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ABSTRACT:

The use of Building Information Models (BIM) during the entire life cycle of a building or facility requires an up-to-date and detailed
digital representation. Nowadays the BIM focus mostly lies on the design and construction phase of the building and is rarely used
for the rest of the life cycle. For further use the BIM must be updated after construction and enriched with appliance objects such as
safety equipment, heating elements to enhance its usability. In this work a new approach is presented to detect and locate appliance
objects in a three dimensional environment using object detection in images created by indoor mobile mapping devices. By detecting
and locating these appliance objects in the three dimensional world they can be included in the BIM model. This approach enables
the detection and localization needed for the placement of placeholders or detailed geometric models of those appliances in the BIM
model or other digital representations. Resulting in an increased level of detail and usability of the digital representation of the building
or facility during its further life cycle. Overall, this work demonstrates and examines the accuracy of the detection and localization of
appliance objects.

1. INTRODUCTION

The concept of Building Information Models or BIMs focuses on
a collaboration between all the buildings’ or facilities’ stakehold-
ers during its entire life cycle. At the moment most BIM projects
are not leveraging the full potential of BIM by only using the
BIM concept during the design and build stage of a buildings’
life cycle. To increase the usability for later stakeholders it is im-
portant that the model gets updated regularly during construction
or other life stages, maintaining an up-to-date three dimensional
representation of the site. Modern state-of-the-art Indoor Mobile
Mapping devices (IMMs) enable this periodical capturing of the
onsite conditions in high detail. These devices can capture large
sites almost 80% faster than traditional surveying techniques us-
ing terrestrial laser scanners while maintaining the accuracy’s and
even improving the coverage (De Geyter et al., 2022b). Using
these techniques also limits the impact of on-site measurements
and project planning to a minimum. The output of these measure-
ments can be used for all kind of analyses. For example, a vali-
dation of the constructed elements where the as-build conditions
are compared to the as-design condition reporting and locating
building errors as shown in (Bassier et al., 2023). However, the
detailed point clouds and imagery taken by these devices can also
be used to update the as-design model to the buildings as-build
conditions resulting in an accurate and up-to-date digital as-built
representation of the building.

To be of further use during the building’s life cycle and unlock
BIM’s full potential in terms of facility management or safety
planning the BIM model should be up-to-date and as detailed as
possible at every given moment. These details can be captured
using modern remote sensing techniques and should be incorpo-
rated in the BIM. This can be done by manually altering already
existing elements from the as-design BIM to their as-build state
using the remote sensing data or by manually adding new ele-
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ments to the BIM. Currently manually enriching the BIM with
all kinds of appliance objects, adding extra functionalities to the
model is a time consuming and labour intensive task. This makes
an enriched BIM a very cost inefficient deliverable for the cur-
rent BIM market. Automating this process by leveraging new
techniques in the field of remote sensing and machine learning
would make this a highly desired deliverable.

A key challenge to enable an automated BIM creation or enrich-
ment is to interpret the data captured using remote sensing tech-
niques with as little human intervention as possible. To this end,
researchers look in the direction of Machine Learning to interpret
these huge amounts of data and process them into BIM. Three di-
mensional semantic segmentation on point cloud data is focusing
mainly on large object classes in mostly outdoor environments.
Some of these models trained on indoor environments succeed in
segmenting classes as walls, floors, chairs, tables, bookcases etc,
but these three dimensional semantic segmentation algorithms
mostly struggle with the scarce amount of training data available
for indoor environments (De Geyter et al., 2022a), occlusions and
the limited amount of points on small objects. Additionally creat-
ing three dimensional training data is more time consuming than
labeling two dimensional images. Two dimensional object de-
tection, on the other hand, is rapidly advancing. The enormous
amount of image data, openly available online, combined with
training techniques such as data augmentation and transfer learn-
ing enable high object detection grades on these data types.

Combining the outputs of state-of-the-art mobile mapping de-
vices and recent advances in machine learning opens the door to
an automated approach for a generic appliance object detection
and localisation needed for BIM enrichment. Modern IMMs sup-
ply an accurate point cloud and a set of detailed panorama images
with their corresponding positions and orientations. By position-
ing each image with a high accuracy using the IMMs SLAM al-
gorithm in the 3D environment of the point cloud the results of
two dimensional object detection can be translated to the three
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dimensional world.

In this work a novel approach for generic appliance object detec-
tion and localisation for BIM enrichment will be presented. In
the next section, related work regarding the fields of object de-
tection in both three dimensional as two dimensional data will be
provided. Also, recent advances in generic object detection using
human input and no custom training will be introduced, followed
by the proposed methodology where some limitations regarding
the suitability of objects for detection are given. Then, the used
detection algorithm and the reprojection methods are proposed.
Afterwards the data used for the experiments and the experiments
themselves, are discussed, followed by the results of these exper-
iments. To finalise, a conclusion and suggestions for future work
are formulated.

2. RELATED WORK

Currently, the use of BIM is mostly focused on the design and
construction phase of a building’s life cycle. Nevertheless, the
use of BIM during the operations and maintenance phase of a
buildings’ or facilities’ life cycle is widely mentioned in litera-
ture. The data requirements for BIM models to be useful in fa-
cility management on the other hand are not clearly defined in
literature.

To unlock the full potential of BIM during the operation stage
of a buildings’ life-cycle, an enrichment of the BIM model with
appliance objects is needed. These appliance objects can vary
from fire safety equipment to heating elements and electronic de-
vices. To place these objects in the model, an accurate location
of the appliance objects is needed. Additionally, the placement
of an object placeholder in the correct location in the BIM model
is possible. This placeholder can be an abstraction of the actual
object with predefined dimensions, a parametric block adapted to
the dimensions of the observed object or a detailed mesh geom-
etry of the object based on the captured point cloud. To enable a
cost efficient way of detecting, locating and placing these objects
an automated detection an and localisation approach is needed.

The detection of appliance objects from remote sensing data can
be done in various ways. Both the 3D point cloud data and the
two dimensional image data can be used as input for machine
learning algorithms. The use of machine learning for the inter-
pretation of remote sensing data is currently widely researched.
Recent machine learning networks are capable of processing the
3D point cloud data directly. The key challenges in processing
this 3D data lie in the unstructured nature of this data. These
challenges are identified by (Bello et al., 2020) and include the
irregularity, unstructuredness and unorderdness of the data. One
approach for tackling these problems is to force the point cloud
data in a structured representation and exploit the resemblance
with two dimensional data. Examples of this approach are voxel-
or Multi-view representations. Voxel-based approaches organize
the point cloud in a voxel representation with a fixed size. This
allows the use of 3D convolving kernels to process the data sim-
ilar to their 2D equivalent (Maturana and Scherer, 2015, Wu et
al., 2015). The high computational cost of this process can be
reduced by, for example, only processing the occupied cells from
the voxel-grid as presented by (Wang and Posner, 2015). The
multi-view approach leverages the existing technology in 2D Con-
volutional Neural Networks (CNNs) by taking 2D images of the
3D representation from different view points and process them
with traditional 2D CNNs (Su et al., 2015). With PointNet (Qi
et al., 2017a) the first network able to directly process 3D point
clouds was introduced. This network is able to do basic machine

learning tasks such as classification, part segmentation and se-
mantic segmentation of point clouds. Its successor includes local
features in different scales allowing PointNet++ (Qi et al., 2017b)
to take into account the environment of the points and so recog-
nize more fine-grained structures and increase the usability on
complex scenes. For object detection on this point cloud data,
the data is first passed through a point-based machine learning
network to gradually down sample the point cloud data and learn
features on different scales (Mao et al., 2023). This approach
mainly depends on the number of context points and the used ra-
dius for context feature extraction both will have a huge impact
on memory consumption.

Object detection using machine learning in images is much more
developed. Here the objective of recent studies is to go from de-
tecting a certain type of objects to detecting a very specific ob-
ject rephrasing the task to a matching problem, and approach-
ing the object detection capabilities of humans (Liu et al., 2020).
The field of object detection in images originates from the image
classification. Besides the classification of objects, object detec-
tion also provides a location for the detected object (Li et al.,
2022). The use of machine Learning approaches in the field of
object recognition was introduced by AlexNet (Krizhevsky et al.,
2012). This work has laid the foundations for object detection in
images using deep learning techniques (Li et al., 2022). Two
major categories within object detection can be distinguished:
one-stage and two-stage object detectors. The main difference
between these two approaches is the region proposal step. In
two-stage detectors such as R-CNN (Girshick et al., 2014), Fast
R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015) an ad-
ditional screening step is included, filtering the proposals before
delivering the final results. Due to omitting this step in one-stage
detector networks, these networks have faster processing times.
(Liu et al., 2020) identifies the main challenges for deep learn-
ing based object detection. First, the large number of classes,
different object types and all possible intra-class variations pose
a huge challenge for further development on new data. Second,
the efficiency of the models with growing computational com-
plexity especially when multiple items in differences scales must
be recognised and located, often in one image. Third, scalability
is an issue, where networks must be able to detect objects they
weren’t trained on and preform in situations they haven’t seen
yet. The author concludes that the growing amount of objects to
detect and enormous amount of available data will make anno-
tated training almost impossible, forcing researchers to focus on
weakly supervised learning methods.

Both object detection approaches discussed above, whether in 3D
or 2D have the same major limitation. All models presented ear-
lier, rely on huge amounts of training data. This training data
is mostly handcrafted or relies on a type of manual interven-
tion. This makes the creation of these training data sets a time-
consuming and costly process (Liu et al., 2020, De Geyter et al.,
2022a).

When targeting a broad variety of objects that can be included in
BIM models, (for instance safety signs, heating installations, light
fixtures), a more generic object detection approach is needed.
Each type of objects also has a huge variety in appearance of
different instances, as shown in Figure 1 within the same type,
underlining the need for a more generic approach. This almost
unlimited set of objects makes the training of a robust object de-
tection network near to impossible. A possible solution can be
found in the field of open-world object detection as presented
in (Joseph et al., 2021). This method relinquishes the assump-
tion that all classes must be seen during training. To this end, the
method must be able to recognize an unknown object as unknown
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Figure 1: Tiles from the testdataset containing a emergency exit
sign showing the variation between instances of the same type
and capturing conditions.

which requires a strong generalisation of the model. The key to
this problem is the integration of language into the model. One of
the most performing models using this method is GLIP (Li et al.,
2021), introducing the contrastive training from (Kamath et al.,
2021) on the predicted regions and language phrases. The object
detection is reduced to a phrase grounding task. Because of the
high resemblance between open-set and closed-set detectors (Liu
et al., 2023) expects strong closed-set detectors to result in high
preforming open-set detectors. To this end, they use the DETR
based model DINO (Zhang et al., 2022) and transform it into
an open-set object detector named Grounding DINO (Liu et al.,
2023). Due the transformer based architecture of the DINO net-
work, the similarity with language based models is high, enabling
an easier integration of both. Also, the overall grounding model
is simplified by the end-to-end optimization without hand-crafted
modules. The last advantage of the grounding DINO network
against GLIP is, because its transformer based architecture, the
model is better in leveraging large scale datasets. The grounding
DINO object detector takes human language input which gives
it a large potential for appliance object detection. By using hu-
man input the algorithm can be easily generalised over different
objects covering the large variety of appliance objects.

3. METHODOLOGY

The proposed workflow for detecting and locating appliance ob-
jects in IMM data is shown in Figure 2. To avoid problems with
memory during the object detection, the panoramas with a size of
4096x8192 pixels are cropped into tiles of 512x512 pixels before
feeding them to the object detection algorithm. The depth maps
corresponding to each sensor position are rescaled to have the
same dimensions as their corresponding panorama image, allow-
ing easy mapping between panorama and depth map. The crop-
ping of the panoramic images is done by using the image utility
functions embedded in the GEOMAPI API1. All data and infor-
mation is stored using linked data technologies and contains the
link between the considered tile and its original panorama image
and depth map. Also, the location and orientation of the camera
provided by the IMMs SLAM algorithm is stored for the later
reprojection.

3.1 Object Detection

The presented approach leverages the use of object detection in
images and the data captured by modern IMMs to detect and

1GEOMAPI API Python Library:
https://geomatics.pages.gitlab.kuleuven.be/research-projects/geomapi/

localise objects in a 3D environment. This is achieved by con-
ducting a custom object detection on the tiles created from the
panorama images. The object detection algorithm used in this
work is the Grounding DINO object-detector as introduced in
section 2. As mentioned before, the panoramas are subdivided
in tiles of 512x512 pixels before they are inputted in the network,
to reduce memory requirements and to preserve the high detail
of the panorama images. This step is especially important when
searching for small objects. Each detection made by the algo-
rithm returns a probability of being of the targeted class. All de-
tections with a probability above a certain threshold are stored in
a collection D of detected objects, each represented by bounding
boxes b. Each bounding box b is defined by four corner points
k representing the predicted location of the object in the image
and a label l containing the predicted class of the object. To re-
duce unnecessary computations an optimal probability threshold
must be determined, detections with a lower probability then this
threshold will be ignored. An experiment to determine the opti-
mal probability threshold is presented in section 5.

3.2 Object localisation

Following the detection of the object in the tile, the detected
bounding box on the tile is converted to its corresponding 2D co-
ordinates in the panorama image coordinate system. Afterwards,
the 2D image coordinates are converted to 3D coordinates. Since
the image is a panorama image stitched from different fish eye
cameras, the default pinhole camera model is not applicable. To
this end, it is assumed that the image can be projected on a sphere
and the 2D image coordinates can be represented by spherical co-
ordinates. For simplicity the center of the bounding box c will be
computed, this procedure can be repeated for each pixel included
in the bounding box if necessary. As shown in Figure 3 the center
of the bounding box c has coordinates vc and uc in the 2D im-
age coordinate system. This coordinate system is defined by the
u-axis and the v-axis with origin in the left top corner of the im-
age. Assuming the spherical model the distances vc and uc can
be converted to an angle θc in the xz-plane and an angle ϕc in the
xy-plane, using equations 1 and 2.

θc =
π(h− 2vc)

2h
(1)

ϕc =
−2π(w − uc)

w
(2)

In the 3D coordinate system, where the x-axis equals the head-
ing of the IMM and the center of the image represents the origin.
Using θc and ϕc, the 3D coordinates can be computed using equa-
tion 3. The depth dc, which is needed to scale the whole, is equal
to the pixel value of the corresponding pixel in the depth map
with the same position in the image.

c =

xc

yc
zc

 =

dc ∗ sin(θc) ∗ cos(ϕc)
dc ∗ sin(θc) ∗ sin(ϕc)

dc ∗ cos(θc)

 (3)

Before the detected objects represented by the center c can be
inserted in a digital representation of the scene, the coordinates
must be converted from the panorama coordinate system to its
origin in the panoramic center to the coordinate system of the
dataset. This conversion is done using the position and orienta-
tion of the capturing position of the panorama provided by the
IMMs SLAM algorithm. This capturing position is assumed to
be the same as the panoramic center. The position and orienta-
tion are provided by a transformation matrix TSLAM which is
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Figure 2: Overview of the proposed workflow showing the three types of data input, RGB-panoramas, depthmaps and position and
orientation of the capturing position provided by the IMMs SLAM algorithm. After object detection on the cropped panorama tile, all
information is merged to reproject the pixels within the detected bounding box in 3D space.

Figure 3: Conversion from 2D image coordinates to 3D coordi-
nates.

optimised during the SLAM post processing steps. Applying this
transformation on the computed coordinates of c, shown in equa-
tion 4, yields the coordinates in the same local coordinate system
as the captured point cloud.

clocal = TSLAMc (4)

When only using this captured point cloud as visualisation, these
coordinates of clocal are sufficient to represent the point of inter-
est. In most cases these points should be combined over multi-
ple datasets or be presented in other software’s or representations
such as the BIM. To that purpose, an additional transformation
is needed to convert those local coordinates to a reference coor-
dinate system, such as Belgian Lambert 72. The transformation
Tref can be determined using multiple methods. One method
is by performing a manual registration between the BIM as ref-
erence and the captured point cloud. Another method is using
known reference points and including these points in the trajec-
tory of the IMM during capturing. By providing the known co-
ordinates of these points to the SLAM post processing, the trans-
formation Tref is computed during the post processing. Using
equation 5 the coordinates of C are known in the reference coor-

dinate system.
cref = TrefTSLAMc (5)

By using the mobile capturing setup, each object is captured from
different viewpoints. This enables the possibility to compare the
different detections of the same object. Considering the collec-
tion of different images I each image has a set of detected objects
Di (Eq. 6). Selecting all objects where the label corresponds to
the same class results in a collection Di,c (Eq. 7. Each of the
pixels in these bounding boxes can be represented their center c
as computed in equation 5. This results in a collection Cc off all
object center points ci of a certain class with label lc (Eq. 8).

Di =
{
bd, ld

∣∣∣∀i ∈ I
}

(6)

Di,c =
{
bd

∣∣∣∀i ∈ I, bd ∈ Di : ld = lc
}

(7)

Cc =
{
ci

∣∣∣∀i ∈ I, bd ∈ Di,c

}
(8)

All object centers of the same class which are closer together than
a threshold td are considered as different occurrences of the same
object from different images. This results in a collection of center
points Co representing the same object (Eq. 9).

Co =
{
ci

∣∣∣∀ci ∈ Cc, cj ∈ Cc : ci ̸= cj ∩ ∥ci − cj∥ ≤ td
}

(9)
Finally the position of the objects’ point of interest can be com-
puted by computing the mean of all centers in the collection Co.

3.3 Extracting the 3D object

Performing this procedure on each corner point k for all pre-
dicted objects b in the collection D provides a per object plane
in 3D space. To extract the points of the point cloud P that are
likely to be part of the object, a 3D bounding box is needed. This
3D bounding box is created by offsetting the already found plane
towards the capturing position with a distance doffset. This dis-
tance doffset defers for each object, at the moment this parameter
is set to 1m. This results in collection K per detected object of
3D cubes Ki (Eq. 10) . By extracting all points pj of point cloud
P that are contained by Ki a point cloud Pi can be extracted per
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object (Eq. 11).
K =

{
Ki

∣∣∣∀b ∈ B
}

(10)

Pi =
{
pj

∣∣∣∀pj ∈ P ∩Ki,Ki ∈ K
}

(11)

This point cloud only containing the detected object and its direct
surroundings allow more detailed analyses. This point cloud can
be used for executing part segmentation or parametric object fit-
ting to extract more details about the detected object. In addition,
after noise and outlier removal a meshing algorithm can be used
to generate a detailed and truthful representation of the object.

3.4 Enriching the BIM

When both the object type and the location of the object are
known, the object can be placed in the BIM model. This can
be done by inserting a placeholder or a point of interest into the
model on the exact location the proposed workflow has located
the object. To increase its usability it is possible to link the ob-
ject to another host object such as a wall or ceiling. To this end
a geometric analysis of the distance between the object and these
possible host objects can be conducted but is part of future work.

4. DATASET

The site used for testing the presented algorithm is a building
located on the KU Leuven university campus of Ghent-Rabot.
The remote sensing data used as input for the presented pipeline
is captured using the NavVis VLX indoor mobile mapper. This
technique allows to capture a high quality point cloud, high reso-
lution panoramas and corresponding depth maps of the site with
their corresponding positions in the site’s coordinate system. The
building has a surface area of approximate 950 squared meters
and consists of 4 different floors, each consisting of one room
and a common hallway with stairs. On ground level a building
physics lab is located. The first and second floor each contain a
classroom and the top floor houses a technical room.

The measurement campaign with the IMM covering all floors of
the building in one take took about 30 minutes. It resulted in 135
panorama pictures with their position and orientation and corre-
sponding depth maps. During capturing sufficient loop closures
were foreseen to maintain good accuracy without control points.
In this way, the coverage of the site is optimised and the panora-
mas provide multiple viewing points for almost each object. Af-
ter removing points caused by reflections through the windows
the point cloud has a size of 2.1 GB and contains approximately
79M points.

4.1 Appliance object selection

Before selecting the appliance objects for detection, some con-
siderations are made. First, the objects need to be useful during
the further life cycle of the building and must have a use case
in facility management, safety planning, refurbishment or other
studies or phases of the buildings life cycle. Second, it is impor-
tant to be aware that only objects with a direct line of sight to
the sensor can be captured and thus detected. Due to the mobile
character of the used capturing technique (capturing 360 images
every 2m) the coverage of the scene is maximised as much as pos-
sible. Nevertheless, some objects are typical hidden from sight.
Power outlets, for example, will often be hidden by furniture or
electronic devices which makes them invisible for remote sensing
techniques. To this end, a visibility study is conducted where the
number of occurrences of an object type are compared with the
number of occurrences in the panoramic images. Based on this
study an object type for further testing is selected.

Table 1: Summary of the number of instances of appliance typical
objects present in the testdataset and how many times they occur
in the panoramic images taken by the IMM.

Object # instances # pano occurrences
Emergence exit signs 16 178

Fire extinguishers 3 66
Fire extinguisher signs 4 69

Fire Alarm buttons 6 85

The test dataset contains different kinds of appliance objects, such
as school materials, computers, power outlets, safety signs etc.
The visibility study shows that only 70% of all power outlets are
visible in the captured data. If these objects need to be modeled
it is necessary that the additional 30 % of objects is located and
reported manually, reducing the gained time and decreasing the
efficiency of the process. In addition, objects in the background,
far away of the sensor, will result in a low resolution on the image
making their detection impossible.

Because of these limitations the focus in this work is to demon-
strate the proposed algorithm on safety equipment. More specifi-
cally emergency exit signs are targeted because these objects are
intentionally placed in highly visible places making them visible
in a maximum number of panorama images. The test set contains
16 of these emergency exit sign instances of 4 different types as
shown in Figure 1. These occur 178 times in the captured panora-
mas. Each instance can be seen in an average of 11 images.
Other classes like fire extinguishers, fire extinguisher signs and
fire alarm buttons are fare less represented as can be seen in Ta-
ble 1. Within the set of images large variations in distance to the
sensor (size of the object), background, position and light condi-
tions are present, representing a typical mobile mapping dataset
as shown in Figure 1.

5. EXPERIMENTS

In a first experiment an optimal probability threshold is deter-
mined to input in the grounding DINO algorithm and reduce the
number of false positives but still detect all instances. To this end,
tests are conducted using different probability thresholds and re-
porting the number of positive instance detections. For these de-
tections the number of true positive instance detections is com-
pared with the number of false positive instance detections in
section 6. To evaluate the detection rate of the targeted objects,
the detection results are sorted to determine the precision, recall
and F1-score. This analysis is expanded to gain a better insight,
by computing per instance metrics including the mean number of
tiles each object instance is detected on.

A second experiment tests the accuracy of the proposed reprojec-
tion algorithm using ground truth data. After the detection, each
pixel of the detected bounding box is projected into the three di-
mensional space of the original point cloud. This allows a com-
parison of the projected patch of point cloud to the original point
cloud. To this end, a part of the original point cloud containing
only the object of interest is separated and considered as ground
truth. Both point cloud parts are then compared using cloud-to-
cloud distances. This analysis can be done on both the repro-
jected point cloud per instance or for each detection separately.
Both results are shown in section 6. The analysis on the instance
point cloud gives an idea of the per instance accuracy achievable
using the presented method, whereas the per detection analysis
gives a better understanding of the influence of the tile position
and angle.
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Table 2: Detection rates on tiles using different probability
thresholds for Emergency Exit sign detections.

Threshold Precision Recall F1-Score Accuracy
0.4 11.91% 75.54% 20.57% 92.14%
0.5 26.43% 59.66% 36.63% 97.22%
0.6 50.20% 53.65% 51.877% 98.66%
0.7 72.48% 46.35% 56.54% 99.04%
0.8 95.00% 24.46% 38.91% 98.96%

6. RESULTS

After cropping the 135 panorama images of the dataset in tiles
of 512px by 512px, 17.280 tiles are created, each with its corre-
sponding depth map. In 202 tiles an emergency exit sign can be
found. After the cropping stage, all tiles are processed by the ma-
chine learning algorithm grounding DINO. The search term used
for the algorithm is ”green exit sign with white arrow” which was
experimentally determined beforehand.

First, some tests searching for an optimal probability threshold
to assess the results of the grounding DINO algorithm were con-
ducted. In Table 2 the precision, recall, F1-score and accuracy
are given for different probability thresholds, considering each
tile containing a part of an emergency exit sign as a positive.
This table shows the highest accuracy of 99.04% using a prob-
ability threshold of 0.7. In Table 3 the same analysis is done
for each emergency exit sign instance, presenting the precision,
recall, F1-score and the mean number of tiles in which an in-
stance is detected. These results show that using a threshold of
0.7, all instances are detected in on average 6.75 tiles. Examin-
ing the False negative results using the 0.7 thresholds shows that
the algorithm mostly mislabels other signs or posters present in
the scene. These mislabeled objects are only recognized in 2.41
tiles on average and are so clearly distinguishable from the true
positive detections. Undetected signs are mostly those pictured
in a sharp angle between the camera and the object and are thus
located towards the side of the panoramas.

The second experiment shows that the result highly depends on
the background of the detected sign within the detected bound-
ing box. As shown in Figure 4 the signs without a clear back-
ground result in large point clouds containing points from the
background. In most cases these are signs attached to the ceil-
ing or placed on a window. In the case shown in Figure 4 the
cloud-to-cloud distance to the ground truth corresponding to 95%
inliers is 3.77m which makes it impossible to accurately locate
the sign. In Figure 5 an emergency exit sign located on a flat
surface (wall) is presented showing the cloud-to-cloud distance
corresponding to 95% is around 4cm in this case, and thus yield-
ing more promising results. This difference is mainly explained
by the number of background pixels and thus reprojected points
within the detected bounding box.

The same conclusions can be drawn when looking at each tile
containing a part of the detected instance. An overview of the
tiles showing the instance from Figure 5 is given in Figure 6. In
this case the cloud-to-cloud distance corresponding to 95% inliers
varies between 0.014m and 0.043m with a mean around 0.020m,
showing a clear difference between tile configurations. As shown
in Figure 6. tiles containing less background clearly have a better
result than tiles with more background within the detected bound-
ing box. This is directly influenced by the angle to the cameras’
heading and thus the position of the object in the panorama. Ob-
jects located in the center of the panorama image have a better
detection and reprojection than objects located at the sides, which
are more subject to distortion. This distortion clearly impacts the

Figure 4: Detected tiles of an emergency exit sign on a win-
dow and the reprojection point cloud compared to the ground
truth. When no clear background surface is present the repro-
jected point cloud does not clearly represent the object. The point
cloud is colored according to the cloud-to-cloud distance to the
ground truth, smaller than 0.005m (blue), smaller than 0.010m
(green), smaller than 0.015m (yellow), smaller than 0.020m (Or-
ange), higher than 0.020m (red)

reprojection mainly because of the rectangular bounding boxes
which are detected. The influence of the distortion on the outer
sides of the panorama apparently remains relatively limited on
the detection itself.

For the moment the proposed algorithm is limited to detecting
objects with a clear background with an accuracy around 0.04m.
Several adaptations of the algorithm can help to overcome this
shortcoming and increase the localisation accuracy. For example
the outer parts of the panorama image can be ignored, disregard-
ing the zones with large distortions. Another approach can be to
increase the probability threshold given to the grounding-DINO
algorithm, which will result in less detections. This will remove
most detections of signs in the distorted regions of the panorama
image. Both methods will directly impact the number of detec-
tions, which would more likely lead to a lower recall and F1-score
and increase the possibility of missing instances. A more desir-
able approach can be to use weights, where detections located
more to the center of the panorama have more influence to the
final result than detections to the sides. The best approach would
most likely be to filter out the background points after the detec-
tion. This can be done by running a segmentation algorithm on
the detected bounding boxes and remove the background before
the reprojection. It is important to notice that a part of this inac-
curacy will remain, because in the preprocessing of the data the
depthmap used for the reprojection is upsampled to have the same
size as the panorama image, which can result in some depth inac-
curacies on the object edges. Additionally the reprojection algo-
rithm assumes the panorama to be projected on a perfect sphere,
which will most likely be not the case.

7. CONCLUSION

The use of BIM during an entire building’s life cycle remains a
topic for further research. The modern generation of IMMs sys-
tems are able to capture a building in high accuracy and detail in
a fraction of the time needed by traditional laser scanning setups.
This allows for a periodical capturing to update the BIM during
the building’s usage. The interpretation of the huge amounts of
data captured by these devices can be automated using recent ma-
chine learning techniques. Employing these techniques for auto-
mated data interpretation and BIM creation and enrichment will
increase the efficiency of the scan-to-BIM pipeline and impact
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Table 3: Detection rates of emergency exit sign instances using different probability thresholds.
Threshold Precision Recall F1-Score Mean # TP tiles Mean # FP tiles

0.4 1.80% 100.00% 3.53% 11.00 1.49
0.5 7.96 % 100.00% 14.75% 8.69 2.09
0.6 25.00% 100.00% 40.00% 7.81 2.58
0.7 48.48% 100.00% 65.31% 6.75 2.41
0.8 83.33% 93.75% 88.23% 3.80 1.00

Figure 5: Reprojection point cloud compared to the ground truth
of an emergency exit sign with a clear background surface and
histogram with the cloud to cloud distances to the ground truth,
showing a 95% inlier distance of around 0.04m. The point cloud
is colored according to the cloud-to-cloud distance to the ground
truth, smaller than 0.005m (blue), smaller than 0.010m (green),
smaller than 0.015m (yellow), smaller than 0.020m (Orange),
higher than 0.020m (red)

the BIM usage throughout a building’s life cycle. Leveraging the
rapid advances in the field of 2D object detection on the images
taken by modern IMMs and their corresponding location, appli-
ance objects can be detected and located in three dimensional
space. This detection and localisation combined with a generic
object detector enables the way to enriched BIM models for fa-
cility management and safety planning.

The proposed workflow to use state-of-the-art generic object de-
tection algorithms on parts of the panorama images taken by IMMs
to localize appliance objects in a 3D environment is promising.
The presented work shows that each instance of emergency exit
signs in the test building is detected. It is found that the loca-
tion of the object in the panorama clearly influences the result
of the reprojected location. The main problem is the presence
of background pixels within the detected bounding box. This
problem is most apparent in cases were no clear background is

located behind the object. When looking at cases were a clear
background behind the object is present the location of the emer-
gency exit sign can be found with a cloud-to-cloud 95% inliers
distance of approximately 0.04m. This is sufficient for facility
management and safety purposes. Taking into account the er-
rors made by upsampling the depth map during the preprocessing
and the assumption of a perfect spherical panorama projection,
this error can even be lowered. Segmenting the pixels within the
detected bounding box could possibly increase the result by re-
moving these background point before the reprojection.

Future work should examine the possibilities regarding the accu-
racy of the detection and reprojection. These adaptations, such
as removing large parts of the background, would significantly
impact the final result. Additionally, the upsampling of the depth
maps during the preprocessing and the assumed panorama model
should be further examined to gain better insight in the error prop-
agations. Furthermore, tests on different kinds of objects should
be conducted. Future works concerning the enrichment of BIM
models with appliance objects should examine ways to integrate
this gained knowledge into the BIM. Some obstacles here are re-
placing the points only indicating the location, with more accu-
rate representations. To this end, existing object libraries can be
used to determine best fitting library objects to represent the de-
tected object. Also, more parameters can be extracted from the
point cloud data. For example when a fire extinguisher is detected
in an image, the point cloud of this instance can be separated. The
size or volume of the fire extinguisher could then be determined
from these points. Other future work includes a detailed study
of the required size and number of occurrences of objects, which
can directly impact the recording time on site. Additionally, the
generality of the object detector should be optimized to reduce the
number of false positives which are currently manually removed.
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