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ABSTRACT: 

The Himalayan range is considered to include the highest mountains on earth, with a widely recognized assortment of flora and 

fauna. The Indian Himalayan range spread over 10 states, of which being Uttarakhand, has the largest forest cover of 48.5% of the 

total area forest. In Doon Valley, the phenological behavior and variations of several forest types have been studied using the 

Normalized Difference Vegetation Index (NDVI) and Temporal Normalized Phenology Index (TNPI) along with elevation, surface 

temperature, slope, and aspect data into consideration. A two-scale method has been employed to study forest phenology, using 

Sentinel-2 data at 10 m spatial resolution for local-scale studies and MODIS NDVI data at 250 m spatial resolution to find large-

scale phenological patterns. The framework used in this study is based on Google Earth Engine (GEE) which has potential 

applications at various spatial and temporal scales. Multiple phenological phases and phenological metrics have been identified and 

examined within the duration from December 2018 to May 2023. The investigation concluded that phenological behaviors were 

considerably affected by environmental and topographic variables such as elevation, surface temperature, slope, and aspect. 

Significant changes in phenology were recorded at low altitudes; however, less fluctuation was reported at medium to higher 

elevations due to remoteness at greater elevations. Using NDVI from open-source MODIS and Sentinel-2 datasets, TNPI has been 

successfully tested for this forest region. The findings showed that this study opens new opportunities for trend analysis of forest 

health and productivity. 

* Corresponding author 

1. INTRODUCTION

The Himalayan range, as the world's highest mountain range, 

has been thought to encompass a diverse range of flora and 

fauna (Myers, 1990). According to a report submitted by the 

FSI, 41.5% of the geographical area of the Indian Himalayan 

range is forest covered, which is distributed across ten states, 

one of which is Uttarakhand. Rapid urbanization and a rise in 

tourism have led to a loss of forest cover, which affects changes 

in the climate, such as those related to temperature and rainfall 

(Mandal and Joshi, 2014). The presence of invasive plant 

species, for example, as well as man-made and natural factors 

have a detrimental effect on the ecosystem. As a result, our 

study has concentrated on the Doon Valley ecosystem's variety.  

Phenology is the study of the time of recurrent biological 

phases, the cause of their timing with respect to biotic and 

abiotic influences, and the inter-relationship between phases of 

the same and distinct species, according to Lieth, (1974). Three 

methods; in-situ observation, remote sensing monitoring, and 

model simulation can be used to identify vegetation phenology, 

according to earlier researches. With respect to the idea that 

everything in nature is distinct and has a different characteristic 

in emitting, reflecting, and absorbing electromagnetic 

radiations, remote sensing monitoring was used to track the 

phenology of the vegetation. Researchers employ these raw 

satellite records in a mathematical procedure to produce 

Vegetation Indices (Lambert et al., 2013). As plant canopy 

changes from early spring through the late season till these 

plants reach maturity, they also change their reflectance 

characteristics. The phenology of the plants has been 

investigated as a sign of how an ecosystem would adapt to 

climate change. The employment of satellite remote sensing 

techniques allows for the capture of changes in the greenness of 

the vegetation and is a useful indicator of the phenology of the 

vegetation. The influence of various environmental factors such 

as sunlight radiation, temperature, precipitation, etc. on 

phenological cycles results in variation in vegetation, which is 

sensitive to even small changes in climate conditions (Menzel et 

al., 2006). Changes in ecosystem composition, structure, and 

function also affect the exchange of water, heat, and CO2 

between soil, vegetation, and the atmosphere (Richardson and 

Rejmánek, 2011). To describe vegetation dynamics and land 

surface processes, vegetation phenology has therefore become 

an essential element (Wang et al., 2010). Because of how plants 

respond to a warming environment, where leaf emerging occurs 

earlier and leaf fall occurs later owing to milder winters, 

phenology monitoring is especially crucial (De Beurs and 

Henebry, 2010). Where these phenological investigations are 

carried out by observing how the ecosystem responds to 

changes in the environment and climate (Joshi et al., 2006; 

Melaas et al., 2013; Soudani et al., 2008; White et al., 2009). 

Now that satellite imagery data is available, it is feasible to 

make use of the potential for time series study of ecology. 

According to Lambert et al., (2013), vegetation indices (VIs) 

produced from multispectral data have been extensively utilised 
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for vegetation categorization, phenological monitoring, spotting 

ecological changes, and deriving forest biophysical and 

structural features.  

 

Furthermore, earlier research revealed mathematical 

correlations between precipitation and temperature data at 

coarse spatial resolutions and the NDVI (Ji and Peters, 2010; 

Nordberg and Evertson, 2005; Wang et al., 2010). MODIS-

derived NDVI data are commonly utilised to either build 

regional multiple regression analyses of topography-related 

vegetation phenology patterns or establish relationships with 

precipitation and temperature data (Gao et al., 2011; Hwang et 

al., 2011; Li et al., 2015). In conclusion, environmental factors 

and topographical variables on forest phenology may have both 

positive or negative implications on various ecosystems and 

geographical locations. The Temporal Normalised Phenology 

Index (TNPI), which was suggested as a better alternative for 

examining the temporal phenology cycle between two time 

stages of the maximum and lowest plant growth phase, was 

created to deal with this quantitative constraint of NDVI (Khare 

et al., 2017). Additionally, using time series Landsat-8 data, the 

sensitivity of varying NDVI to specific topography factors 

derived from remote sensing and land surface temperature was 

successfully tested using TNPI (Khare et al., 2017). 

 

Even though there have been several studies in this field, the 

effectiveness of remote sensing has not been proven to be 

sufficient to evaluate the impacts of environmental elements, 

such as topographic differences and LST variation, on the 

phenology of plants at high spatial resolutions, such as 10 m. 

An early examination revealed that relatively few studies had 

been conducted for the Western Himalaya region utilising data 

sets with coarser geographical resolution; as a result, this 

research region requires in-depth phenology-based analysis at 

finer spatial resolution. Therefore, the main objective of this 

study is to evaluate how remote sensing data are used to 

produce spatiotemporal phenological maps of this difficult 

terrain. The Normalised Difference Vegetation Index (NDVI) 

and Temporal Normalised Phenology Index (TNPI), taken 

together with elevation, surface temperature, slope, and aspect 

data, have been used to study the phenological behaviour and 

variations of different kinds of forests in Doon Valley. Sentinel-

2 data with a 10 m spatial resolution were used for local-scale 

research, while MODIS NDVI data with a 250 m spatial 

resolution were used to uncover large-scale phenological trends 

in the study of forest phenology. Google Earth Engine (GEE), 

which has potential applications at many spatial and temporal 

scales, functioned as the base for the framework employed in 

this study. It provides an environment where users may use an 

Integrated Development Environment (IDE) code editor to 

explore the satellite imagery that is currently accessible without 

downloading the whole set of imagery. In the foothills of the 

western Himalayas forest region of doon valley, several 

phenological phases and phenological metrics have been 

identified and investigated from December 2018 to May 2023. 

 

2. MATERIAL AND METHODS 

2.1 Study Area and Datasets 

The western Himalayan region of the Doon Valley in 

Uttarakhand (India), between latitudes 29° 55' and 30° 30' N 

and longitudes 77° 35' and 78° 24' E, was chosen as the research 

area for the phenological study. These areas are located at an 

altitude of around 300 to 900 meters above mean sea level 

(MSL). The study area includes the Doon valley's Beribara, 

Khanpur, Motichur, and Kans Rao forest ranges, among many 

others. Doon Valley typically has a wide, long shape and is 

enclosed by the Shivalik Hills; thus, it is surrounded by 

mountains on all sides. It features a variety of forest kinds, 

although Sal trees predominate. The region experiences 

temperatures ranging from 16°C to 36°C and between 5.2°C 

and 23.4°C during the winters, with an average annual rainfall 

of 2025mm with a peak quantity of precipitation occurring from 

June to September. The key factors influencing vegetation type 

are soil type, temperature, elevation, slope, aspect and rainfall. 

The research sites contain a variety of forest types, including 

scrub and degraded forests, North Indian tropical wet Sal 

Forest, North Indian tropical dry deciduous forest, riverine and 

forest dominated by Khair and Sissoo, and so on (Champion 

and Seth, 1968).  

 

Figure 1. Study area. 

 

Higher temporal and spatial resolutions are necessary for 

satellite-based vegetation phenology monitoring. Sentinel-2 data 

with a 10 m geographical resolution were used for local-scale 

research, while MODIS NDVI data with a 250 m spatial 

resolution were used to uncover large-scale phenological trends 

in the study of forest phenology. The Google Earth Engine 

(GEE) platform is used for MODIS and SENTINEL-2 datasets 

collection between December 2018 and May 2023. GEE has 

potential uses at several temporal and spatial resolutions. It 

provides a setting where users may use an Integrated 

Development Environment (IDE) code editor to examine the 

satellite imagery that is currently accessible without 

downloading the whole set of imagery (Sharma and Ghosh, 

2023). We obtained time-series data of the NASA LP DAAC's 

which is Google Earth Engine (GEE) platform-archived 250 m 

Terra MODIS Vegetation Indices (MOD13Q1, version 6.1) 

NDVI. We used GEE's Sentinel-2 Level-2A surface reflectance 

product to compute the NDVI. This resembled a processed 

dataset that the European Space Agency (ESA) released to be 

accessible on the GEE cloud platform. Landsat-8 Collection 2 

level-2 band 10 data from the United States Geological Survey 

(USGS) is used, and a scale factor of 0.000341802 + 149 is also 

used to convert temperature data from Kelvin and a deduction 

of 273.15 to change the unit in degree Celsius. to degrees 

Celsius. Global SRTM 90m Database for the DEM model 

generation from the CGIAR-CSI that is archived on the GEE 

platform, version 4 is selected, and which was orthorectified 

and preprocessed by the data provider. We extracted Slope and 

Aspect data using the DEM dataset for the study area. The Land 

Surface Temperature maps, DEM, Slope, and Aspect maps of 

the study area are developed using ArcGIS pro software. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1553-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1554



 

2.2 Statistics and Methodology 

2.2.1 NDVI and Time Series Curve Fitting: Although there 

are other vegetation indices available, the Normalised 

Difference Vegetation Index (NDVI) is one of the most often 

used ones (Ding et al., 2014; Sharma and Ghosh, 2022). NDVI 

value ranges between +1.0 and -1.0. An extremely low NDVI 

value, such as 0.1 or below, is typical with areas like bare rock, 

sand, or snow, whereas areas with sparse vegetation, such as 

shrubs and grasses, display intermediate NDVI values, such as 

0.2 to 0.5. High NDVI values (between 0.6 and 0.9) are 

associated with thick or dense vegetation, such as that found in 

temperate and tropical woods or on farmlands when crops are at 

their peak development stage. As shown below in the equation, 

the Normalised Difference Vegetation Index (NDVI) is 

calculated using the NIR and red bands.  

       

                 NDVI=((NIR-RED))/((NIR+RED))                     (1) 

 

where Red and NIR are the spectral reflectance values for 

MODIS Band 1 (620–670 nm) and Band 2 (841–871 nm), 

respectively. In addition to Vegetation Index data and the pixel 

reliability layer, which is required for quality assurance, 

MOD13Q1 is produced from atmospherically adjusted bi-

directional surface reflectance imagery (LP DAAC, 2015). 

SENTINEL-2 also has the necessary bands with NIR (Band 8) 

and Red (Band 4) sensors. 

 

Using MODIS and SENTINEL-2 datasets, we estimated NDVI 

mean composite values for the chosen area using the JavaScript 

code editor in the GEE platform from December 2018 to May 

2023. For the chosen region, we derived mean NDVI values 

time series curve. Time series MODIS NDVI and SENTINEL-2 

NDVI were fitted with an 8-order and 6-order polynomial 

function respectively. The Start of the Season (SOS) and End of 

the Season (EOS) of the phenological cycle are identified using 

these time series phenological curves. The investigation of the 

correlations between NDVI curves and observed pheno-phases 

is based on these curves. 

Here's an 8th-order polynomial equation: 

 

f(x) = a₈x⁸ + a₇x⁷ + a₆x⁶ + a₅x⁵ + a₄x⁴ + a₃x³ + a₂x² + a₁x + a₀   (2) 

 

And here's a 6th-order polynomial equation: 

 

        g(x) = b₆x⁶ + b₅x⁵ + b₄x⁴ + b₃x³ + b₂x² + b₁x + b₀             (3) 

 

The coefficients (a8, a7,..., a0) and (b6, b5,..., b0) in both 

equations stand in for the relevant coefficients for each term in 

the polynomial.  

 

R-Square and Adj. R-Square values for the MODIS NDVI 

derived polynomial fitting of the time series curve were 0.823 

and 0.792 respectively. Similarly, the results for R-Square and 

Adj. R-Square for the SENTINEL-2 NDVI derived polynomial 

fitting of the time series curve were 0.705 and 0.696, 

respectively. 

 

2.2.2 Concept of Temporal Normalized Phenology Index 

(TNPI): The shift between two phenological phases may be 

quantified using the Temporal Normalised Phenology Index 

(TNPI), a temporal index (Khare et al., 2017, 2021). It measures 

the growth between the beginning and peak of a plant's growth 

when applied to those two points of measurement. In contrast to 

other phenological indices, the TNPI only needs two-time steps 

to quantify change instead of the complete temporal sequence, 

which reduces the quantity of time series data that must be 

analysed. This is how the TNPI may be calculated: 

 

      TNPI=((NDVIMax-NDVIMin))/((NDVIMax+NDVIMin))       (4) 

 

where NDVIMin = Minimum NDVI value obtained at the start of 

leaf flush, NDVIMax= Maximum NDVI value obtained at the 

end of the leaf flush activities. TNPI value ranges between +1.0 

and -1. 

 

2.2.3 Methodology: The selected methodology's flow chart 

is shown in Figure 2. The approach involves the collection and 

preparation of satellite data as well as the multitemporal NDVI's 

derivation from two separate datasets that have different 

spatial resolutions. 

 

Figure 2. Flowchart of methodology. 

 

For both datasets, NDVI values and time series curves are 

extracted using the GEE platform, and time series curve fitting 

is performed using a polynomial function. Based on the five 

years of time series data, we retrieved phenology characteristics 

such as Start of the Season (SOS), End of the Season (EOS), 

NDVImax, and NDVI min. The difference between SOS and 

EOS was used to calculate the Length of the Growing Season 

(LOS) (Khare et al., 2019). Using the random point sampling 

tool in ArcGIS Pro, we randomly selected 500 sample points 

and then retrieved raster data values of MODIS-based TNPI and 
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SENTINEL-2-based TNPI, elevation, LST, Slope, and Aspect 

to model the relationship between TNPI trends in the research 

area with several environmental and topographical factors. 

 

3. RESULTS AND DISCUSSION 

3.1 NDVI-derived Phenology Time Series 

Figures 3 and 4 depict the actual NDVI time series curve using 

MODIS and SENTINEL-2 datasets, respectively. The NDVI 

derived from MODIS and SENTINEL-2 both followed a trend 

pattern, with a rapid increase followed by a decrease after a 

period of time. Even though the MODIS-derived time series 

trend demonstrates a smooth shift in the growth of NDVI 

values, but at the time of decrease, there is a tiny variation in the 

curvature of the curve with each phenology cycle. This 

fluctuation is seen during the phenological cycle's post-

monsoon and winter seasons. 

 
Figure 3. MODIS NDVI derived actual time series. 

 

The NDVI time series curve from Sentinel-2 reveals that while 

the trend in the phenology trend is nearly identical for the years 

2019, 2020, and 2021, there is a significant change in the 

amplitude of the curve for the year 2022. The cause of this drop 

in NDVI values is unclear, however it may be critically 

examined individually in further investigations. 

 
Figure 4. SENTINEL-2 NDVI derived actual time series. 

 

Further, a sudden increase in the phenological curve was seen 

from April to September because the forest types in the study 

area continues to grow new leaves during the leaf flush 

phenophase. Similarly, forest types in the research region with 

leaf fall activity from December to February, phenological 

curve rapidly decreased. In the phenological curve, the months 

of September to December correspond to the mature leaf 

duration and were associated with higher NDVI values. 

 

3.2 Curve Fitting of Time Series and Phenological 

Parameters 

All the NDVI mean values are utilised for the development of 

the NDVI time series trend curve from December 2018 to May 

2023, and a polynomial fitting of the time series datasets is 

employed. Figures 5 and 6 demonstrate the polynomial fitting 

of time series from the study region produced from MODIS and 

SENTINEL-2 NDVI data, and interpolation of NDVI values are 

recovered throughout the year using this data. According to the 

MODIS-derived phenology trend, the minimum NDVI value 

was 0.473 at Day of Year (DOY) 130.49 and the maximum 

NDVI value was 0.706 at DOY 256.11. In a similar manner, 

Start of the Season (SOS) April and May, Peak of the Season 

(POS) was August-September and End of the Season (EOS) 

was comprehended between March-April. According to the 

SENTINEL-2 derived phenology trend, the minimum NDVI 

value was 0.367 at DOY 117.5 and maximum NDVI value was 

0.677 at DOY 293.67. Similarly, SOS occurred in April and 

May, POS appeared in September and October, and EOS was 

identified in March and April. It is obvious that the peak of the 

season has been shifted to the month of October. This shift may 

be the result of a lack of dataset during the months of July and 

August, which is a consequence of cloud restrictions. 

 
Figure 5. MODIS NDVI derived polynomial fitting of time 

series. 

 
Figure 6. SENTINEL-2 NDVI derived polynomial fitting of 

time series. 
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The overall findings can be supported by prior research on the 

same types of forests and geographical areas, which has 

demonstrated that the period of leaf-flushing activity is between 

March and May, and that of leaf-falling activity is between 

January and April, according to most available literature on the 

subject of this research (Boojh and Ramakrishnan, 1983; 

Jeganathan et al., 2010; Kikim and Yadava, 2001; Upadhyay et 

al., 2013). 

 

3.3 TNPI and Environmental Factors 

Figure 7 shows the TNPI, ΔLST, DEM, Slope and Aspect maps 

of the study site. The suggested TNPI, which uses the 

normalised ratio of the maximum and minimum NDVI values, 

was then generated to assess the change dynamics in the NDVI 

between two time stages of the time series curve using Equation 

4. The slope and aspect maps of the region of interest were 

extracted using DEM data. Slope values lies between 0 to 

70.556 and TNPI values lies between -1 to +1. The research 

area's maximum and minimum temperature variations day of 

the year were used to create Land Surface Temperature (LST) 

maps using LANDSAT-8 data at 30m spatial resolution. The 

change in LST (ΔLST) was computed substracting the 

maximum and minimum temperature data during the one season 

phenology. Elevation map values lies between 290 to 915 

meters and ΔLST lies between 15.31 to 32.21 degree celcius. 

 
Figure 7. TNPI and Environmental Variables maps. 

 

On TNPI maps of both the datasets, lower TNPI values 

represent less variety in vegetation greenness, whereas higher 

TNPI values represent more variation. Rapid phenological 

variations were also noted at low elevations, but due to the 

remoteness at higher elevations, less variability was seen at mid 

to high elevations. Lower-elevation locations often have a more 

sensitive distribution of the forest cover to climatic factors like 

rainfall and LST during both the increase and decrease 

vegetation greenness in the phenology. Therefore, it is evident 

from the TNPI maps of both datasets that the top half of the 

ridge has less variance and, consequently, greater values of 

TNPI than the lower region of the ridge due to higher altitude 

and less variation in LST. On the other hand, it is evident that 

the ΔLST map's surface temperature data variance was smaller 

in the upper section of the ridge line compared to the lower part 

of the ridge line. 

 

3.4 Relationship between TNPI and Environmental 

Variables 

In order to model the relationship between TNPI trends in the 

study area and various environmental and topographical factors, 

we randomly selected 500 sample points using the random point 

sampling tool in ArcGIS Pro and then retrieved raster data 

values of MODIS-based TNPI and SENTINEL-2-based TNPI, 

elevation, ΔLST, Slope, and Aspect for 500 locations as shown 

in Figure 8 and 9. According to MODIS derived TNPI, the 

correlation between TNPI and ΔLST, Slope, and Aspect is 

positive, indicating that the variable values are moving in the 

same direction, Hence, the places with the higher ΔLST, Slope, 

and Aspect also had the higher variation in vegetation greenness 

i.e. higher values of TNPI. However, the TNPI calculated from 

MODIS shows a negative association with Elevation, 

suggesting that the variable values are moving in the opposite 

direction. As such, the areas with more elevation observed less 

variation in vegetation greenness, or lower TNPI values. 

Variable maps (Figure 7) were also demonstrated that 

vegetation greenness changes less rapidly at higher elevations. 

 
Figure 8. Univariate statistics for 500 random points of raster 

data highlighting the estimated relationship of MODIS derived 

TNPI with environmental factors. 

 

 
Figure 9. Univariate statistics for 500 random points of raster 

data highlighting the estimated relationship of SENTINEL-2 

derived TNPI with environmental factors. 
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Similarly, the correlation between TNPI and ΔLST, Slope, and 

Aspect is positive, indicating that the variable values are 

moving in the same direction as the derived TNPI from 

SENTINEL-2. As a result, the locations with higher ΔLST, 

Slope, and Aspect also had higher variations in vegetation 

greenness, i.e. higher values of TNPI. However, the TNPI 

derived from SENTINEL-2 does not clearly demonstrate a 

connection with Elevation, indicating that there was no 

discernible direction of movement for the variable values. 

Additionally, it was found that the TNPI data from MODIS had 

a better linear function fit than the TNPI data from SENTINEL-

2. 

 

4. CONCLUSION 

According to the findings and responses of this work, MODIS 

and Sentinel-2 TNPI data provide new opportunities for trend 

analysis of the productivity and health of forest regions at two 

different spatial scales. The study found that topographic and 

environmental factors such elevation, surface temperature, 

slope, and aspect had a significant impact on phenological 

behaviours and phenophases such as SOS, POS and EOS. 

Overall conclusions showed that the TNPI had a positive 

relationship with changes in LST, slope, and aspect in the study 

region and a negative correlation with elevation data.  

Phenology changed significantly at low elevations, but because 

higher elevations are more isolated, there was less volatility at 

those altitudes. Visual examination of maps and numerical data 

makes it abundantly obvious that there were certain similarities 

and variations between the phenology results from MODIS and 

Sentinel-2 datasets. These variations may be primarily caused 

by the platform and sensor combinations are different in orbital, 

spatial, and spectral configurations, this also depends on the 

availability of datasets i.e., same date of imagery in both 

satellites. The main drawbacks of the work were the inability to 

conduct a thorough ground assessment as it would require 

properly resourced techniques. In the above study of phenology, 

high temporal resolution datasets are needed, which was not 

always possible due to clouds, haze, moisture in the atmosphere, 

or other atmospheric flaws that cause the occurrence of 

anomalous or outlying phenological values in some of the 

imagery. 

The findings showed that two-time stages (the highest and 

lowest NDVI values) in the phenological cycle could potentially 

be used to analyse the temporal variations in phenology, 

negating the need for an extensive collection of data for time-

series evaluation. TNPI has been successfully evaluated for this 

forest region using NDVI from open-source MODIS and 

Sentinel-2 datasets at the two points of peak and lowest growth 

in the vegetation phenology phase. As consequently, future 

study on forests of similar kind may utilise our findings as a 

basis for further investigation. Sentinal-2 and other higher 

resolution datasets can be used in future studies to do more 

precise time series analysis and can be modelled with more 

climate change variables. The effectiveness of TNPI can also be 

tested for various other forest areas or farmlands where 

phenology-related studies are able to be carried out using 

various spatial and temporal resolution datasets. Furthermore, 

this type of remote sensing-based studies can be conducted on 

large areas with a mixture of plants and trees that could provide 

a diversified result and better understandings. 
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