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ABSTRACT: 

This study presents an efficient algorithm for solving the affine trifocal tensor problem in  high-resolution satellite imagery. Because 

the imaging mode of high-resolution satellites is usually a line-center projection and the field of view is small, it can be 

approximated as an affine camera for orientation. However, the nature of high-resolution satellite trifocal tensors has not been 

effectively studied or discussed. To address the shortcomings of the current trifocal tensor direct linear algorithm, this study proposes 

a minimally parameterized trifocal calculation method that can stably calculate the affine trifocal tensors of high-resolution satellites. 

Efficacy was demonstrated using ZY3-02 and Pleiades-Neo data.  

* Corresponding author 

1. INTRODUCTION

High-resolution satellite images (HRSIs) are important data 

sources for geographic information systems. Compared to frame 

images, HRSIs generally have a long focal length and small 

field of view (FoV); the camera is operated on a satellite 

platform and exhibits a stable trajectory. Push-broom cameras 

are major payloads for HRSIs, resulting in a linear central 

projection. In photogrammetry, a rigorous geometric imaging 

model is typically used to describe the satellite imaging process. 

However, the rigorous geometric models differ for different 

satellites. Therefore, general geometric models, such as rational 

functions and affine models, were developed for image 

orientation.  

The affine model describes a parallel projection between two-

dimensional images and three-dimensional (3D) object space. 

Owing to the significantly small FoV, the affine model was 

successfully used for image orientation and error analysis of the 

HRSIs. The epipolar geometry of HRSIs was studied by Ono. 

However, the geometric relationship of the three satellite 

images was not sufficiently focused on; the “triple stereo” 

images were acquired by three-linear cameras and agile 

satellites.  

Trifocal tensors are well-studied objects in computer vision. 

The role of the trifocal tensor in the three views is similar to that 

of the fundamental matrix in the two views, and it includes all 

the geometric relationships among the three views that do not 

depend on the scene structure. Thus, the trifocal tensor provides 

a tool for determining the relative orientation of the three 

images without requiring approximations. Calculating the 

trifocal tensor of a three-view image is crucial in exploring the 

geometric relationship between the three-view images and 

further to establish spatial constraints between them. Currently, 

the research on trifocal tensors in the field of computer vision 

primarily focuses on perspective cameras. The appearance of 

the trifocal tensor can be traced back to Spetsakis, in which the 

camera was calibrated, and the trifocal tensor was used to 

recover the scene structure through straight lines. Hartley later 

noted that a trifocal tensor also works when a camera is not 

calibrated. Shashua first mentioned that the corresponding three 

points with the same name on the three images satisfied a 

certain algebraic relationship. Hartley proved that the trilinear 

relationship coefficient obtained by Shashua is consistent with 

the elements of a trifocal tensor, which can be calculated from 

points and lines with the same name. The true tensor 

representation of the trifocal tensor is given by Triggs: These 

scholars were committed to the research on robust algorithms 

and applications with the perspective of three-view tensors. The 

affine trifocal tensor was first defined as Torr. In the simple 

case of an affine camera, the necessary and sufficient 

constraints on the trifocal tensor are provided along with a 

simple geometric interpretation. However, the affine trifocal 

tensor has only been discussed as an approximation of the 

perspective camera-trifocal tensor in the field of computer 

vision and has not been further studied or discussed, and the 

corresponding affine trifocal relationship has not yet been fully 

revealed.  

One existing problem is that the affine camera itself is a locally 

approximated model. For remote sensing images that are used 

for large-scale maps and require high precision, an 

approximation method using an affine camera model can meet 

these requirements. Further, the affine trifocal tensor of satellite 

images has not been fully discussed and analyzed, and problems 

remain in using affine cameras to study the solution of satellite 

image trifocal tensors.  

The remainder of this study is organized as follows: Section 2 

proposes a derivation method for the affine trifocal tensor and a 

verification method for solution-thinking accuracy. Section 3 

introduces the three algorithms for affine trifocal tensors. 

Section 4 presents experiments using data from two different 

satellites to verify the accuracy of the algorithm. Finally, 

Section 5 concludes this study. 

2. AFFINE TRIFOCAL TENSOR ESTIMATION FOR

SATELLITE IMAGERY 
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The key idea in deriving an affine trifocal tensor is to transform 

the generic triplet of the affine cameras into a new triplet of 

tensors that can be used for computation by applying an 

appropriate 3D homography. This approach can also be used to 

derive affine fundamental matrices. This process implies that 

the affine trifocal tensor naturally inherits the stability and 

reliability of an affine camera. 

2.1 Affine Trifocal Tensor Derivation 

Let the camera matrices of the three views 

be
4 4[ | 0], [ | ], [ | ]P I P A a P B b = = = , respectively. A and B

are 3 3  matrices, and 
ia and 

ib are ( 1,...,4)i i = columns 

corresponding to the cameras. In this situation, 4 4

T T

i i iT a b a b= − . 

The affine camera matrix form replaces the [ | 0]I  of finite 

camera with the 

1 0 0 0

0 1 0 0

0 0 0 1

 
 
 
  

. Consider the camera matrices  

1P and 
2P , which are transformed by

1P and 
2P through the 

3D homography matrix H. 

11 12 14 13

1 2 21 22 24 23

33
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0 1 0 0 ,

0 0 0 1 0 0 0

a a a a

P P a a a a

a

  
   = =   
     

(1) 
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(2) 

1 0 0 0
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0 0 1 0

H

 
 
 =
 
 
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 (3) 

The fundamental matrix remains the same for the 

3Dhomography transformation of each camera; therefore, the 

fundamental matrix F is the same for both camera pairs: 

24 33

14 33

24 11 14 21 24 12 14 22 24 13 14 23

0 0

0 0

a a

F a a

a a a a a a a a a a a a

− 
 

= − 
 + + + 

(4) 

Extending this method to trifocal tensor calculations: 

11 12 14 13

'

3 21 22 24 23

330 0 0

b b b b

P b b b b

b

 
 

=  
  

 (5) 

We get: 
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T a b a b a b a b

− − 
 

= − − 
  

 

12 14 14 12 12 24 14 22

2 22 14 24 12 22 24 24 22

0

0

0 0 0

a b a b a b a b

T a b a b a b a b

− − 
 

= − − 
  

 (6)                     

13 14 14 13 13 24 14 23 14 33
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33 14 33 24 0
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2.2 Solving Process 

First, to extract the connection points, it is necessary to match 

the images in pairs to obtain the connection points, and then 

string the connection points together to obtain the required 

points. After SIFT matching, the initial corresponding 

relationship of the feature matching is obtained. The initial 

value of the affine model for image grayscale information 

matching is accurately initialized using the position and 

orientation information in the feature descriptor. The affine 

transformation parameters and radiation correction values were 

iteratively solved based on the minimum absolute value of the 

gray difference of the corresponding pixels in the matching 

window, which reduces the influence of noise in the window on 

the solution. Finally, a refined point of successful convergence 

is obtained. By substituting the connection points, the required 

results can be calculated using three different calculation 

methods for the trifocal tensor, as described later. 

2.3 Accuracy Verification  

Recovers the camera matrix from the computed trifocal tensor. 

The trifocal tensor only expresses the relationship between 

image elements; hence, it has nothing to do with the 3D 

projection transformation; therefore, the trifocal tensor can 

obtain the camera matrix in the meaning of only one projection 

ambiguity. First, you need to find the antipole: let 
iu and 

iv  be 

the left and right zero vectors of 
iT , respectively, that is, 

0T T

i iu T = and 0i iTv = . The antipole can be obtained by

1 2 3[ , , ] 0T Te u u u =  and 1 2 3[ , , ] 0T Te v v v = . After that, the 

antipole is normalized to the unit norm. Let [ | 0]P I= , then 

1 2 3[[ , , ] | ]P T T T e e  = , and 1 2 3[( )[ , , ] | ]T T TP e e I T T T e e    = − . 

Computes an estimate of object space points according to the 

triangulation method. There are measurements 

,x PX x P X = =  on each image, and these equations can be 

combined into the form of 0DX = , where 
3 1

3 2

3 1

3 2

T T

T T

T T

T T

xP P

yP P
D

x P P

y P P

 −
 

− 
=    −
 
   − 

. The coordinates of the object space point 

can be obtained by obtaining X through SVD decomposition. 

Reproject the object space point to the image space by 

, ,x PX x P X x P X   = = = , and evaluate the error with the 

original image space point. 

3. CALCULATION METHOD

3.1 Affine Minimal Parameterization 

The aim is to determine an optimal solution of the affine trifocal 

tensor between the three views, given three sets of image-

matching points. The algorithm proposed in this study indirectly 

addresses the internal constraints by computing the existence of 

a minimal parameterization of the affine trifocal tensor. 

Nordberg describes a minimal set of 18 parameters that can 

represent any trifocal tensor and its orthogonal matrix, 

consistent with the internal constraints. The nine parameters 

describe the three orthogonal matrices and the other nine 

parameters describe the 10 elements of the sparse tensor T, 17 

of which are equal to zero at well-defined positions. Any valid 
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trifocal tensor was given as a specific tensor transformed by an 

orthogonal matrix in the corresponding image domain. 

Describes a simple method for estimating three orthogonal 

matrices in the general case of 3 × 3 × 3 tensors. This can be 

used to obtain a least-squares approximation of the general 

tensors to the tensors satisfying the internal constraints. 

Conversely, this type of constraint enforcement can be used to 

obtain improved estimates of trifocal tensors based on a 

normalized linear algorithm, with constraint enforcement being 

the last step. 

The three camera matrices are defined as: 

1 ( | 0)P I= ,
2 4( | )P A a= ,

3 4( | )P B b=  (7) 

The three transformation matrices are defined as: 

( )
   ( )
   ( )

2
1 1 1 1 1

0 4 4 4 4 4

21 1

0 4 4 4 4 4

21 1

0 4 4 4 4 4

, ,

, ,

, ,

U A a A a B b A a B b

V a a AB b a AB b

b b BA a b BAW a

− − − − −

 

− −

 

− −

 

   =    

=

=

  (8) 

To simplify the expressions in the following derivations, the last 

two matrices can be written as 

0 4 4 4

0 4 4 4

( ,[ ] ,[ ]

( ,[ ] ,[ ]

V a a r a r

W b b s b s

 

 

=

=
 (9) 

where 1

4r AB b−= ,
4[ ]r a r = , 1

4s BA a−= ,
4[ ]s b s = . The three 

matrices in 
0 0 0, ,U V W have orthogonal columns that can be 

verified based on the nature of the cross-product operator. This 

implies that proper scaling of each column of these three 

matrices results in three orthogonal matrices: 
1

2
0 0 0

1

2
0 0 0

1

2
0 0 0

( )

( )

( )

T

T

T

U U U U

V V V V

W W W W

−

−

−

=

=

=

 (10) 

T can be transformed into
jk pq m j k

i m i p qT T U V W = by following

this rule, which means that each element of T   is obtained by 

multiplying the triplet of the columns of each , ,U V W  by the 

elements of T  .  

3.2 Direct Linear Algorithm  

Based on the point-point-point correspondence property of the 

trifocal tensor, in the case of no mismatch, every pair of 

matching points satisfies     3 30i

i

i

x x T x  

 
  = 
 
 . 

 
1 2 3 10 11 12 19 20 21

1 2 3 4 5 6 13 14 15 22 23 24

7 8 9 16 17 18 25 26 27

t t t t t t t t t

T T T T t t t t t t t t t

t t t t t t t t t

 
 

= =
 
  

(11) 

Based on this, 
4 27 27 1 4 10A t  =  can be obtained by expanding the 

formula. It can be seen that at least seven matching point 

coordinates should be known to obtain t . When there are 

( 7)m m   matching points, the t  value can be obtained using 

singular value decomposition. This method is based on a 

perspective camera model. 

3.3 Affine Direct Linear Method 

The first step is similar to that of the direct linear algorithm. 

According to the properties of the affine trifocal tensor, it can be 

known that 
3 6 7 8 9 12 15 16 17 18 27, , , , , , , , , ,t t t t t t t t t t t are all zero. Based

on this, 
4 16 16 1 4 10A t  =  can be obtained by expanding the 

formula.     

It can be seen that at least four coordinates of the matching 

points should be known to obtain t . When there are ( 4)m m   

matching points, the t  value can be obtained using singular 

value decomposition. 

The trifocal tensor obtained by the direct linear method may 

contain errors; therefore, it should be corrected for the algebraic 

error minimum. When the antipoles 
4e a =  and 

4e b =  of the 

first image relative to the other two images are known, the 

trifocal tensor can be expressed linearly in terms of the 

remaining elements of the camera matrix, and this relationship 

can be written linearly as t Ea= . Where E is a matrix of 

16 18 that represents the linear relationship 4 4

T T

i i iT a e e b = − of 

the elements that are not zero among the 27 elements, a

represents the element vector of 
ia and 

ib , and t  is a vector 

composed of nonzero elements of the trifocal tensor. The 

minimization problem is transformed by minimizing the 

algebraic error AEa  to satisfy 1Ea = . 

The algorithm is implemented as follows. Calculate the singular 

value of E , that is, 
TE UDV= . Then, the singular value AU , 

that is, 
TAU U D V  = . Finally, an t UV =  is required. 

4. EXPERIMENTS

4.1 Experimental Data 

The experimental data adopted were the ZY3-02 and Pleiades 

satellite. ZY3-02 is a high-resolution stereo mapping service 

satellite equipped with payloads, such as a three-line array 

mapping camera and a multispectral camera; the front and rear 

cameras have a resolution of 2.1 meters.  

The experimental data for ZY3-02 were obtained from satellite 

image data of Changsha. This area is located in central China 

and has a complex terrain, including plains and mountainous 

areas, which can better verify the accuracy of the algorithm. The 

size of the entire NAD image was 24,513 × 23,995  pixels .  

The Pleiades Neo satellite is a new-generation 0.3 m optical 

remote sensing commercial satellite from the French Airbus 

company consisting of four satellites; the fastest possible daily 

revisit involved four satellites. It has high resolution, integrated 

detection, strong image-acquisition capability, high satellite 

agility, and high-frequency constellation revisiting. 

The Pleiades Neo dataset uses data from Marseille, France. 

Marseille is located in southern France, with rolling hills 

surrounded by limestone hills on three sides. The south-eastern 

region is located close to the Mediterranean Sea. Because the 

original image was too large, an image with a size of 10,000 × 

10,000 pixels was cropped as a global image for calculation. 
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Figure 1. ZY3-02 image of Changsha. 

Figure 2. Pleiades neo image of Marseille. 

4.2 Experimental Design  

First, we verified the accuracy of the trifocal tensor obtained 

using the three algorithms for a 3,000 × 3,000 pixels image size 

using different points. For comparison, 10, 100, and 1,000 

groups of points were selected. Three sets of projection matrices 

were obtained using the trifocal tensor, and the reprojection 

error of the point was calculated for accuracy evaluation. 

Point number Minimizing 

Algebraic 

Errors 

Minimal 

Parameterization 

Direct 

Linear 

Algorithm 

10 points 0.43 0.86 0.99 

100 points 0.46 0.53 0.56 

1000 points 0.49 0.51 0.53 

Table 1. RMSE of ZY3-02 image. 

Point number Minimizing 

Algebraic 

Errors 

Minimal 

Parameterization 

Direct 

Linear 

Algorithm 

10 points 0.30 0.41 0.37 

100 points 0.50 0.59 0.65 

1000 points 0.59 0.58 0.64 

Table 2. RMSE of Pleiades neo image. 

The experimental results show that in the case of fixed-size 

images, the affine trifocal tensor obtained using 10, 100, and 

1,000 groups of points can obtain better results. 

Figure 3. Error distribution of ZY3-02 image. 

Figure 4. Error distribution of Pleiades neo image. 

This part of the experiment verifies the accuracy of the trifocal 

tensor obtained by the three algorithms for global and local 

images using the same number of points. To satisfy the 

statistical principles, 100 groups of points with uniform 

distributions were randomly selected for the calculation. Three 

sets of projection matrices were obtained using the trifocal 

tensor, and the re-projection error of the point was calculated 

for accuracy evaluation.  

Area size Minimizing 

algebraic 

errors 

Minimal 

parameterization 

Universal 

trifocal 

tensor 

algorithm 

local 0.46 0.53 0.56 

global 0.41 0.50 0.66 

Table 3. RMSE of ZY3-02 image. 
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Area size Minimizing 

algebraic 

errors 

Minimal 

parameterization 

Universal 

trifocal 

tensor 

algorithm 

local 0.45 0.49 0.65 

global 0.40 0.41 1.47 

Table 4. RMSE of Pleiades neo image. 

The experimental results demonstrated the accuracy of the 

trifocal tensor obtained using 100 sets of points for global and 

local images. It can be observed that the three algorithms 

achieved better results for the ZY302 global and local images, 

and the reprojection errors were small. In the global case, the 

points can be distributed more evenly; thus, relatively better 

results can be obtained. However, the direct linear algorithm 

faces global and local images of Pleiades, and its accuracy is 

poor. This illustrates the shortcomings of the direct linear 

algorithm.  

Figure 5. Error distribution of the local image. 

Figure 6. Error distribution of the global image. 

Affine models may be less applicable to areas with rougher 

terrain To explore the problem, the plain and mountainous areas 

of the same size cropped from the ZY302 satellite image were 

selected to verify the accuracy of the algorithm in the third part 

of the experiment. 

Point number Minimizing 

Algebraic 

Errors 

Minimal 

Parameterization 

Direct 

Linear 

Algorithm 

10 points 0.43 0.86 0.99 

100 points 0.46 0.53 0.56 

1000 points 0.49 0.51 0.53 

Table 5. RMSE of Plain area. 

Point number Minimizing Minimal Direct 

Algebraic 

Errors 

Parameterization Linear 

Algorithm 

10 points 1.50 0.34 0.37 

100 points 0.97 0.52 2.24 

1000 points 1.11 0.79 3.71 

Table 6. RMSE of Mountains. 

Clearly from the experimental results, the affine model has a 

problem of poor accuracy in rugged mountainous areas, and the 

accuracy of the three algorithms has declined. However, the 

affine minimum parameter algorithm shows a relatively good 

effect, indicating that, after adding the minimum 

parameterization constraint, the algorithm has a certain 

universality for terrain undulations.  

Figure 7. Error distribution of Plain area. 

Figure 8. Error distribution of Mountains. 

5. CONCLUSION

The imaging mode of high-resolution satellites is usually a line-

center projection, and the field of view is small. Therefore, the 

camera can be approximated as an affine camera. In this study, 

three different methods were used to compute the affine trifocal 

tensor of HRSIs to solve the problem of affine three-view 

geometry on three views. 

Affine trifocal tensor can be used to describe the geometry of 

three HRSIs. Accuracy assessments were performed using 

different number of points of the same name, different image 

area ranges, and different types of high-scoring satellites. It can 

be observed that the minimum parameter method proposed in 

this study has high accuracy under the same conditions; in 

addition, it is suitable for different types of high-resolution 

satellite images, different points, and images of different ranges. 

In general, direct linear algorithms have relatively poor 

accuracy on the local and global images and relatively poor 
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point errors in reprojection. The affine minimum algebraic error 

and affine minimum parameter methods show little difference 

in the calculation results of the local and global images, and 

both can obtain improved results. However, in areas with large 

terrain fluctuations, the affine minimum parameter algorithm 

exhibited the best accuracy. 
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