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ABSTRACT: 

 

Various soil erosion processes can be quantified using digital elevation models (DEMs) of difference. In this study, cameras were used 

to capture images of bare soil during artificial rainfall simulations. The photos were then used to generate dense 3D point clouds with 

millimeter resolution using Structure-from-Motion and Multiview-Stereo (SfM+MVS) techniques. However, the point clouds also 

captured some vegetation, such as agricultural plants, grass, and weeds, present at the soil surface. It had to be removed to accurately 

measure soil erosion processes. The removal can be done manually and is hence time-consuming. In this study, several methods have 

been tested and compared to perform (semi-)automatic vegetation filtering from point clouds of soil surfaces. First, the point clouds 

were labelled into vegetation and ground data to establish a basis set for the subsequent experiments. Then, three branches of algorithms 

were tested. The first branch considers knowledge-based thresholding. Thereby, unique features were considered, e.g., point color, 

height, and roughness within a specified neighborhood. For instance, a threshold was set in the color space to separate green vegetation 

from brown soil considering the green band. The second branch used a machine learning (ML) algorithm to classify each point as 

vegetation or ground by automatically finding thresholds. Thereby, again features such as point color were used. In addition, multi-

scale features were computed for each point to characterize it in the context of its neighborhood. The calculated features were used 

afterwards with the random forest (RF). The third branch considered an end-to-end learning approach and thus avoiding the necessity 

to define features. The deep learning-based architecture PointNet++ was used. For the classification, an adapted model for soil surfaces 

and vegetation was trained. The performance of the different methods was compared, and an assessment of each method was provided. 

Overall, the study aims to find a (semi-)automatic method to remove vegetation from time series of soil surface point clouds to achieve 

an accurate measurement of soil surface changes and thus eventually erosion processes while minimizing manual effort and time 

consumption. 

 

1. INTRODUCTION 

In the fields of geomorphic change detection, amongst other 

systems with multiple cameras are used. Those cameras capture 

images synchronized over different timespans of months, days or 

even seconds (Kromer et al., 2019, Blanch et al., 2021), which 

are processed to digital elevation models (DEMs). To generate 

those models, Structure-from-Motion and Multi-View Stereo 

(SfM+MVS) are widely used tools. In the field of soil erosion 

measurement during artificial rainfall simulations, also DEMs 

are used, e.g., to parameterize and validate soil erosion models 

(Hänsel et al., 2016). SfM+MVS is an option to capture with at 

least one camera the state of the observed soil before and after 

the rainfall from different perspectives (Eltner et al., 2016, 

Candido et al., 2020, Epple et al., 2022). To assess the state and 

development of the erosion during the experiment, time-lapse 

camera systems are used to generate a time series of DEMs 

(Eltner et al., 2017). Subsequently, these DEMs are subtracted 

from each other to map a signed change on each position of the 

observed plot corresponding to erosion and accumulation if other 

processes masking erosion processes can be neglected (Kaiser et 

al., 2018).  

For some of those experiments, the influence of vegetation like 

crops and gras must be considered because plants might be 

visible in each DEM and thus would distort the results of 

algorithms to measure soil surface changes (Onnen et al., 2020). 

To filter vegetation, machine learning (ML) techniques can be 

reliable algorithms to segment the data into a preset of classes 

(Martins et al., 2023). This study presents a (semi-)automatic 

workflow, which trains a classifier on ground truth data, 
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generated for various rainfall simulations, and which was 

labelled manually. The first classifier is a rule-based algorithm, 

which separates the green vegetation from the brown soil 

considering color and a manually extracted vegetation mask. The 

second classifier is a Random Forest (RF; Breiman, 2001) 

classifier, which has already been used successfully to classify 

erosion features (Malinowski et al., 2023). It takes handcrafted 

features at multiple scales, which are calculated for the training. 

The third classifier is the PointNet++ (Qi et al., 2017) classifier, 

which hierarchically samples and groups the point cloud in 

centroids with given neighborhood to calculate local features at 

each neighborhood with the PointNet (Qi et al., 2016) structured 

Multilayer Perceptron (MLP). Each method will be evaluated 

with a set of labelled test point clouds. 

In the following, we present the data acquisition and introduce 

the rainfall experiments and camera set-up. Then, in section 3, 

we explain the methods used, which are divided into rule-based, 

RF and PointNet++ classifications. The obtained results of each 

classification method are presented and compared in Section 4. 

Furthermore, the derived results are discussed in Section 5. 

Finally, concluding remarks and suggestions for future work are 

made in Section 6. 

 

2. DATA ACQUISTION 

2.1 Rainfall experiments 

The point clouds, which serve in this study as basis for the 

vegetation filtering, were calculated from images captured by 

time-lapse camera systems observing an artificial rainfall 
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simulation. The rainfall experiment consisted of two periods with 

a one-hour break in between to simulate a dry run and a wet run. 

The setup of the experiment was composed of a device, which 

irrigated the soil (3 m²) with a preset intensity (Figure 1). The 

sloped soil was bounded with metal sheets to capture the water 

running off the soil surface. The runoff was led through a pipe at 

the bottom of the plot to take water samples and to measure the 

amount of water. To scale and to reference (transform) each point 

cloud into the same coordinate system, about ten ground control 

points were installed around the bounded plot and their 

coordinates were measured with either total station or measuring 

tape before and after the rainfall simulation. 

 

 
 

Figure 1. Rainfall simulator with ground control points (red 

circles) and cameras on a support structure (left side). 

2.2 Camera set-up 

For the point cloud reconstruction, seven to twelve cameras were 

installed beside the plot on a support structure, which held the 

cameras around 2.5 m above the ground. This ensured a near 

nadir perspective of the cameras, which then looked straight 

down onto the soil surface. All cameras were triggered externally 

to realize synchronous data capturing. The photos were then 

aligned into chunks to generate a time series of corresponding 

pictures. The software Agisoft Metashape (version 1.8.4) was 

used to absoultely orient the pictures and to calculate a dense 

point cloud for each time step.   

 

3. METHODS 

3.1 Point cloud preprocessing 

Each point cloud generated from the SfM+MVS workflow was 

further processed in CloudCompare (version 2.12.4). The 

reconstructed experiment area was cropped from the surrounding 

and the bounding metal sheets, so that only the soil and the 

vegetation was kept. On average, the point clouds revealed an 

exceedingly high point density of 50-90 pts/cm², which made a 

spatial subsampling necessary. The point clouds were reduced to 

a point spacing of 2 mm.  

 

3.2 Ground truth generation 

To train and evaluate ML algorithms, the given datasets are split 

into training, validation and test fragments. The training set 

serves as data the models are trained from, whereas the validation 

set performs a first test of the model. In the context of validation, 

the models hyperparameters are tested to enable their 

optimization. The test set does not take part in the training routine 

and is used for testing the model on unseen data to provide 

unbiased accuracy metrics. For training and testing of the 

classifiers, a training and test set was prepared. The training set 

consisted of point clouds from five different intervals taken 

randomly from one experiment to ensure enough samples for 

training and validation. An interval comprised a time span of 

maximum two hours. For the test set, three point clouds from 

different rainfall simulation experiments with various vegetation 

structure were prepared and labeled (Figure 2) to test the 

classifiers on unseen and spatially uncorrelated data to give 

insights into the classifiers’ ability to generalize. To check, if the 

training of the classifiers on samples from one time series favors 

the classification result on different point clouds of the same time 

series due to spatial correlation, a second test set is created using 

two point clouds from the same time series as the training dataset, 

just taken from different times during the experiment. Due to the 

positioning of the cameras only at one side of the plot, the SfM 

point clouds of the time series contain holes due to occlusions by 

higher vegetation or larger soil chunks (Figure 2, middle). The 

ground truth data were labeled by the same person to keep the 

subjective influence low. The labeling process was carried out in 

CloudCompare. 

 

 
Figure 2. Ground truth: (left) SfM+MVS point cloud captured 

before rainfall experiment from arbitrary positions surrounding 

the plot; (middle) cut and reduced point cloud of the first 

interval of the wet run (2. part) captured from the cameras fixed 

at the support structure; (right) hand labelled point cloud with 

vegetation (red) and ground (blue) classes. 

3.3 Rule-based classification 

The rule-based approach is a simple workflow to classify 

vegetation and ground based on several different thresholds. To 

identify vegetation points in the SfM point cloud time series, first, 

a vegetation mask was generated. This mask was estimated using 

a point cloud of the rainfall simulation plot, which was calculated 

with SfM+MVS from images that were taken immediately before 
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the rainfall started. To ensure a high quality of this 3D model the 

images were captured from many perspectives by walking around 

the entire plot and taking the photos with only one camera, i.e., a 

full-format system camera. The outcome was a colorized high 

resolution point cloud. In that point cloud, vegetation was filtered 

first considering the point colors (RGB-values) because the 

vegetation points displayed a very distinct green color when 

compared to the bare soil surface. The red color scalar was 

divided by green (R/G) and only points below the threshold of 

0.99 were kept as vegetation points. Remaining vegetation points 

were filtered manually. The filtered points were eventually used 

as the mask for vegetation points in the time-series models 

assuming that the time series represented a short time interval and 

vegetation growth could be excluded. However, vegetation 

movements due to water on the leaves led to a change in position, 

which influenced the quality of the mask filtering. 

The point clouds of the time series were processed the following. 

First, the point colors were considered in the same way as for the 

high-quality 3D model, hence the threshold was considered again 

for the red-green color ratio. Then, the vegetation mask was 

applied to the point clouds to filter remaining vegetation points 

considering a kd-tree based nearest neighbor search with a 

maximum radius of 1 mm. If vegetation was within that radius, it 

was assigned to the vegetation class.  

Remaining noisy points, which were assumed to be isolated 

vegetation points, were filtered based on the heights (i.e., Z value 

of the point coordinates) of points within a search radius of 

10 mm and considering a maximum number of neighbors of 30. 

A threshold was defined as the sum of the averaged height values 

and the standard deviation of the heights, which was further 

multiplied by three. Points with values below that threshold were 

assigned to the ground class. 

 

3.4 Random Forest classification 

RF is a widely used ML algorithm that combines decision trees 

to perform classifications. It is an ensemble method that can 

handle both regression and classification tasks, and it excels at 

handling complex datasets with numerous features (Breiman, 

2001). 

 

Random Forest Classifier: The RF classifier constructs multiple 

decision trees, each trained on a randomly drawn subset of the 

training data and using a random selection of features. By 

splitting the data binary at nodes on one of the selected features 

with regards to the best way to separate the classes the sub-

feature space is split into different regions. After the training 

process, the class of a sample can be predicted based on its 

position in the feature space. Each decision tree is aggregated into 

a voting forest. A sample’s class is determined by collecting the 

prediction result of each decision tree and using the class with the 

most predictions, i.e., performing a majority voting. By doing so, 

RF avoids overfitting, reduces variance, and increases the overall 

stability and robustness of the model (Breiman, 2001).  

The key advantages of RF are its ability to handle high-

dimensional datasets and its capability to capture complex 

relationships between variables. Due to its logarithmic time 

complexity, even large datasets can be handled in a short time, 

which makes RF a viable classification tool for dense point 

clouds. The interpretability of RF is a further notable aspect. It 

can provide insights into feature importance, enabling the 

understanding of which variables contribute the most to the 

classification. This information can be valuable for feature 

selection and understanding the underlying patterns in the data. 

 

Feature calculation: As single points of the point cloud with 

cartesian coordinates carry no information about its direct 

neighborhood and the object they belong to, different features 

need to be calculated before giving them to the ML algorithm. To 

do so, for each point in the point cloud, its neighborhood 𝒩 is 

collected for a given search radius. The points’ coordinates 

within the neighborhood are reduced to the centroid, which is the 

average of all point coordinates in the neighborhood. More 

specifically, the squared distances between each point 𝐗𝑖 to the 

centroid 𝐗 is calculated, which will be used to form the 3D-

covariance matrix C for the given neighborhood n on the query 

point:  

𝐂 =  
1

𝑛 − 1
∑ (𝐗𝑖 − 𝐗)(𝐗𝑖 − �̅�)

𝑖 ∈ 𝒩

 (1) 

 

C is a 3 x 3-dimensional matrix. The matrix’ main diagonal 

contains the variance of each coordinate dimension. Besides the 

main diagonal, the covariances are held. To gain a better 

understanding of the variance of the points in the neighborhood, 

i.e., the spatial extent and orientation, Eigenvectors and 

Eigenvalues are extracted. To analyze the neighborhood with 

regards to its largest variance directions, Eigenvalue 

decomposition is used. 

 

𝐀 ⋅ 𝑥 =  𝜆 ⋅ 𝑥 (2) 

𝐀 ⋅ 𝑥 = 𝜆𝐈 ⋅ 𝑥 (3) 

(𝐀 −  𝜆𝐈) ⋅ 𝑥 = 0 (4) 

 

For C, the three Eigenvectors 𝑒1, 𝑒2, 𝑒3 and corresponding 

Eigenvalues 𝜆1, 𝜆2, 𝜆3 (where 𝜆1 > 𝜆2 > 𝜆3), are extracted using 

the identity matrix I. Geometrically interpreted, the first 

Eigenvalue points in the direction with the largest variance in the 

neighborhood with the corresponding Eigenvalue as a measure of 

the magnitude of the variance. The second Eigenvector points, 

perpendicular to the first Eigenvector, in the direction of the 

second largest variance in that neighborhood. The third 

Eigenvector completes the orthogonal Eigenvector frame. These 

Eigenvectors form the basis of the feature computation to analyze 

and encode the underlying surface structure. 

A set of nine unique features (Table 1) were extracted for each 

point from the point cloud for a specific neighborhood. For this 

purpose, the program CloudCompare was used. For each set of 

nine features ten different radii between 1 and 10 cm were 

considered for the computation. The selection of features was 

based on studies conducted by (Weinmann et. al., 2017). The 

main components for the feature calculation were the 

Eigenvalues λi:  

 

Feature Sign Formula 

Eigenentropy Eλ ∑ 𝜆𝑖 ⋅ ln 𝜆𝑖
3
𝑖=1   

Omnivariance Oλ √𝜆1 ⋅ 𝜆2 ⋅ 𝜆3
3   

Anisotropy Aλ (λ1 − λ3)/λ1 

Planarity Pλ (λ2 − λ3)/λ1 

Linearity Lλ (λ1 − λ2)/λ1 

Surface variation Cλ λ3/(λ1 + λ2 + λ3) 

Sphericity Sλ λ3/λ1 

Verticality V 1 − |〈[0 0 1], e3〉| 

Sum of 

Eigenvalues 

Sumλ λ1 + λ2 + λ3 

 

Table 1. Extracted features based on Weinmann et al, 2015. 
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Training of RF classifiers: The training was performed using the 

programming language python and the freely available ML 

library scikit-learn (Pedregosa et al., 2011). For the calculation of 

the RF, following hyperparameters were set: 
 

• number of decision trees to build. 

• maximal depth each decision tree is allowed to be split into, 

• number of features, which are randomly drawn as a subset 

from the whole feature set. 
 

To find the optimal hyperparameter set, a grid search cross 

validation was performed. On a given set for above mentioned 

hyperparameters, each permutation was selected and used for the 

training of a model. Each training was performed with k-fold 

cross validation. The training set was split into k sets, where k-1 

sets were used as training samples. The model was then validated 

with the left-over set. The role of the validation and training set 

was switched, so that each set once had been a validation set. In 

the end, for one permutation of hyperparameters k models were 

trained. On the one hand, this process of cross validation and grid 

search returned an optimal choice of hyperparameters for the 

classification problem. On the other hand, the different models 

for each hyperparameter permutation highlighted imbalances in 

the training data, which occurred during the validation.  

 

3.5 PointNet++ Classification 

PointNet++ is an extension of the PointNet deep learning 

architecture that is designed for point cloud processing tasks for 

3D object classification and segmentation (Qi et al., 2017). The 

main idea behind PointNet++ is the improvement of the 

hierarchical feature learning process in PointNet (Qi et al., 2016) 

by capturing local and global context. While PointNet processes 

each point independently, PointNet++ introduces a neural 

network architecture that hierarchically aggregates local features 

and thereby gradually expands the receptive field. PointNet++ 

operates in a multi-scale grouping and sampling manner. It first 

performs farthest point sampling to select a subset of 

representative points. Then, it forms local regions by grouping 

neighboring points together. Within each local region, it uses 

shared MLPs to learn local features. These local features are then 

aggregated at different scales using a hierarchical set of grouping 

and sampling operations. By progressively increasing the 

receptive field and incorporating multi-scale features, it can 

better understand the spatial relationships and interactions 

between points in a point cloud. 

 

Training of PointNet++ models: For the training of PointNet++ 

models the code from Yan (2019) was used. The repository 

contains code for training the models and importing datasets from 

public available datasets like ScanNet (Dai et. al., 2017) and 

ShapeNet (Chang et. al., 2015). To import the point clouds 

presented in this study, the code had to be adapted. The changes 

were made to the import function for the ScanNet semantic 

segmentation dataset, which is given in the original 

implementation. In the adapted version, our labelled datasets 

were used for training and validation and the number of points K 

was set. K is an upper threshold for the number of points a 

neighborhood can have. With respect to K, the input cloud was 

subsampled with the farthest point algorithm in such a way, that 

all core points and its neighborhood covered the whole point 

cloud.  

 

3.6 Metrics for performance assessment 

To evaluate and compare the trained models and implemented 

algorithms for the classification tasks, sampled ground truth and 

predicted classification labels need to be compared. Kohavi & 

Provost (1998) provide a brief description of terms and 

evaluation techniques for ML algorithms. 

  

Confusion Matrix: To calculate the quality of a classifier, a 

confusion matrix was used (Figure 3). It has a quadratic shape of 

L x L, where L is the count of classes. For each predicted sample 

with (ground-truth-label, predicted-label) as label pair, a field in 

this matrix counts each occurrence of such pair. Each entry on 

the main diagonal corresponds to a correct classified sample 

whereas each entry beside those fields is a misclassification.  

 

 
 

Figure 3. Schematic representation of the confusion matrix with 

correctly classified (green cells) and misclassified (red cells) 

samples. 

Important metrics: To quantify the classification results, several 

metrics, that can be derived from the entries of the confusion 

matrix, were used. The most important are the true positive rates 

(TPR) also known as recall, the false positive rates (FPR), the 

precision and the F1 score:  

 

TPR = TP/(TP + FN) (5) 

 

FPR = FP/(FP + FN) (6) 

  

precision = TP/(TP + FP) (7) 

  

F1 score = 2TP/(2TP + FP + FN) (8) 

 

The TPR represents the proportion of positive instances that are 

correctly classified as positive, indicating the model's ability to 

correctly identify true positives. On the other hand, the FPR 

measures the proportion of negative instances that are incorrectly 

classified as positive, highlighting the instances that were falsely 

identified. Precision measures the accuracy of positive 

predictions. Finally, the F1 score is a harmonic mean of precision 

and recall (=TPR), providing a balanced measure of a classifier's 

performance.  

 

4. RESULTS 

4.1 Random Forest Training 

The results for the grid search training of the RF are presented in 

Table 2. For the number of trees, 100 and 200 trees were trained 

as choices to check if the number of decision trees does influence 

the test score values. The maximum number of features was 

defined by the square root (sqrt) and logarithm function (with 

base of two – log2) to reduce the randomly selected feature count 

to decorrelate the built trees. In our case, the sqrt function created 

ten features and the log2 function created seven features. Both 

functions were used to also detect differences in the testing score. 

Furthermore, and most importantly, the maximum depth 

parameter varied to assess the influence of the complexity of the 

built decision trees. Beginning with lower values of two and five, 

the values were then increased to observe the models testing 

score and to build more complex models. 
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The number of trees and the maximum number of drawn features 

did not influence the performance of the model much. However, 

changing the maximum depth of the RF did influence the 

outcome most. The best test scores were achieved when building 

trees with a maximum depth of 25. The time used to train the 

models was shorter if less trees were trained, using the log2 

function and growing shallow decision trees. 

 

 

 

Mean 

fitting 

time 

[min]  

Max 

depth 

Max 

features 

Number 

of trees 

Mean test 

score (F1-

score) 

3.9 2 sqrt 100 0.688 

7.9 2 sqrt 200 0.686 

2.8 2 log2 100 0.678 

5.2 2 log2 200 0.676 

9.2 5 sqrt 100 0.736 

18.9 5 sqrt 200 0.736 

6.7 5 log2 100 0.732 

12.5 5 log2 200 0.732 

17.9 10 sqrt 100 0.816 

35.6 10 sqrt 200 0.817 

12.5 10 log2 100 0.805 

23.1 10 log2 200 0.805 

30.1 20 sqrt 100 0.953 

60.1 20 sqrt 200 0.954 

20.7 20 log2 100 0.951 

38.3 

31.5 

63.1 

21.4 

39.9 

20 

25 

25 

25 

25 

log2 

sqrt 

sqrt 

log2 

log2 

200 

100 

200 

100 

200 

0.952 

0.966 

0.967 

0.966 

0.966 

 

Table 2. Results of the grid search hyperparameter tuning with 

sqrt = 10 features and log2 = 7 features. 

After the training, the feature importance was retrieved. To 

distinguish between valuable and negligible values, the values 

were normalized by the maximum of all values. Afterwards, 

values greater than 0.2 were chosen as valuable. The kept features 

are displayed in Figure 4. 

 

 
Figure 4. Feature importance with neighborhood radius in 

meter in parenthesis. Only features with values greater than 0.2 

are shown. 

Anisotropy, sphericity, surface variation and verticality were the 

most important features across all scales. The surface variation 

had the greatest influence up to a search radius of 6 cm and the 

verticality had the greatest influence for a radius of 7 cm. The red 

(R) and green (G) colors also played a minor role in the 

classification process. Features for scales (i.e., search radii) of 

one and two centimeters were neglectable. 

  

4.2 PointNet++ Training 

To use the best model for the classification, different grouping 

strategies and point numbers were used. The above-mentioned 

implementation provided single scale grouping (SSG) and multi 

scale grouping (MSG). To check the influence of K on the 

classification result, three different values (256, 4096, 8192) 

were tested. 

 

Grouping Batch 

size 

Epochs K Training 

time [min] 

SSG 16 32 8192 23.5 

MSG 16 32 8192 24.2 

SSG 16 32 4096 27.1 

MSG 16 32 4096 27.5 

SSG 16 32 256 128.2 

MSG 16 32 256 139.2 

Table 3. Parameter setup for PointNet++ model training with 

single- and multi-scale grouping (SSG/MSG). 

 

During the training, training loss values and evaluation loss 

values were exported and plotted against the epoch number 

(Figure 5).  

 

 

Figure 5. Training and evaluation loss values for SSG and 

MSG models for different neighbor points K. 

An overall decreasing loss value with decreasing K became 

obvious. There was a difference in using SSG and MSG for the 

4096 and 8192 points variants of the model. Thereby, MSG 

performed better. For the 256 variant, both grouping methods 

achieved similar loss values.  

4.3 Performance on test sets 

The assessment of the best RF and PointNet++ classifiers was 

performed on both test datasets, i.e., point clouds from the same 

experiment but at different times and point clouds from different 

experiments. On the test set from the same experiment, spatio-

temporal correlations and overfitting must be assumed. When the 

classifier was assessed on the dataset, which was from a different 

rainfall simulation (containing three experiments with one time 

slice each), this is not the case. The rule-based algorithm was also 

evaluated on two time slices, which were part of the time series 

the algorithm was trained on, thus again potentially leading to too 

optimistic performance metrics due to correlations.  

 

Quality metrics: Quality metrics were calculated with equations 

5, 7 and 8. The RF and PointNet++ model achieved higher values 

of the accuracy metrics (Precision 0.92 and Recall 0.93 and 

Precision 0.97 and Recall 0.95, respectively) when applied to the 

same experiment compared to different rainfall simulations. 

Table 4 and Table 5 show the calculated metrices for each 

classifier and class.  
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Model Class Precision Recall F1-Score 

Rule- Ground - - - 

based Vegetation - - - 

RF Ground 0.91 0.91 0.91 

 Vegetation 0.67 0.67 0.67 

Point- 

Net++ 

Ground 

Vegetation 

0.96 

0.72 

0.91 

0.84 

0.93 

0.78 

 

Table 4. Accuracy metrics on the validation set from different 

time series. The best metrics are marked grey. 

Model Class Precision Recall F1-Score 

Rule- Ground 0.97 0.96 0.96 

based Vegetation 0.87 0.90 0.88 

RF Ground 0.92 0.93 0.92 

 Vegetation 0.78 0.78 0.78 

Point- 

Net++ 

Ground 

Vegetation 

0.97 

0.85 

0.95 

0.91 

0.96 

0.88 

 

Table 5. Accuracy metrics on the validation set from the same 

time series. The best metrics are marked grey. 

Confusion matrix: The ground truth and predicted labels are 

compared and summarized in confusion matrices (Figure 6). 

 

 
Figure 6. Confusion matrices of best classifier of the rule-based 

algorithm and the RF and PointNet++ models, calculated for the 

test set from the same experiment as the training set and for the 

other rainfall simulations.  

 

It is noticeable that the values of the false negatives were always 

greater than the false positives; for values of the rule-based and 

PointNet++ model two times larger and for the RF model even 

three times larger. This means that there are relatively more 

ground points that are predicted as vegetation than there are 

vegetation points that are predicted as ground. 

 

Misclassifications: To evaluate the spatial distribution of miss 

classification, plotting the classification results as well as its 

errors onto the point cloud is a helpful visualization (Figure 7gure 

7, 8 and 9). The Figures present the test dataset from different 

experiments (three point clouds at the left) and from the same 

rainfall simulation (two point clouds at the right). The predicted 

false ground points are shown in purple and the false vegetation 

points in blue. 

 
Figure 7. Rule-based classification results mapped on input 

point clouds of the test dataset from the same experiment as the 

training set. 

 
Figure 8. Classification results for the RF classifier mapped on 

input point clouds of the test dataset from different experiments 

(three point clouds on the left) and from the same experiment 

(two point clouds on the right). 

 
Figure 9. Classification results for the PointNet++ classifier 

mapped on input point clouds of the test dataset from different 

experiments (three point clouds on the left) and from the same 

experiment (two clouds on the right). 

The point clouds of the two right-hand time slices in 7 till 9 

originate from the same rainfall simulation experiment. The line 

of missing points in the rightmost time slice was due to different 

light conditions during the rainfall experiment. The shadows 

casted by the sprinkler's legs resulted in very dark areas in the 

images and thus the point matching failed. The misclassifications 
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in the Figures indicate that the false ground and false vegetation 

points are clustered around the true vegetation points. 

Furthermore, some plots (Figure 9igure 9, second point cloud 

from left) are largely misclassified as vegetation in some regions, 

which weakens the information content in those sections. 

 

5. DISCUSSION 

The aim of this study was to minimise the false negative values 

(FN or False Ground) of vegetation points (i.e., vegetation 

classified as ground) because this observation can negatively 

influence the soil erosion process assessment during the later 

processing of the point clouds. For example, a DEM might be 

derived from the soil points and some remaining vegetation 

points could then be considered as eroded soil during the 

differencing of DEMs. 

Overall, the detection of ground points works well because in that 

case every metric was above 90%. Differences between the 

classifier’s quality become obvious for the vegetation 

classification. For point clouds from different time series 

(different rainfall experiments with different vegetation 

structure), the metrics for the quality of the vegetation 

classification were lower than for point clouds taken from the 

same time series, highlighting the influence of spatio-temporal 

correlations and overfitting to the plot from which the training 

data was provided. The RF classifier performed worst on both 

datasets. The PointNet++ results were close to the results 

achieved with the rule-based classification. 

Looking onto the spatial distribution of the misclassification, a 

differentiation between both test datasets must be made to point 

out different behaviours of the ML classifiers on seen and unseen 

data. The performance of the rule-based classifier was only 

assessed on one dataset. It shows a very good classification of 

ground and vegetation on both point clouds. False ground points 

were mostly detected at the fringes of larger vegetation clusters, 

which were left over after the filter process. False vegetation was 

also present at those fringes, but also appeared as little clusters 

on bare soil, which cut holes in the point cloud after the filtering.  

The PointNet++ models showed on the same test set similar 

patterns of misclassified fringes on the vegetation clusters, which 

was similar to the performance of the rule-based approach. The 

deep learning-based approach was a very reliable classifier in 

detecting vegetation with a very low amount of false ground 

classification and a similar amount of false vegetation compared 

to the rule-based classifier. Using the classifier on unseen and 

spatially uncorrelated data like the first test set, the rate of 

misclassification increased for both, false ground and false 

vegetation. Still a considerable amount of vegetation clusters was 

found, but the amount of false ground classification rose on many 

of those clusters. To bypass heavily misclassified regions (Figure 

9), gathering more training data in those time series and training 

a model with an extended training set might create a more 

generalized model. Furthermore, other deep-learning based 

architectures might be considered; such as the graph-based model 

DGCNN (Wang, 2018), which is another approach for encoding 

features and their neighborhood considering the edges between 

points within a neighborhood. 

The RF classifier produced far more misclassifications. It 

performed relatively decent on the spatially correlated dataset 

from the same time series, finding many vegetation clusters. But 

it also classified many tiny clusters as ground, alluding to 

unfiltered vegetation in the process. The amount of false ground 

in comparison to false vegetation was considerably higher 

relative to the other classifiers. 

Applying the RF model onto the point clouds from the other 

experiments (Figure 8, left) revealed that many vegetation 

clusters were not found and therefore classified as ground; the 

false ground values overtook the false vegetation values, which 

was misaligned to the actual aim of the classifier. To overcome 

this limitation, similar to the PointNet++ classifier, more training 

data in those timeseries must be included to generate a more 

generalizing model. Furthermore, more handcrafted features, 

which are even more expressive – e.g., relative height or color 

ratios, might further improve the classifier for vegetation 

detection. Also, improved models like Probabilistic RF (not yet 

investigated for point cloud classification; Reis et al., 2018) to 

model uncertainties of features and labels could be investigated. 

Further improvements of the RF could be the consideration of 

correlations between trees, only selecting the trees with the 

lowest correlation to form a forest (as proposed in Xue et. al., 

2020). 

 

6. CONCLUSION 

For this study, three algorithms were trained and tested on 

different point clouds from different rainfall simulations to filter 

vegetation and ground in DEM time series calculated with 

SfM+MVS. The rule-based classifier was the most precise for all 

candidates. However, the downside of this approach is the time-

consuming crafting of filter masks, which are only usable for that 

single experiment. PointNet++ is a promising alternative to the 

rule-based method, as it performed similar (partially even better) 

and it might be transferable to other rainfall experiments if 

trained with more examples. Another advantage is the sole input 

of point clouds, which avoids the need to design and calculate 

expressive point features. RF is a widely used classification 

algorithm, but it failed in this specific application and was 

outmatched by the other classifiers. Future work should focus on 

improving and implementing other deep learning-based 

algorithms. Furthermore, the amount of training data should be 

investigated to find the sweet spot between ground truth 

generation and classification quality. 
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