. 

 

Table 1 Characteristics of the used remote sensing data (B: 

Blue, G: Green, R: Red; NIR: Near-InfraRed) 
 Downloaded 

data 

Spatial 

resolution 

Time revisit spectral 

characteristics 

Sentinel 

2 (A-B) 

 

2016-2017-

2018-2019-

2020-2021-

2022  

10m (B3-4-8),  

20m (B11-12), 

60m (B5) 

3-5 days from 

2017- 

10 bands:  

(visible-

infrared) 

Pleiades 

 

25/7/2022  

from Dinamis 

platform 

Panchro 

mode:50cm 

Multispectral : 

2m 

Punctual by 

programming 

panchro:470-

830nm,  

4 bands: B,G,R, 

NIR 

UAV  1image  

29/7/2021 on 

two small areas 

8mm 

 

Punctual by 

programming 

4 bands: B, G, 

R, NIR 

GSH 30/4/2017 

From Google 

Earth 

20 cm / RGB bands 
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Figure 3 summarises the use of each sensor and the main aimed 

outputs. 

 

 
Figure 3. Main sensors and outputs 

 

Sentinel 2 temporal profiles were analysed for all orchards 

where ground observations were available (on plantation age, 

inter-row and irrigation management). The method to separate 

young and old orchards was based on defining a threshold on 

NDVI during the summer period. Then, a supervised 

classification was applied to a Sentinel 2 colour composite 

considering the green (G), red (R) and near-infrared (NIR) 

spectral bands, for a date acquired in March, when trees have no 

leaves because it is easier to separate orchards with green grass 

in the inter-rows from orchards with bare soils. A random forest 

(RF) algorithm was then applied, considering a learning dataset 

extracted from ground observation, including 50 randomly 

selected orchards for the training and 250 plots for validation. 

At a finer resolution, with GSH and Pleaides data, a hierarchical 

approach was proposed with two main steps to map grassed 

plots. A first threshold based on the color intensity of the pixel 

(T1) was manually determined for each sensor type and date 

from the analysis of various samples of known plots 

(representative of the variability encountered in the basin) to 

classify the trees from the background (for GSH T1=60, for 

Pleiades T1=85). A second classification was performed from a 

new threshold (T2) defined to separate grassed from bare soil 

pixels of inter-rows (for GSH, T2=100, Pleiades=95) (Table 2). 

The accuracy assessment was done comparing results obtained 

with ground observations of 195 plots not used for calibration.  

 

Table 2. Thresholds fixed to separate grassed and non-grassed 

plots from GSH and Pleaides images (in blue band)  
Thresholds to separate : Background and trees In the background: grass 

/ bare soil 

GSH images Trees <60 Bare soils >100 

Pléiades images Trees <85 Bare soils >95 

 

At least, in order to have an assessment of the number of trees 

per plot, an algorithm (Objj.MPP) based on Marked Point 

Process (MPP) was used for the detection of parametric objects 

(De Graeve et al., 2019). The objects are defined by a finite set 

of parameters (Table 3) according to their shape (circle, 

rectangle, triangle…). In this case, for detecting trees, we 

selected a disk described by the radius (min and max lengths in 

the studied samples), and the overlap tolerance (expressed in 

pixel number). An accurate description of this algorithm applied 

for various studies can be found in (De Graeve et al., 2019; 

Eldin et al., 2012).  

 

 

 

 

 

Table 3. Main parameters fixed for detecting the number of 

trees per plot using the Objj.MPP algorithm. 
Data 
source 

Grass Radius_rng Overlap_tolerance Min_quality 

GSH Grassed (18, 28, 0.8) 30 22 

GSH Non-
grassed 

(17, 25, 0.8) 20 35 

Pleiades Grassed (6, 8, 0.8) 10 15 

Pleiades Non-
grassed 

(6, 8, 0.8) 30 22 

 

Validation was done considering plots randomely drawn from  

ground observations.  

 

 

3. RESULTS 

 

3.1 Monitoring of the vegetation development 

The different spectral indices and biophysical variables 

computed from Sentinel 2 are correlated and allowed to monitor 

the leaf development of the orchards. Figure 4a shows the 

temporal profiles of NDVI for few cherry trees.  

 

 
Figure 4. Temporal profiles for different cherry trees 

 

We can observe a characteristic pattern with an increase of 

NDVI in spring up to June (canopy greening starts at the end of 

March, with a rapid increase immediately after the full 

flowering (corresponding to the phenological stage BBCH65)). 

In mid-May, fruit starts to grow (BBCH69) once full leaf area 

expansion has taken place. Then in summer a slight decrease is 

observed due to a decrease in irrigation, that yields to a 

yellowing of the grass in the inter-row. From September, rain 

comes back and participates to greening again the inter-row and 

the signal increases. The last stage is the senescence in autumn 

where the leaves fall. These typical patterns can present 

variability according to the farming practices. The grass 

background in many of the plots have a strong impact in the 

canopy-level. A field having received more water by irrigation 

displays generally higher NDVI or FCOVER, FAPAR, and at 

the opposite, non-irrigated orchards or orchards with bare soils 

in the inter-rows have lower values particularly in summer 

(Figure 4a).  

 3.2 Identification of young orchards 

Young orchards (<5 years) are easy to detect because of their 

low development (Figure 4b). An NDVI threshold of 0.4 was 

implemented in the period between DOY 220 (8/8) and 250 

(7/9) for dry and standard years, and 0.5 for wet years to 

separate young orchards. This classification was applied to the 

whole watershed. The results shows 25% of young orchards on 

the whole basin. This value is in accordance with observations. 

The classification accuracy is in the order of 98% of well 

classified plots. 
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3.3 Identification of phenological stages 

 

To remove the influence of grass, we propose to normalize the 

biophysical variables (fAPAR and FCOVER) per season, using 

as a reference the value (min) at day 70 (before flowering) and 

another value (max) at the seasonal maximum period (after leaf 

expansion). By this normalization, BBCH65 stage (full 

flowering stage) can be well identified with a normalized 

fAPAR of 0.2 in most of the plots, whereas BBCH69 stages 

coincides with a normalized fAPAR of 1.0 (Figure 5). Such 

simple approach permits to infer two essential phenological 

stage in cherry-tree orchards with a relatively small influence of 

the background. 

 

 
Figure 5. Normalized fAPAR according phenological stages 

observed from 13 cherry trees. 

 

 

3.4 Identification of grassed orchards 

 

Figure 6 presents the map of grassed (in red) and non-grassed 

(in green) orchards at the watershed scale obtained from 

Sentinel 2. The global accuracy was 79%. Some fields which 

were very heterogeneous with stony inter-rows or presenting 

patches of vegetation and bare soils, are often classified as non-

grassed plots although they are grassed. The spatial resolution 

of Sentinel 2 (pixel 10m) does not allow to improve this 

detection because the reflectance results of mixing inter-row 

and trees which cannot detect such surface heterogeneities. It is 

the reason why we have explored finer images (Pleaides and 

GSH). The results obtained from these last data are presented in 

Table 4. The performance was improved for GSH images 

relative to the Pleiades images acquired in summer, which is 

expected since GSH has a highest spatial resolution. 

Satisfactory results were obtained for the detection of grassed 

orchards, which returned up to 88% with GSH. A slightly lower 

performance was obtained for non-grassed fields (61%). An 

explanation is due the acquisition period for GSH images: in 

April, inter-rows can have grass regrowth or are not yet moved. 

For Pleiades, the lower score can be explained by the 

acquisition period in July. At this period, the grass in the inter-

row is often very dry and yellow and then the fields can be 

classified as non-grassed orchards. The crown development of 

the tree is also larger than on GSH classification.  
. 

 

 
 

Figure 6. Map of grassed and non-grassed orchards obtained 

from the classification of Sentinel 2 image acquired on 2022-03 

-03 on the Ouvèze basin.  

 

Table 4. Performances obtained with GSH and Pleiades images 

to separate grassed and non-grassed plots.  

 

  GSH Pleiades 

Correct identification  177/219 
(81%) 

124/218  
(57%) 

Correct identification 
(grassed) 

140/159 
(88%) 

66/159  
(42%) 

Correct identification (non-
grassed) 

37/60 
(61%) 

58/59  
(98%) 

 

 

3.5 Assessment of the number of trees per field 

A first step was to evaluate the application of the pattern 

algorithm (Objj.MPP) at plot scale on the largest field of the 

watershed (Figure 7). 1073 cherry trees were detected with an 

overestimation of only 3% corresponding most of the time to 

areas where some trees were uprooted with regrowth of tall 

grasses. The results obtained using GSH and PLEAIDES 

images have shown high correlations compared with ground 

observations (r²=0.9). Some fields present underestimations of 

number of trees, because they mixt young and old trees and 

have different soil types impacting the background as displayed 

in Figure 8.  

 

 
Figure 7. Detection of the number of a cherry tree from the 

UAV image acquired on 2021-07-29. 
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Figure 8. Example of heterogenous orchard with young and old 

trees where the pattern algorithm underestimates the number of 

trees. 

 

The median value over the whole basin was in the order of 75 

trees per field. The density considering the surface of the fields 

was in the order of 267 trees/ha. As expected, larger plots have 

greater number of trees. A linear relationship can be proposed 

to derive tree number from field area for the main species:  

 

Tree number=208 (field surface (ha)) +8, for cherry trees 

Tree number=154 (field surface (ha)) +41, for apricot trees 

Tree number=246 (field surface (ha)) +9, for olive trees. 

 

Olive trees are generally less spaced than apricot and cherry 

trees, with a mean density of 305 trees/ha against 217 for cherry 

trees and 244 for apricot. 

 

 

4. DISCUSSION-CONCLUSION 

The different variables derived from remote sensing data are 

useful to estimate the water consumption at the watershed scale 

and to analyse the spatial variability according to the 

agricultural practices. Surveys performed on 22 farms have 

revealed that the water quantities provided to each field are 

highly correlated to the orchard age, the tree number per field 

and soil type. Most of farmers start irrigation at the fruit set 

stage. The results have shown that the high frequency of 

Sentinel 2 data allowed to detect the orchard development and 

to identify key phenological stages such as the flowering and 

fruit set stages which determine the start of irrigation. Irrigated 

and non-irrigated plots can be distinguished from the analysis of 

temporal profiles of biophysical variables. A simple 

thresholding applied on the NDVI temporal profiles computed 

for each orchard allowed for the classification of young from 

old plantations, which require different irrigation strategies, 

reasonably well. The use of images with finer spatial resolutions 

such as Pleaides data or GSH improved the assessment of 

grassed from non-grassed orchards and allowed the 

quantification of the number of trees per field using a pattern 

detection approach. Normalising fAPAR and fCOVER presents 

the advantage to mitigate the influence of soil background and 

to better identify some crucial phenological stages such as the 

flowering stage. 

 The methods proposed here, have the advantages to use data 

easier to download and free for access. These methods can be 

applied in various contexts and orchard types. Next steps will 

focus on the addition of radar data from Sentinel 1 to inform on 

the water status of the soil.    
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