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ABSTRACT: 

 

Flooding events have been frequently observed throughout the world and may have devastating effects on the environment. Mapping 

of flood extent is important for taking the necessary mitigation measures for future. The freely available Sentinel-1 radar and 

Sentinel-2 optical images allow analysis of flood extent with adequate spatial resolution. However, temporal resolution may be 

insufficient, and currently only events with the suitable satellite orbital passes can be analyzed with Sentinel sensors. In addition, 

clouds are often in scene during and shortly after a flood event, which hinders the use of optical imagery. Here, we investigated the 

complementary use of Sentinel-1 and Sentinel-2 data with a land cover classification approach based on random forest over a part of 

northern Türkiye, which frequently confronts floods and landslides. We expanded the feature set with principal components (PC) of 

gray-level co-occurrence matrix (GLCM) variables obtained from Sentinel-1 polarization and Sentinel-2 spectral bands, and also the 

normalized difference vegetation index (NDVI) and modified normalized difference water index (MNDWI) images produced from 

the optical data. The training and test data were manually extracted from pre- and post-event optical data. The findings demonstrated 

that using GLCM PCs significantly increased the overall accuracy (OA = 99% with GLCM and OA = 93% without GLCM) of the 

classification. Furthermore, the flooded vegetation differs in textural features when compared with the other inundated surfaces, and 

also permanent water. Therefore, by allowing the separation of flooded vegetation and the other flooded areas, the GLCM data 

considerably increased the map quality. 
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1. INTRODUCTION 

The occurrence of floods is on the rise due to urbanization and 

population growth, leading to significant negative consequences 

for society, economy, and ecosystems worldwide (EMDAT, 

2022). In order to mitigate these impacts, to effectively plan 

disaster management, and to administrate the emergency 

response and insurance processes, it is crucial to generate 

reliable spatial and temporal information regarding the extent of 

flooding. Several studies have demonstrated the effectiveness of 

widely utilized Earth Observation (EO) datasets and diverse 

mapping approaches in accurately identifying smooth open 

water bodies and flooded areas (Tavus et al., 2022). 

 

In most flooding hazard events in rural areas, inundated 

vegetation accounts for more than three-quarters of the total 

flooded area. In the literature, approaches utilizing 

backscattering intensity from different polarizations have been 

used to determine the extent of inundated vegetation (Cazals et 

al., 2016). In backscatter-based approaches, the utilization of 

polarimetric synthetic aperture radar (PolSAR) and 

interferometric SAR (InSAR) coherence were also preferred for 

reducing of the confusion between inundated vegetation and 

urban areas, as well as the distinction between shadow areas and 

open water (Gallant et al., 2014).  

 

In recent years, studies aiming to determine the flooded 

vegetation have focused on utilizing the complementary 

potential of SAR and optical data together in the literature. The 

studies using only Sentinel-2 data (Bhatnagar et al., 2018) and 

both Sentinel-1&2 data complementarily (Chatziantoniou et al., 

2017) have demonstrated the advantages of both sensors for 

flood mapping. In addition, many studies investigated the 

potential of multi-temporal Sentinel-1 (Huang et al., 2017; 

Mleczko and Mróz, 2018; Tsyganskaya et al., 2018) and 

Sentinel-2 datasets for this purpose.  

 

A recent study by Tavus et al. (2022) tested various data 

availability scenarios with Sentinel-1 & 2 data taken at pre- and 

post-event conditions. The main rationale behind was that 

Sentinel-2 data is usually unavailable due to the cloud cover, 

and they evaluated the mapping performances with machine 

learning classification with and without Sentinel-2 images in 

addition to Sentinel-1 data. The proposed methodology 

involved an in-depth analysis on the contribution of textural 

features for classification accuracy. It was stated that the use of 

pre-event Sentinel-2 data improved the Sentine1 results in 

scenarios where post-event optical data cannot be used. In 

addition, textural features obtained from gray-level co-

occurrence matrix (GLCM) from both Sentinel-1 and Sentinel-2 

data were utilized in the processing. In this context, a multi-

temporal feature space was created by generating pre- and post-

event GLCM textures and various spectral indices and modelled 

with the random forest (RF) classifier. As a result of the 

validation w.r.t. 3 m spatial resolution PlanetScope imagery, it 

was observed that the GLCM features were highly effective in 

determining the flooded areas, inundated vegetation and urban 

structures. 

 

In this study, the method proposed by Tavus et al. (2022) was 

applied to an area with dense forests and rugged topography in 

the northern part of Türkiye, and the performance of the method 
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was assessed. When compared with Tavus et al. (2022), the 

main difference here is the topography and land cover, as the 

former study was carried out in a relatively flat region and 

mapped the flood caused by a dam break in Sardoba, 

Uzbekistan. In this study, an in-depth analysis of the 

contribution of textural features to the classification accuracy 

for the detection of floods occurred in Ordu and Samsun 

Provinces of Türkiye on 8 August 2018 is presented and 

discussed accordingly. 

 

2. MATERIALS AND METHODS 

Under the following sub-headings, the study area, the data and 

the methodology are described in detail. 

 

2.1 Study Area  

The study area investigated here is located in Fatsa and Unye 

districts of Ordu Province, and Terme and Carsamba districts of 

Samsun Province, Türkiye. Both Ordu and Samsun Provinces 

are located in the northern part of Türkiye, in the Black Sea 

Region. The study area covers approximately 3037 km2. Figure 

1 illustrates the sub-areas (involving town centers) used for the 

analysis together with land use land cover (LU/LC) map and e 

EU-DEM v1.1 (2023). The study area comprises mainly tree 

and crop cover according to the ESA WorldCover product 

(ESA-WorldCover, 2020). 

 

 
 

Figure 1. The study site location (a), the LULC map obtained 

from the ESA WorldCover (b) and (c) EU-DEM v1.1 (25 m). 

 

Ordu Province has approximately 100 km shoreline, mostly 

with sand. The region exhibits predominantly wet climate, 

which is typical of the Black Sea Region. Precipitation is 

observed throughout the year. In addition, Ordu has 36 rivers 

and streams with different degrees (Demir et al., 2016). 

According to information and statistics gathered between 1950 

and 2011 in the province, landslides are the most frequently 

observed natural hazard (80%), followed by floods (9%) and 

rockfall (8%) (Demir et al., 2016). 

 

On August 8, 2018 in the late afternoon, flooding occurred in 

the area and damaged houses, agricultural areas, and 

infrastructure. There have been numerous landslides and a total 

of 8 bridges that have been destroyed. In Fatsa and Unye 

Towns, about 80 mm of precipitation fell per square meter and 

caused flooding of streams and rivers. The flooding caused the 

Cevizdere Bridge in Unye Town to collapse, and the Black Sea 

Coastal Highway was shut down to traffic (TRT News, 2018). 

Further details about the event can be found in Tavus et al. 

(2019, 2020) and Kocaman et al. (2020). 

 

2.2 Study Datasets 

In this study, we utilized Sentinel-1 and Sentinel-2 datasets 

provided by the ESA Copernicus Programme (Copernicus, 

2020). Table 1 summarizes the data characteristics such as 

ground conditions, the time of the data acquisition, usage 

purpose. The selected Sentinel-1 and Sentinel-2 data accurately 

represented the pre-and post-flood conditions in terms of time 

and resolution.  

 

Table 1. Basic specifications of the datasets used in the study. 

 Acquisiton 

Date 
Condition Usage 

Sentinel-1 

18/05/2018 (DS1) 

18/05/2018 (DS2) 
Pre-event Feature 

extraction 

& 

Classification 

10/08/2018 (DS3) 

10/08/2018 (DS4) 
Post-event 

Sentinel-2 

16/05/2018 (DS5) Pre-event 

09/08/2018 (DS6) 

09/08/2018 (DS7) 
Post-event 

Train data 

delineation 

DS1: 

S1B_IW_GRDH_1SDV_20180518T034024_20180518T034049_010970_014159_08A7 

DS2: 

S1B_IW_GRDH_1SDV_20180518T034049_20180518T034114_010970_014159_B477 

DS3: S1B_IW_GRDH_1SDV_20180810T034029_20180810T034054_012195_016770_7612 

DS4: 

S1B_IW_GRDH_1SDV_20180810T034054_20180810T034119_012195_016770_841C 

DS5: S2A_MSIL2A_20180516T081611_N0207_R121_T37TCF_20180516T102815 

DS6: S2B_MSIL2A_20180809T081559_N0208_R121_T37TCF_20180809T112729 

DS7: S2B_MSIL2A_20180809T081559_N0208_R121_T37TCF_20180809T132329 

 

The post-flood Sentinel-1 (S1) and Sentinel-2 (S2) data have 

been acquired on August 09 and May 10, 2018, respectively 

(DS3, DS4, DS6, DS7). The first cloud-free data before the 

flood date was selected for the pre-event Sentinel-2 (DS5). For 

pre-event Sentinel-1, DS1 and DS2 were selected, which 

correspond to the date of the DS5 data. 

 

2.3 Methodology 

The methodology of this study consists of three basic stages as 

(i) data pre-processing and feature extraction, (ii) feature 

selection, and (iii) modelling, mapping and accuracy 

assessment, as depicted in Figure 2.  In the first stage of data 

pre-processing and feature extraction, several methods such as 

noise filter and removal of systematic errors caused by terrain 

were applied to the Sentinel-1 data. We used blue (B2), green 
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(B3), red (B4), NIR (B8) and SWIR (B11) of pre- and post-

event Sentinel-2 data. The lower resolution band of Sentinel-2 

(B11) was upsampled as well. Afterwards, cloud and cloud 

shadow pixels mask out the data by using masks supply from 

Sentinel-2.  

 

Shadow and layover effects in Sentinel-1 radar data were also 

removed at this stage. As the last pre-processing step, mosaics 

were created from the DS1 - DS2, DS3 - DS4, and DS6 -DS7 

datasets covering the study area. 

 

 
 

Figure 2. Overall methodology of the study. 

 

For the feature extraction, a total of 10 GLCM texture features 

introduced by Haralick et al. (1973) were applied to each of the 

pre- and post-event Sentinel-1 and pre-event Sentinel-2 band 

data. The variables include dissimilarity, homogeneity, contrast, 

angular second moment (ASM), energy, maximum probability, 

entropy, mean, variation and standard deviation. Thus, 50 

GLCM texture variables were produced from pre-event 

Sentinel-2 data and 40 GLCM texture features were produced 

from pre- and post-event Sentinel-1 data.  

 

In addition, the normalized difference vegetation index (NDVI) 

and modified normalized difference water index (MNDWI) 

were produced from the pre-event Sentinel-2 data. The pre-

event NDVI and MNDWI images, and their histograms are 

presented in Figure 3. Both index values were in the range of (-

1:1). As can be seen from the NDVI given in Figure 3, the study 

area covers dense agricultural and forest areas. Likewise, many 

streams with different characteristics between forests are seen in 

MNDWI. In the flood disaster that occurred, the towns in the 

forest areas were flooded because of the overflow of these 

streams. 

 

 
 

Figure 3. (a) Pre-event NDVI and (b) pre-event MNDWI 

indices; (c) pre-event NDVI and (d) pre-event MNDWI 

histograms. 

 

In the feature selection stage, the Principle Component Analysis 

(PCA) was applied to the GLCM texture features in order to 

reduce the dimensionality as there were a total of 90 of them. 

The PCA was separately applied to GLCM texture features 

produced from Sentinel-1 and Sentinel-2 and 3 principle 

components (PCs) were produced from each. As a result of the 

PCA, a total of 6 GLCM principle components (GLCM PCs) 

obtained from the analysis were used as additional information 

to the original pre- and post-event S1 and pre-event S2 bands. 

 

In order to assess the contribution of the GLCM feature 

components (GLCM PCs) to the prediction of classes, original 

S1 and S2 data, NDVI, MNDWI and produced GLCM PCs 

were stacked with different combinations (Table 2). For this 

purpose, while the bands in Stack 1 were pre-event S2, NDVI 

and MNDWI, pre- and post-event S1, Stack 2 was obtained by 

adding S1 GLCM PCs and S2 GLCM PCs to Stack 1. In 

addition, in order to separately analyse the effect of GLCM PCs 

produced from Sentinel-1 and Sentinel-2 on the prediction 

results, Stacks 3 and 4, which contain S1 GLCM PCs and S2 

GLCM PCs components, respectively, were created (Table 2). 

 

Table 2. Data Stack and their components. 

 Stack1 Stack2 Stack3 Stack4 

Pre- S2 ✓ ✓ ✓ ✓ 

Pre- S2 NDVI ✓ ✓ ✓ ✓ 

Pre- S2 MNDWI ✓ ✓ ✓ ✓ 

Pre- S1 ✓ ✓ ✓ ✓ 

Post- S1 ✓ ✓ ✓ ✓ 

S1 GLCM PCs  ✓ ✓  

S2 GLCM PCs  ✓  ✓ 

 

In the third stage, the RF method proposed by Breiman (2001), 

which is based on decision trees, was used for learning from 

data formed in the previous stage. For this purpose, a total of 

69,544 training samples manually delineated from pre- and 
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post-event Sentinel-2 were used with a tree size of 300 and 3-

fold cross-validation. The RF parameters were previously tested 

by Tavus et al. (2021) and found suitable. Previous studies 

carried out by Tavus et al. (2018, 2020, 2022) have shown that 

instead of applying a binary classification approach for flooded 

areas, applying a holistic LU/LC classification increases the 

accuracy and reliability of flood extent maps. Thus, the six 

classes namely flooded vegetation (FV), flooded area (FL), 

permanent water (PW), urban area (Ur), crop (CR), and forest 

(FR), were identified from the pre- and post-event Sentinel-2 

images.  

 

In Tavus et al. (2022), the effect of post-event S2 data on the 

prediction results was analyzed and it was suggested to use pre-

event S2 in cases even when post-event S2 cannot be used. 

Because the post-event S2 data have a high amount of cloud 

here, it was used only for the delineation of FL and FV training 

samples and was not included in other processes to obtain 

ground-truth accurately. The results of the classification were 

assessed in terms of overall accuracy for all classes. 

 

3. RESULTS AND DISCUSSIONS 

Figure 4 (a and b) shows the classification results from the 

Stack 1 and Stack 2 features and their detailed views of sub-

areas. The maps include the classes of flooded vegetation (FV), 

flooded area (FL), permanent water (PW), urban area (Ur), crop 

(CR), and forest (FR). The overall accuracies (OA) achieved 

from the Stacks 1, 2, 3 and 4 were 93% (without GLCM), 99% 

(with S1&S2 GLCM), 97% (with S1 GLCM) and 96% (with S2 

GLCM), respectively. The OA values show that the integration 

of the Sentinel-1 and Sentinel-2 feature sets provided the best 

prediction performance for the classification of all classes. No 

significant change was observed in the PW class within all 

classes based on the visual inspection. 

 

 

 

 
 

Figure 4. The RF classification results obtained from (a) Stack 1 (without GLCM) and (b) Stack 2 (with S1&S2 GLCM).  

 

 

As a result of the visual evaluation of the flood map given in 

Figure 4 (a), it was seen that all classes especially the flood and 

agricultural areas exhibit a noisy pattern. It was also observed 

that the FV class was labelled as FL according to the Carşamba 

and Terme sub-areas given in Figure 4 (a) and (b). On the other 

hand, the Unye and Terme sub-areas were inspected in the 

detailed views, and it was observed that the floods in the urban 

areas were better determined with the Stack 1.  
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The use of texture information has led to the fact that flood 

pixels occurring in urban areas were largely labelled as urban 

pixels. Also, while Stack 2 (with S1&S2 GLCM) gives better 

results in detecting the urban pixels (Unve and Terme) in a 

rather open area, Stack 1 (without GLCM) is more effective in 

detecting the urban pixels (Ikizce and Caybaşı) in the dense 

forest area.  

 

Figure 5 (c and d) shows the classification results from the 

Stack 3 and Stack 4 features and their detailed views of sub-

areas. Stack 3 contains texture components produced from 

Sentinel-1 (S1 GLCM PCs), while Stack 4 includes texture 

components produced from Sentinel-2 (S2 GLCM PCs). Stack 

3 is more sufficient in labelling the flood pixels that occur 

caused by the overflow of existing streams in forest areas (see 

Figure 5c). When the FV class in the Carşamba and Terme sub-

areas are compared, it was seen that the texture components 

produced in Sentinel-1 (S1 GLCM PCs) contribute to the 

detection of FV pixels. When Stack 3 and Stack 4 are compared 

in terms of floods in urban areas, it can be said that Stack 3 is 

more effective based on visual inspection. On the other hand, 

using only Sentinel-1 data (Stack 3) resulted in labelling most 

crop pixels and forests. 

 

 

 

 
 

Figure 5. The RF classification results obtained from (c) Stack 3 and  (d) Stack 4. 

  

 

4. CONCLUSIONS AND FUTURE WORK 

In the present study, the contribution of GLCM textural features 

for flood extent mapping including flooded vegetation were 

evaluated with the RF classifier applied to the learning set 

obtained from various Sentinel-1 polarization and Sentinel-2 

spectral bands. The study area is located in Ordu and Samsun 

Provinces of Türkiye, which are frequently affected by flash 

flooding, and comprises mainly cropland and dense forest area. 

In the study area, partially cloud-free Sentinel-2 images were 

available representing the post-event status and the topography 

is rugged. Four sets of learning variables, one containing 

GLCM textural information in the form of principal components 

and two separately containing GLCM textural information 

produced from Sentinel-1 and Sentinel-2, and the last one 

without GLCM textures were produced. A LULC classification 

for a total of six classes was followed here. The results were 
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assessed using test data manually delineated from pre-and post-

Sentinel-2 datasets. 

 

The results showed that the use of GLCM PCs greatly 

contributed to increase the overall classification accuracy (OA= 

99% with GLCM and OA=93% without GLCM). It is evident 

that the inundated vegetation shows a different scattering 

mechanism in radar data compared to other classes. This 

particular finding highlights the difference in texture properties 

of the inundated vegetation compared to the floods, water, or 

the other agricultural areas in the region. Thus, GLCM data 

significantly contributes to increasing the classification 

accuracy by preventing the mixture between the FV and FL 

classes specifically. 

 

As future work, it is planned to produce accuracy metrics by 

comparing the classification results with external reference data 

such as satellite imagery with higher resolution. In addition, as a 

result of visual inspections, it was clear that the textural features 

produced from Sentinel-1 were effective in the analysis of 

floods in urban and dense forest areas, which require further in-

depth analysis. 

 

 

ACKNOWLEDGEMENTS 

 

This study is part of the Ph.D. thesis research of Beste Tavus. 

 

 

REFERENCES 

Bhatnagar, S., Ghosh, B., Regan, S., Naughton, O., Johnston, 

P., Gill, L. 2018. Monitoring environmental supporting 

conditions of a raised bog using remote sensing techniques. 

Proc. IAHS 380, 9–15. https://doi.org/10.5194/piahs-380-9-

2018. 

 

Breiman, L., 2001. Random forests. Machine Learning, 45(1), 

5-32. 

 

Cazals, C., Rapinel, S., Frison, P.L., Bonis, A., Mercier, G., 

Mallet, C., Corgne, S., Rudant, J.-P. 2016. Mapping and 

Characterization of Hydrological Dynamics in a Coastal Marsh 

Using High Temporal Resolution Sentinel-1A Images. Remote 

Sensing, 8, 570. https://doi.org/10.3390/rs8070570  

 

Chatziantoniou, A., Petropoulos, G.P., Psomiadis, E. 2017. Co-

Orbital Sentinel 1 and 2 for LULC mapping with emphasis on 

wetlands in a Mediterranean setting based on machine learning. 

Remote Sensing. 9, 1259. https://doi.org/10.3390/rs9121259. 

 

Demir, A., Ilgen, H.G., Isik, A.,2016. Ordu İlinde, 04-

06/07/2016 Tarihleri Arasinda Meydana Gelen Sel-Taşkin-Su 

Baskini ve Heyelan Olaylarinin Genel Değerlendirmesi, 

Presentation at 4. Ulusal Taşkın Sempozyumu, 21-24 

November, Rize, Turkey. 

 

EU-DEM v1.1, 2023. https://land.copernicus.eu/imagery-in-

situ/eu-dem/eu-dem-v1.1 (10 June 2023). 

 

Gallant, A., Kaya, S., White, L., Brisco, B., Roth, M., Sadinski, 

W., Rover, J. 2014. Detecting Emergence, Growth, and 

Senescence of Wetland Vegetation with Polarimetric Synthetic 

Aperture Radar (SAR) Data. Water, 6, 694–722. 

https://doi.org/10.3390/w6030694 

Haralick, R.M., Shanmugam, K., Dinstein, I. 1973. Textural 

features for image classification. IEEE Transactions on systems, 

man, and cybernetics. 6, 610–621. 

https://doi.org/10.1109/TSMC.1973.4309314  

 

Huang, W., Devries, B., Huang, C., Jones, J., Lang, M., Creed, 

I. 2017. Automated extraction of inland surface water extent 

from sentinel-1 data. International Geoscience and Remote 

Sensing Symposium (IGARSS) 2259–2262. 

https://doi.org/10.1109/ IGARSS.2017.8127439. 

 

Kocaman, S., Tavus, B., Nefeslioglu, H. A., Karakas, G., & 

Gokceoglu, C., 2020. Evaluation of floods and landslides 

triggered by a meteorological catastrophe (Ordu, Turkey, 

August 2018) using optical and radar data. Geofluids, 2020, 1-

18.  

 

Mleczko, M., Mróz, M. 2018. Wetland mapping using SAR 

data from the Sentinel-1A and TanDEM-X missions: a 

comparative study in the Biebrza Floodplain (Poland). Remote 

Sensing. 10, 78. https://doi.org/10.3390/rs10010078 

 

Tavus, B., Kocaman, S., Gokceoglu, C., Nefeslioglu, H.A. 

2018. Considerations on the Use of Sentinel-1 Data in Flood 

Mapping in Urban Areas: Ankara (Turkey) 2018 Floods. ISPRS 

Comm. V Symposium, Int. Arch. Photogramm. Remote Sens. 

Spatial Inf. Sci., 42(5), 575-581. https://doi.org/10.5194/isprs-

archives-XLII-5-575-2018. 

 

Tavus, B., Kocaman, S., Nefeslioğlu, H., Gökçeoğlu, C. 2019. 

Flood Mapping Using Sentinel-1 SAR Data: A Case Study of 

Ordu 8 August 2018 Flood. International Journal of 

Environment and Geoinformatics, 6(3), 333–337, 2019. 

https://doi.org/10.30897/ijegeo.666212 

 

Tavus, B., Kocaman, S., Nefeslioglu, H.A., Gokceoglu, C. 

2020. A Fusion Approach for Flood Mapping Using Sentinel-1 

and Sentinel-2 Datasets. ISPRS Virtual Congress 2020. 

https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-641-2020 

 

Tavus, B., Kocaman, S., Gokceoglu, C. 2022. Flood damage 

assessment with Sentinel-1 and Sentinel-2 data after Sardoba 

dam break with GLCM features and Random Forest method. 

Science of the Total Environment, 151585. 

doi.org/10.1016/j.scitotenv.2021.151585 

 

The International Disaster-Emergency Events Database 

(EMDAT). Disasters Year in Review 2022; Available online: 

https://www.emdat.be/publications (accessed on 12 April 2022). 

Tsyganskaya, V., Martinis, S., Marzahn, P., Ludwig, R. 2018. 

Detection of temporary flooded vegetation using Sentinel-1 

time series data. Remote Sensing. 10, 1286. https:// 

doi.org/10.3390/rs10081286. 

 

T. R. T. News, “Ordu’da Sel Felaketi. Online news portal of 

Turkish radio television agency on 8 august 2018,” 2018, May 

2023, https://www.trthaber.com/haber/turkiye/ordudasel-

felaketi-379211.html. 

 

Tsyganskaya, V., Martinis, S., Marzahn, P., Ludwig, R. 2018. 

Detection of temporary flooded vegetation using Sentinel-1 

time series data. Remote Sensing. 10, 1286. https:// 

doi.org/10.3390/rs10081286 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1575-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1580

https://doi.org/10.5194/piahs-380-9-2018
https://doi.org/10.5194/piahs-380-9-2018
https://doi.org/10.3390/rs9121259
https://doi.org/10.3390/w6030694
https://doi.org/10.3390/rs10010078



