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ABSTRACT:

Recent advancements in multi-object tracking (MOT) have heavily relied on object detection models, with attention-based models
like DEtection TRansformer (DETR) demonstrating state-of-the-art capabilities. However, the utilization of attention-based detec-
tion models in tracking poses a limitation due to their large parameter count, necessitating substantial training data and powerful
hardware for parameter estimation. Ignoring this limitation can lead to a loss of valuable temporal information, resulting in de-
creased tracking performance and increased identity (ID) switches. To address this challenge, we propose a novel framework that
directly incorporates motion priors into the tracking attention layer, enabling an end-to-end solution. Our contributions include: I) a
novel approach for integrating motion priors into attention-based multi-object tracking models, and II) a specific realisation of this
approach using a Kalman filter with a constant velocity assumption as motion prior. Our method was evaluated on the Multi-Object
Tracking dataset MOT17, initial results are reported in the paper. Compared to a baseline model without motion prior, we achieve
a reduction in the number of ID switches with the new method.

1. INTRODUCTION

Visual multi-object tracking (MOT) is a crucial task in vari-
ous real-world applications such as autonomous driving, sur-
veillance, and human-robot interaction. It involves detecting
and tracking multiple objects in a video sequence. Many re-
cent advancements in the field of MOT have been dependent
on the performance of the employed object detection model.
With the advent of transformer models (Vaswani et al., 2017)
and transformer-based detection models (Carion et al., 2020),
which have demonstrated state-of-the-art capabilities, multiple
attention-based tracking models have been developed (Sun et
al., 2020, Meinhardt et al., 2022). These tracking models ex-
ploit the underlying architecture of transformer-based detection
models, particularly the encoder-decoder framework. Those
models propagate the so-called detected-queries, which encode
information about the position, class and detection score of the
detected object from the previous frames as an additional input
to the decoder component of the model in the current frame.
One of the practical limitations of these tracking models is the
limited length of tracks that the model can be trained on due
to hardware restrictions, resulting in a loss of temporal inform-
ation. In a number of approaches, post processing is used to
counteract this shortcoming.

To overcome this limitation in a better way, in this paper we pro-
pose a novel framework that integrates motion priors directly
into the attention layer, facilitating an end-to-end solution. By
incorporating motion priors within the model, we eliminate the
need for a separate post processing step. We use the motion-
prior model used by (Zhang et al., 2022) in which a Kalman
filter appro ach (Welch and Bishop, 1995) is used with the help
of constant velocity assumption as motion model. Thus, this
paper contains the following main contributions:

• A novel approach to integrate motion priors into attention
based multi-object tracking models.
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• A specific realisation of this approach using a Kalman fil-
ter with constant velocity assumption as motion prior.

The structure of the paper is as follows: Chapter 2 discusses the
two main tracking paradigms, tracking-by-detection and joint-
detection-and-tracking, followed by an overview of the main
attention-based detection models. Chapter 3 provides a gen-
eral explanation of attention-based models, and subsequently
focuses on the detection and tracking aspects of our model.
Chapter 4 describes the experiments conducted to evaluate our
model. Finally, in Chapter 5, we present conclusions and dis-
cuss future directions for research.

2. RELATED WORKS

In this section we give a short review of the two main
paradigm for MOT: tracking-by-detection and joint-detection-
and-tracking, followed by one of the main transformer-based
detection approaches which are used for tracking, namely DE-
tection TRansformer (DETR).

2.1 Tracking-by-Detection

Tracking-by-detection is a widely employed paradigm for
multi-object tracking that involves dividing the MOT problem
into two distinct steps. Firstly, all objects are detected in each
frame separately. In the subsequent so-called re-association
step, the detected objects are linked across consecutive frames
to establish their trajectories over time. The initial step typically
involves employing state-of-the-art object detectors (Ren et al.,
2015, Carion et al., 2020, Zhu et al., 2020) to accurately localize
all objects of interest. In the re-association step, various meth-
ods have been employed to link the detected objects. Traject-
ory prediction can be achieved through object motion modeling,
which may involve employing a simple motion model encoding
a constant velocity assumption (CVA), in which the motion is
assumed to be of constant velocity over a short period of time.
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Alternatively a more complex model like a social force model
(Pellegrini et al., 2009, Scovanner and Tappen, 2009, Yamagu-
chi et al., 2011, Nguyen and Heipke, 2020) or a higher-order
association of detections to trajectories (Henschel, 2021) or the
use of appearance information (Menze et al., 2013) can be used.
BYTETrack (Zhang et al., 2022), a state-of-the-art approach,
executes the re-association step twice: first, it establishes as-
sociations between active tracks and high-scoring detections,
followed by associations between tracks that have not yet been
assigned a detection in the current frame and low-scoring de-
tections. The motion model is leveraged to predict the posi-
tions of the tracks in the current frame. The Intersection over
Union (IoU) is then employed to compute a similarity score
between the predicted bounding box (BB) and the detected BB.
The Hungarian method (Kuhn, 1955) is subsequently utilized
to match the tracks with the detected BBs using the calculated
similarity scores.

A notable limitation of this re-association approach is the chal-
lenge of accurately modeling human motion. Choosing an in-
appropriate motion model can have a detrimental impact on the
quality of the tracking results. Appearance-based re-association
methods often use similarity measures given by a siamese
neural network (Qian et al., 2017, Yu et al., 2018). Similar
to motion modeling-based re-association methods, the Hun-
garian method is used to match the tracks with the detected
BBs. This re-association encounters difficulties in accurately
tracking objects in crowded scenarios with numerous object
and self-occlusions. Tracking-by-detection methods achieve
leading performance, but the separation of the detection and
re-association task leads to a model with multiple handcrafted
parts that have to be designed for the specific dataset. In our
approach, since we use an end-to-end learnable model, we as-
sume that the model can learn the parameters of the used motion
model. Thus, a comprehensive fine-tuning of the handcrafted
parameters is not needed.

2.2 Joint-Detection-and-Tracking

Joint-detection-and-tracking performs detection and tracking
simultaneously within a single stage. In this approach, usu-
ally, a detection model is modified such that the information
about the detections of the previous frames are propagated
to the current frame, such as in (Feichtenhofer et al., 2017,
Zhang et al., 2018, Bergmann et al., 2019). In (Zhang et al.,
2018) the Faster-R-CNN (Ren et al., 2015) model is modified
to achieve tracking. In this context, the underlying detection
model has a direct influence on the quality of the tracking res-
ults. For this reason and with the advancement of state-of-
the-art transformer-based detection models, multiple attention-
based tracking models were developed (Sun et al., 2020, Mein-
hardt et al., 2022). Those models propagate the detections from
the previous frames to the current one and use them as addi-
tional inputs to the decoder of the detection model.

Due to the end-to-end training nature of Joint-Detection-and-
Tracking, the approach requires frames of multiple epochs to
achieve object tracking over a sequence. As a result, power-
ful hardware is necessary to accommodate the computational
requirements.

2.3 Object Detection with Transformers

One of the first object detection models that leverages attention
mechanisms to detect objects in an image is DEtection TRans-
former (DETR) (Carion et al., 2020). DETR extracts input

image features with a backbone CNN. These features are then
augmented with positional encoding to preserve spatial inform-
ation before being fed into the Encoder block. The encoder uses
self-attention to capture global contextual information. The de-
coder receives the encoded image features, and in addition the
so-called object queries as input. While the number of object
queries can vary, all of them have the same fixed dimension
dq . The decoder uses object queries to look for relevant im-
age features and outputs predicted queries, each of which is fed
through a feed forward network (FFN) that predicts either a de-
tection (i.e., class-score and bounding box) or ”no object”. An
overview of the DETR framework can be seen in Figure 1.

object 
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predicted 
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Multi-Head Self-Attention

Feed Forward Network (FFN)

Multi-Head Cross-Attention
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Figure 1. DETR framework that utilizes transformer-based mod-
els for object detection. First, a backbone Convolutional Neural
Network (CNN) is employed as an encoder to extract image fea-
tures from the input image. The output of the encoder block,
along with the object queries from the previous image, serves as
input to the decoder block. The decoder block produces predicted
queries, where each query represents a potential object detection.
The score associated with each query is compared to a predeter-
mined threshold. If the score surpasses the threshold, it signifies
that an object has been identified. In the image, these detected
objects are highlighted with colored bounding boxes.

Since the introduction of the DETR model, several approaches
have emerged that leverage transformer models for object de-
tection (Zhu et al., 2020, Dai et al., 2021, Gao et al., 2021). Our
approach uses the deformable DETR detection model (Zhu et
al., 2020) to detect and track objects in a video sequence and
falls into the joint-detection-and-tracking category.
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3. ATTENTION BASED TRACKING WITH MOTION
PRIOR

In this section, we describe the new joint-detection-and-
tracking method we have developed. To make the paper more
self contained, we start with a review of Transformer models
(Vaswani et al., 2017). Then, we explain our tracking method,
which is specifically designed for the automatic detection and
tracking of pedestrians in an image sequence.

3.1 Review of Transformers

The Transformer model is based on the attention mechanism
and was originally developed for natural language processing
(NLP, (Vaswani et al., 2017)). More recently it was also em-
ployed in computer vision (Dosovitskiy et al., 2021). In es-
sence, transformers model variable and longer range relations
between different so-called input tokens (word embeddings in
NLP, where an embedding is a linear projection, and embed-
dings of flattened image tiles in visual transformers). In con-
trast CNNs have a local and regular neighbourhood, and long
range relations can only be established via pooling operations,
thus by using additional layers. In visual transformers, relations
between all individual pixels of an image can be established by
reducing the size of the image tiles. However, a maximum dis-
tance is typically introduced to keep the computational com-
plexity under control, e.g. by computing attenion in local win-
dows only (Liu et al., 2021). In particular in datasets with a tem-
poral dimension (sentences in NLP, image sequences), trans-
formers have achieved remarkable results (Brown et al., 2020,
Carion et al., 2020, Liu et al., 2021).

It is important to note that the attention mechanism does not
involve convolutional layers. This lack of convolutional layers
may lead to a loss of spatial information. To address this issue,
a positional encoding layer is incorporated, which adds position
information to the input tokens.

The attention layer is a crucial component in the Transformer
model. The attention function is defined as the mapping of
queries zWq (q for ”query”) and so-called key-value pairs xWk

and xWv (k for ”key” and v for ”value”) to produce an out-
put, where z ∈ Rnq×dq and x ∈ Rnk×dk are input tokens
and Wv,Wk ∈ Rdk×dk and Wq ∈ Rdq×dq contain learnable
weights with nq and nk the number of queries and of values,
respectively, and dq and dk the dimension of each query and
each value, respectively.

Each of these components, queries, keys, and values, is a linear
transform of the input tokens z and x. If z and x are identical,
the attention function is called self-attention. Conversely, if z
and x are differs then the attention function is referred to as
cross-attention. The output is computed as a weighted sum of
the values, where the weight assigned to each value is determ-
ined by a correlation function between its corresponding key
and each query, normalised by

√
dk:

Attention(z, x) = softmax(
zWq · (xWk)

T

√
dk

) · xWv (1)

The attention mechanism can be extended into multiple network
heads, here M heads. This extension enables the model to focus
on various aspects of attentions between the inputted tokens:

MultiHead(z, x) = Concat(H1, ..., HM )WO (2)

where WO ∈ Rdk×dk is a learnable linear layer, and each head
Hm is calculated as follow:

Hm(z, x) = softmax(
zWqm · (xWkm)T√

dk
) · xWvm (3)

where Wvm,Wkm ∈ Rdk×(dk/M) and Wqm ∈ Rdq×(dq/M) are
learnable weights similar to the one used in single head atten-
tion, but with reduced dimension.

Although most transformer models use an encoder/decoder ar-
chitecture akin to that found in (Vaswani et al., 2017), some
models, like (Liu et al., 2021) just use the encoder part. The en-
coder and decoder components of the transformer model both
contain N encoder/decoder blocks, where the encoder blocks
only employ self-attention, while the decoder blocks use both
self- and cross-attention. Input tokens x are fed to the encoder
part of the model, while input tokens z and the encoder out-
put are fed to the decoder. The output of the decoder is a set
of tokens that can be interpreted differently based on the task
on hand, e.g. in NLP each token can correspond to a word in
the dictionary while in object detection in images each token
corresponds to a detected object. An overview of the generic
transformer model can be seen in Figure 2.

Figure 2. Overview of the transformer model where input tokens
z and x are used as inputs to the encoder and the decoder, respect-
ively. Both encoder and decoder are made of N encoder/decoder
blocks. The output of the encoder is an additional input to the
decoder which outputs a set of output tokens.

3.2 Object Detection with Deformable DETR

As mentioend, our tracking method is based on the deform-
able DETR detection model (Zhu et al., 2020), which is sim-
ilar to DETR as it is an encoder-decoder model, with N en-
coder/decoder blocks. Also similar to DETR, a CNN backbone
is employed to extract features from the input image; we adopt
the feature pyramid network (FPN) (Lin et al., 2017) in our ap-
proach to extract image features and thus to be able to represent
objects at different scales. Positional encodings are added to
these features, before passing them to the encoder block. In the
decoder block, the encoded image features and object queries
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are provided as input, the output of the decoder is a set of pre-
dicted queries. Each object query corresponds to a predicted
query, which encodes the position, class, and detection score of
a potential detection. If the detection score exceeds a predefined
threshold, it signifies that the predicted query has successfully
identified an object. Conversely, a detection score falling below
the threshold indicates the absence of a detection.

The main difference between deformable DETR and DETR is
the cross-attention layer. The primary concept behind the cross-
attention layer in deformable DETR is related to reducing the
computational load by avoiding to compute attentions between
every object query znq and every image feature x (where n de-
notes the nth decoder block and q is the qth object query), as
it is done in DETR. Instead, in deformable DETR attention is
computed between each object query znq and a subset of np

features selected from the image features x. To accomplish
this, three distinct linear layers are utilized to extract a reference
point Pq , sampling offsets ∆Pmqk, and weights of the attention
matrix Amqk from each object query zn. Here, the reference
point Pq is used as the initial guess of the bounding box center,
and the sampling offsets ∆Pmqk are offsets with respect to Pq .
Additionally, k represents the sampling point within the mth

attention head and qth object query. This process is applied to
all layers of the multi-scale image features obtained through the
FPN backbone:

MSDeformAttn

(
znq, Pq,

{
xl
}L

l=1

)
=

M∑
m=1

Wm

[
L∑

l=1

K∑
k=1

Amqkl ·W ′
mxl (Pq +∆Pmqkl)

] (4)

where l indexes the input feature level, and L is the total number
of input feature levels.

3.3 Object tracking with Deformable DETR

An overview of our model can be seen in Figure 3. In frame
t = 0, the decoder block takes the encoded image features
along with the object queries as input. These object queries
are pre-trained fixed-size embeddings that provide information
about important image regions. These regions can include areas
where pedestrians are present, enabling the model to focus on
detecting and tracking these pedestrians. The output of the de-
coder is a set of predicted queries where each object query cor-
responds to a predicted query. If the detection score exceeds a
predefined threshold, the predicted query has successfully iden-
tified an object and this query becomes a track query in the sub-
sequent epoch. In these frames (t > 0), the set of object queries
is expanded accordingly. Additionally, we use motion priors for
the track queries as part of the cross-attention layer of deform-
able DETR, this will be discussed in subsection 3.4.

The resulting detection queries at this stage can be separated in
four types:

• Continued track query: A track is continued if a track
query detects its object in the current frame and the de-
tection score is higher than the predefined threshold (see
the blue track between frames t = 1 and t = 2 in Figure
3). In this case, the track query of the previous frame is
updated and used as a track query in the next frame.

• Lost track query: A track is lost if a track query from a
previous frame detects its object, but the detection score is

Object 
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Track queries 
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at frame t=0

Object 
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Deformable DETR Features of 
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Figure 3. An overview of the proposed method: In frame t = 0,
the pre-trained object queries are used as input for the tracking
model. In subsequent frames (t > 0), the detections of frame
t − 1 are used as input for the tracking model in frame t; these
detections are called track queries (for details see text). The mo-
tion priors of the track queries are used as additional input to the
tracking model.

lower than the predefined threshold. This can happen, for
example, if the object gets occluded between frames (see
the red track between frames t = 1 and t = 2 in Figure
3). In this case, the track query at frame t − 1 is used
as track query in the next frame t + 1, without updating
it. This is repeated until the track is continued or after a
maximum number of repetitions j is reached after which
the track is deleted, meaning that the track query is not
further propagated to the next frame.

• New track query: A new track query is initialised if an
object query detects a new object and its detection score is
higher than the predefined threshold (see the orange track
at frames t = 2 in Figure 3). In this case, this object query
is used as new track query in the next frame.

• Background query: An object query that detects an object
is labeled as background if the related detection score falls
below the predefined threshold.

By using the different types of track queries, namely continued,
lost and new track queries, we mitigate the need of using hand-
crafted re-association models to connect new detections to the
existing tracks or to initiate new tracks. Instead, this capability
is learned by the tracking model during training. However, a
drawback of this approach is that if a specific scenario was not
encountered during training, the model may struggle to connect
detections to tracks. For instance, if only two frames are used in
each training iteration, the model cannot effectively learn about
occlusions. This is because learning about occlusions requires
at least three frames (preferably more), where the object is de-
tected in the first frame, becomes occluded in the second frame,
and reappears in the third frame. To address this challenge, we
introduce additional constraints to the model in the form of mo-
tion priors.
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3.4 Incorporating Motion Priors

Our model integrates motion priors as an additional constraint
to enhance the tracking model’s ability to predict the position
of the tracked object in the next frame based on information
from previous frames. This incorporation is achieved within
the cross-attention layer, where instead of employing a linear
layer to extract the reference point Pq for the track query, in
our model we utilize the predicted position of the track query
itself as reference point Pq . Additionally, we extend the refer-
ence point Pq for each track query to incorporate distinct ref-
erence points for different feature levels. This is achieved by
incorporating the predicted position of the track query, along
with L − 1 extra points sampled from the normal distributions
whose mean and standard deviation are given by the motion
prior. Consequently, we obtain Plq reference points, with each
reference point corresponding to a specific feature level.

To predict the position of the tracked object in the next frame,
we employ a Kalman filter with a constant velocity assumption,
following the approach described in (Zhang et al., 2022). The
Kalman filtering process consists of two key steps: prediction
and update. In the prediction step, the position of the track
in each frame is projected forward. The update step is only
executed if an object is associated with the track, where the
filter is updated based on the available observations.

The Kalman filter with a constant velocity assumption provides
estimates of both, the object position and the uncertainty of its
position in form of the covariance matrix. The integration of
motion priors is achieved within the cross-attention layer of de-
formable DETR, as illustrated in Figure 4.

If the detected object has moved only slightly between frames,
which is usually ensured by high frame rates, a simple motion
model like the constant velocity assumption which assumes that
an object motion follows a constant velocity over a short period
of time, e.g. between the last two frames in which the object
has been seen. The speed of each object is recalculated in each
frame based on its current and previous position. According to
this assumption, the object position changes linearly over time
with constant speed and direction; the object’s future position
can be predicted based on its current position and velocity. The
predicted position encourages the model to search for the object
at the next frame in the predicted position.

3.5 Loss Function

The loss function used in our approach is identical to the one
employed in TrackFormer (Meinhardt et al., 2022). To make
this paper self-contained we explain it briefly in the following.
The loss is calculated in two steps: First, bipartite matching is
employed to establish a mapping j = π(i) between the ground
truth objects yi and the combined set of object and track query
predictions ŷj . This matching is done similar to the one used
in (Carion et al., 2020) where the mapping j = π(i) corres-
ponds to the mapping in which

∑R Lmatch(yi, ŷπ(i)) is min-
imized, where R is the list of all the indices of the used object
and track queries, and Lmatch(yi, ŷπ(i)) is a pair-wise matching
cost between ground truth yi and a prediction with index π(i).
Here, Lmatch is an addition to class and bounding box loss.

Second, a set prediction loss is calculated where yi, ŷj and the
mapping π are used to calculate the loss:

LMOT (yi, ŷj , π) =

R∑
i=1

Lq(yi, ŷj , π) (5)

Weighted Sampled Values

image feature map

Encoder

Decoder

Motion Priors 

Input image positional encoding

track 
querie

Track 
Query Zq

Backbone

Previous 
track queries

Lost track 
queries

New track 
queries

Input 
Feature x

Linear

Linear

Sampling 
Offsets ΔPmqk

Values

Linear

Attention 
Weights Amqk Aggregate

Aggregate

Head 1 Head 2

Weights Head 1

Weights Head 2

Linear

Output

Sampled 
Values

Softmax

Reference 
Point

Figure 4. Our modified variant of the multi head cross-attention
layer of deformable DETR using motion priors. Initially, values
are extracted from the input feature x using a linear layer. The
predicted position of the track query serves as the reference point
for these values. Subsequently, sampling offsets and attention
weights are obtained through two separate linear layers applied to
the track query. The values are then sampled by incorporating the
reference point, changed by the determined offsets. Finally, the
output of the cross-attention layer is derived as the linear trans-
formation of the sum of the weighted sampled values.

If a query is a lost track query or a background query, its loss
is calculated as follow: Lq = − log p̂i(0) where just the class,
i.e. background, is considered for the loss calculation and not
the bounding box. p̂i(0) denotes the predicted probability of the
background class. On the other hand, for all the other queries,
namely continued and new track queries, the loss is calculated
as follow: Lq = − log p̂i(cπ=i) + Lbox(bπ=i, b̂i) where both
class and bounding box losses are calculated. Lbox(bπ=i, b̂i)
is a combination of the L1 distance and the intersection over
union (IoU).

4. EXPERIMENTS

In this section, we discuss the experiments conducted to evalu-
ate our model. We compare the achieved results to a baseline
that does not utilize motion priors. Instead, the baseline uses the
last position of each track query as reference point in the cross-
attention layer, identical to the approach described in (Mein-
hardt et al., 2022).

4.1 Dataset

For training, two datasets where used, the first one
CrowdHuman (Shao et al., 2018) is a large dataset containing
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15k training images with common pose annotations. Station-
ary cameras are positioned in crowded scenes characterized by
various kinds of occlusions. This dataset is used to pre-train a
Deformable DETR detection model that we then extend as ex-
plained in the Section 3. The second dataset is MOT17 (Milan
et al., 2016) which is a tracking benchmark containing 14 video
sequences. 7 of them are used for training and the other 7 for
testing. In this dataset, stationary cameras are positioned in
crowded scenes characterized by significant occlusions. The
frame rate is between 25 and 30 fps.

4.2 Evaluation Metrics

To quantitatively evaluate the tracking approach, we utilize
several metrics commonly employed in the tracking domain:
MOTA (Multiple Object Tracking Accuracy) (Bernardin and
Stiefelhagen, 2008), IDF1 (Identity-F1 score) (Ristani et al.,
2016), and ID switches. These metrics provide a comprehens-
ive assessment of the tracking results. MOTA combines three
different error metrics, including identity (ID) switches, false
positives, and false negatives, to calculate a single score. By
summing up these metrics and dividing the sum by the total
number of objects in all frames, we obtain the total error rate
Etot. MOTA is then defined as 1 − Etot. IDF1 specifically
evaluates the correctness and consistency of object IDS and tra-
jectories by combining ID precision (IDP) and ID recall (IDR)
using the harmonic mean. IDP measures the ratio of true pos-
itives to true positives plus false positives, while IDR measures
the ratio of true positives to true positives plus false negatives.
ID switches measures the number of switches in the track / in
the dataset.

4.3 Training Strategy and Implementation Details

The training strategy employed in (Zhu et al., 2020) and (Mein-
hardt et al., 2022) is adopted here. Since the proposed model
uses joint-detection-and-tracking, for each training step at least
two frames have to be used, namely frame t and frame t − m,
where m denotes the difference in frame numbers between the
two frames. The model detects the objects in frame t −m and
propagates them to frame t. Since we use a motion prior to
aid tracking, for each object at least two previous detections are
needed to predict its position in frame t. Thus, for each training
step, frames t− 2m, t−m and t are used. To enrich the scen-
arios on which the model is trained on, we chose 1 ≤ m ≤ 10,
where m ∈ N, which simulates relatively long occlusions. m
is randomly sampled for each iteration in training. Addition-
ally, false negative tracks (FN-tracks) are simulated by remov-
ing some of the track queries that are used as input to the model
at frame t, the removal is done with a probability of pFN . The
last scenario that is simulated is the detection of false positive
tracks (FP-tracks) in frame t−m, which is done by adding FP-
queries to the track-queries at frame t−m with a probability of
pFP . Those FP-queries are sampled from the detected queries
of frame t−m that were classified as background.

In training, a batch size of 2 is used, along with initial learning
rates of 2 ∗ 10−3 for the encoder-decoder and 2 ∗ 10−5 for the
backbone. We employ a model pre-trained on CrowdHuman
which is fine-tuned on MOT17 for 45 epochs. For fine-tuning,
the images were resized to have a maximum height of 600
pixels, keeping the original height to width ratio, due to hard-
ware limitations.

4.4 Results and Discussion

To evaluate the effectiveness of our proposed method, we per-
form experiments on the pedestrian-tracking dataset MOT17.
The results can be seen in Table 1. In order to gain a deeper

Detection Tracking
Model Rcll ↑ Prcn ↑ IDF1 ↑ MOTA ↑ IDS ↓

Baseline 71.3% 90.8% 62.2% 63.2% 2832
Our 70.9% 90.5% 63.4% 63.0% 2636

Table 1. Evaluation on MOT17 test set. We compare our model
with the baseline model in which no motion prior is used. The
results are depicting detection and tracking results.

understanding of the impact of motion priors on the tracking
model, we present both, detection and tracking results. As
depicted in Table 1, in the detection section, there is a slight
decrease of 0.3% in recall and 0.4% in precision. This minor
decline in the detection performance is reflected in the overall
MOTA scores , as MOTA heavily relies on the accurate de-
tection of objects. On the other hand, IDF1 and IDS have im-
proved, which shows that the re-association aspect of the model
has benefited from the motion prior.

To better understand the impact of motion priors on the tracking
model, we present two examples in Figure 5. These examples
demonstrate how motion priors aid the tracking model in re-
covering from object occlusions. In the first example (frames
75 and 83), the baseline tracking model incorrectly assigns the
ID of the occluding object to the occluded object, resulting in
the occluding object initiating a new track. The second example
(frames 282 and 300) shows how IDS of the occluding and oc-
cluded objects are switched.

These results demonstrate the improved association capability
of the tracking model when incorporating motion priors. How-
ever, there is a slight decrease in the detection aspect of the
model. This can be observed in Figure 6, where our model fails
to detect the tracked object in frame 290, whereas the baseline
model successfully detects it. We attribute this effect to our
training strategy, specifically the large time gap between de-
tections caused by using frames t − 2m, t − m, and t during
training. This can lead to incorrectly predicted positions and
subsequently incorrect reference points in the cross-attention
layer.

Furthermore, the integration of the motion covariance in the
tracking model presents limitations. This is due to the use of the
Kalman filter parameters, which we have taken from (Zhang et
al., 2022). As a result, the covariance ellipse tends to remain
either very small or relatively large. When the covariance el-
lipse is small, the sampled points align closely with the pre-
dicted position. Conversely, when the covariance ellipse be-
comes larger, the number of sampled points is often too small
to adequately cover the expanded area.

5. CONCLUSION AND FUTURE WORKS

We have proposed a novel tracking approach that incorporates
motion priors into an attention-based detection model, adopt-
ing the joint-detection-and-tracking paradigm for multi-object
tracking. Our proposed framework directly integrates motion
priors into the attention layer, enabling end-to-end learning.
The experimental results demonstrate an enhancement in the
association aspect of the model.
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Figure 5. Visualization of results of our model. We show the improvement of our model in comparison with the baseline model. The
color of the bounding box denotes the ID of that object. The red arrow denotes an ID-switch.
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Figure 6. Example of the limitations of our model. The color of
the bounding box denotes the ID of that object. The red arrow
denotes an FN-track. The yellow arrow denotes the initialisation
of a new ID.

In future work we will investigate a two-step training approach.
In the first step, the model is trained without the propagation of
motion priors, similar to the baseline. This helps to establish a
solid foundation for the detection accuracy. In the second step,
the motion priors are added. By splitting the training process
and limiting the time gap between detections, we then hope to
strike a better balance between accurate motion priors and re-
liable detection performance. Furthermore, the performance of
the motion model can be enhanced by improving the parameter
selection for the Kalman filter and by exploring alternative mo-
tion models, such as learned motion models, to better capture
the dynamics of the tracked objects.
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Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler,
K., 2016. MOT16: A benchmark for multi-object tracking.
http://arxiv.org/abs/1603.00831. arXiv: 1603.00831.

Nguyen, U., Heipke, C., 2020. 3D Pedestrian tracking using
local structure constraints. ISPRS Journal of Photogrammetry
and Remote Sensing, 166, 347-358.

Pellegrini, S., Ess, A., Schindler, K., van Gool, L., 2009. You’ll
never walk alone: Modeling social behavior for multi-target
tracking. Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 261–268.

Qian, X., Fu, Y., Jiang, Y.-G., Xiang, T., Xue, X., 2017. Multi-
scale deep learning architectures for person re-identification.
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 5409-5418.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: To-
wards real-time object detection with region proposal networks.
Advances in Neural Information Processing Systems, 28, 91–
99.

Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C., 2016.
Performance measures and a data set for multi-target, multi-
camera tracking. Proceedings of the European Conference on
Computer Vision (ECCV), 17–35.

Scovanner, P., Tappen, M. F., 2009. Learning pedestrian dynam-
ics from the real world. Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 381–388.

Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X., Sun,
J., 2018. Crowdhuman: A benchmark for detecting human in a
crowd. arXiv:1805.00123.

Sun, P., Cao, J., Jiang, Y., Zhang, R., Xie, E., Yuan, Z., Wang,
C., Luo, P., 2020. TransTrack: multiple-object tracking with
transformer. arXiv preprint arXiv: 2012.15460.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L. u., Polosukhin, I., 2017. Attention is
all you need. Advances in Neural Information Processing Sys-
tems, 30, 5998–6008.

Welch, G., Bishop, G., 1995. An introduction to the kalman
filter. Technical Report 95-041, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA.

Yamaguchi, K., Berg, A. C., Ortiz, L. E., Berg, T. L., 2011.
Who are you with and where are you going? Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 1345–1352.

Yu, Q., Chang, X., Song, Y.-Z., Xiang, T., Hospedales,
T. M., 2018. The devil is in the middle: Exploiting mid-
level representations for cross-domain instance matching.
arXiv:1711.08106.

Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P.,
Liu, W., Wang, X., 2022. Bytetrack: Multi-object tracking by
associating every detection box. Proceedings of the European
Conference on Computer Vision (ECCV), 1–21.

Zhang, Z., Cheng, D., Zhu, X., Lin, S., Dai, J., 2018. Integrated
object detection and tracking with tracklet-conditioned detec-
tion. arXiv preprint arXiv:1811.11167.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., 2020. De-
formable DETR: Deformable transformers for end-to-end ob-
ject detection. arXiv preprint arXiv:2010.04159.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1619-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1626




