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ABSTRACT:

Dense matching plays an important role in 3D modeling from satellite images. Its purpose is to establish pixel-by-pixel corre-
spondences between two stereo images. The most well-known algorithm is the semi-global matching (SGM), which can generate
high-quality 3D models with high computational efficiency. Due to the complex coverage and imaging condition, SGM cannot cope
with these situation well. In recent years, deep learning-based stereo matching has attracted wide attention and shown overwhelm-
ing benifits over traditional algorithms in terms of precision and completeness. However, existing models are usually evaluated by
using close-ranging datasets. Thus, this study investigates the recent deep learning models and evaluate their performance on both
close-ranging and satellite image datasets. The results demonstrate that deep learning network can better adapt to the satellite dataset
than the typical SGM. Meanwhile, the generalization ability of deep learning-based models is still low for the real application at
recent time.

1. INTRODUCTION

Dense matching of stereo images is a classic problem in the
field of photogrammetry and computer vision (Ji et al., 2019).
Its core task is to establish the pixel-by-pixel correspondences
between two images to recover the 3D information of the tar-
get(Geiger et al., 2010). Stereo dense matching has become the
most crucial component in many tasks that range from localiza-
tion tracking to 3D reconstruction (Li et al., 2023b, Jiang et al.,
2023, Geiger et al., 2011, He et al., 2021). As the popularity and
quality of satellite images continue to improve, stereo match-
ing based on high-resolution satellite images has been widely
used in various applications, such as 3D modeling of large-scale
cities (Zhang et al., 2022, Facciolo et al., 2017, Huang et al.,
2017). Thus, efficient and robust stereo matching becomes the
key to applying high-resolution satellite images (Jiang et al.,
2021).

Given a pair of rectified stereo images, the first step of stereo
dense matching is to compute the disparity of each pixel in the
reference image, which is further used to recover the depth and
3D information (Gu et al., 2020). The classic stereo match-
ing algorithm consists of four steps: matching cost calculation,
cost aggregation, disparity calculation, and disparity refinement
(Scharstein and Szeliski, 2002). Traditional handcrafted stereo
matching algorithms are divided into three categories: local
matching, global matching, and semi-global matching (Zhong
et al., 2017). Among them, semi-global matching (SGM) is
a popular and effective method for global optimization, which
approximates the path form of the two-dimensional optimal en-
ergy function by aggregating the one-dimensional path costs
of multiple path directions in the neighborhood (Hirschmuller,
2007). It is widely used in the stereo matching of close-range,
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aerial, and satellite images (Humenberger et al., 2010, Span-
genberg et al., 2013).

In recent years, the use of deep learning networks for stereo
dense matching of satellite images (Zbontar et al., 2016, Li et
al., 2019) has attracted widespread attention. Compared with
traditional algorithms, deep learning-based dense matching has
a significant improvement in terms of accuracy and complete-
ness (Zhou et al., 2020, He et al., 2022). The end-to-end deep
learning network uses CNN (convolutional neural networks) to
integrate matching cost calculation, cost aggregation, and dis-
parity calculation, understand a wider range of context infor-
mation, and obtain a disparity map through a stereo regression
model (Seki and Pollefeys, 2017, Zbontar and LeCun, 2015).
By superimposing and combining the features obtained by the
multi-layer network, the deep learning network can effectively
obtain the geometric and context information of the stereo im-
age (Zhang and Wah, 2017). In the dense matching method
using deep learning, GC-Net creates a cost volume to represent
the correspondence between the left and right images and uses
3D convolution to calculate the disparity map (Kendall et al.,
2017). With greater accuracy than traditional methods, Stere-
oNet simultaneously calculates at a very low-resolution cost
using sub-pixel matching (Khamis et al., 2018). PSM-Net con-
structs a spatial pyramid pooling module and dilated convolu-
tion to gather context information and uses a stacked hourglass
structure to standardize the cost volume to obtain a disparity
map (Chang and Chen, 2018). In HSM-Net, a feature pyra-
mid encoder creates a four-dimensional feature volume, then
the decoder generates the necessary disparity map, particularly
for high-resolution images (Yang et al., 2019). To improve the
accuracy of disparity predictions in low-texture or textureless
regions, AANet presents an intra-scale cost aggregation method
based on sparse points, and uses the neural network layer (Xu
and Zhang, 2020) to approximate the cross-scale cost aggrega-
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tion algorithm.

At present, deep learning models show clear benefits over tradi-
tional stereo dense matching algorithms. To evaluate the perfor-
mance in the high-resolution satellite datasets, we cannot just
rely on the results in close-range datasets (Li et al., 2023a).
Therefore, this paper studies several classic deep learning mod-
els and evaluates the effectiveness of deep learning algorithms
on several datasets, including SceneFlow (Mayer et al., 2016),
KITTI 2015 (Menze and Geiger, 2015), US3D (Bosch et al.,
2019, Le Saux et al., 2019), and WHU-Stereo (Li et al., 2023c).

2. EVALUATED DENSE MATCHING METHODS

2.1 The Workflow of Dense Matching

The disparity map records the disparity value of each object
point in the image coordinate system (Hartley and Zisserman,
2003). After epipolar rectification, dense matching methods try
to find the corresponding point from the right image as much
as possible for each pixel in the left image. The result is stored
by the disparity map of the left image (Mühlmann et al., 2002).
The workflow of dense matching can be divided into 4 steps
(Kendall et al., 2017). First, matching costs are calculated to
measure the correlation between the pixel to be matched and the
candidate pixel. The classic matching cost includes the bright-
ness difference of pixel values, correlation coefficient, and mu-
tual information, etc. These costs are calculated pixel by pixel
in the search region using a specific similarity metric based on
gray value, gradient, or information entropy, within an image
block. Second, matching cost aggregation is then executed,
which is usually implemented as the weighted sum of all match-
ing costs in the neighborhood of the matching pixel. Matching
cost aggregation has been simplified in traditional algorithms
like the Semi-global matching and the GraphCut (Boykov and
Jolly, 2001). Calculating the disparity value is the third step.
The preferred outcome is the disparity value obtained by min-
imizing the energy function with the lowest matching costs,
which is followed by the optimization of disparities. In gen-
eral, the disparity value is then refined with a series of post-
processing techniques, including the left-right consistency check,
median filter, sub-pixel enhancement, etc.

2.2 Dense Matching Methods

It is challenging to achieve the mathematical optimum because
classical matching algorithms at each stage adopt empirical meth-
ods rather than strict mathematical models, such as design fea-
tures, measures, aggregation methods, etc., and they also have
made varying degrees of simplification, such as considering
the matching cost of pixels in the neighborhood independently.
Current research attempts to see whether deep learning algo-
rithms can overcome the restrictions. To evaluate their per-
formance, this study has chosen six typical algorithms in this
field, including the handcrafted SGM algorithm (Hirschmuller,
2007), and five deep learning prediction networks, i.e., GC-Net
(Kendall et al., 2017), StereoNet (Khamis et al., 2018), PSM-
Net (Chang and Chen, 2018), HSM-Net (Yang et al., 2019), and
AANet (Xu and Zhang, 2020). The details are listed as follows.

2.2.1 Semi-Global Matching The matching cost of SGM
is calculated by computing the Hamming distance of the census
transformation values of the two pixels corresponding to the left
and right images (Hirschmuller, 2007).The SGM method then
uses the global energy optimization strategy to identify the best

disparity for each pixel to minimize the global energy function
over the whole image based on the calculated matching cost.
The 1D matching costs are evenly aggregated from all direc-
tions for each pixel, and the 1D minimum costs are added up
for all pathways. The winner-take-all (WTA) method is used to
calculate disparity, and each pixel chooses the disparity value
that corresponds to the lowest aggregation cost value as the final
disparity. Finally, disparity optimization is employed to handle
incorrect value areas that need to be repaired as well as faults
in disparity pictures. Common methods include the removal of
peaks, left-right consistency check, and discontinuity preserv-
ing interpolation.

2.2.2 GC-Net: GC-Net proposes a new deep learning archi-
tecture to solve the end-to-end stereo matching problem while
using the deep convolutional network formula to explicitly rea-
son about geometry and semantics using a deep convolutional
network formulation, to understand global semantic context knowl-
edge, rather than relying solely on local geometry (Kendall et
al., 2017). As shown in Figure 1, the left and right stereo
images in GC-Net go through a series of 2D convolutions to
form a unary feature of shared parameters, which is then cas-
caded with the feature map under each disparity in the right im-
age. Furthermore, the unary feature is encapsulated into a four-
dimensional cost volume. The context information in the data
is then combined using the deep convolution encoder-decoder
network architecture, and after getting the multi-scale features,
the regularization of the cost volume in the disparity dimension
is accomplished using the defined soft argmin function. GC-
Net train the model with supervised learning using ground truth
depth data, the supervised regression loss is defined in Equa-
tion 1, where N is the labeled pixels, loss value is the absolute
error between the ground truth disparity d̂i and the models’s
predicted disparity di.

Loss =
1

N

N∑
i=1

||di − d̂i|| (1)

Figure 1: Network structure of GC-Net.
(Kendall et al., 2017)

2.2.3 StereoNet: Although some encoder-decoder networks
solve the stereo matching problem end-to-end without postpro-
cessing and show good performance on various benchmarks,
the proposed methods require vast amounts of processing power
and memory. StereoNet applies edge-aware filtering stages in
a multi-scale manner to deliver high quality output and uses
a very low resolution cost volume to accomplish the real-time
function. StereoNet provides a course disparity estimate by ex-
tracting image features between input image pairs through a
Siamese network with shared weights, matching features along
scan lines and constructing a cost volume. Finally, a single-pass
optimization is used to upsample the disparity output to full
resolution, recovering thin structures and small objects. This
is accomplished by hierarchically optimizing the disparity out-
put with an edge-preserving refinement network. Similar to
GC-Net, Stereo is trained in a fully supervised manner using
groundtruth-labeled stereo data, and hierarchical loss functionis
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minimized by Equation 2, where dki is the predicted disparity at
pixel I at the k-th refinement level, and d̂i is the groundtruth
disparity at the same pixel. Finally, rho(.) is to approximate a
smoothed L1 loss.

Loss =
∑
k

ρ(dki − d̂i) (2)

Figure 2: Network structure of StereoNet.
(Khamis et al., 2018)

2.2.4 PSM-Net: Due to the lack of using context informa-
tion to find the corresponding relationship between occlusions
and textureless regions when performing feature extraction through
the Siamese network, PSM-Net proposes a spatial pyramid pool-
ing module (SPP) and a stacked hourglass structure to realize
the aggregation of global context information at the level of the
entire image (Chang and Chen, 2018). As shown in Figure 3,
the left and right stereo images are input into two weight-shared
CNN channels to calculate feature maps, and the pyramid pool-
ing module employs four-scale average pooling in conjunction
with dilated convolution. While enlarging the receptive fields,
pixel-level features are extended to region-level features with
different receptive field scales, which are used to form a reliable
cost volume for disparity estimation. To maximize the utiliza-
tion of the global context information, the cost volume is then
sent using an hourglass encoder-decoder system with interme-
diate supervision layers and is repeatedly modified by several
fine-to-coarse and coarse-to-fine operations. The three major
hourglass networks that make up the stacked hourglass struc-
ture each produce a disparity map, which leads to three outputs
and three losses. Each loss value is obtained by Equation 3 and
4, where di is the predicted disparity, and d̂i is the groundtruth
disparity, and N is the number of labeled pixels. The overall
loss value is then produced by adding the three loss values in
weighted fashion.

Loss =
1

N

N∑
i=1

smoothL1(di − d̂i) (3)

in which

smoothL1(x) =

{
0.5x2, if |x| < 0

|x| − 0.5, otherwise
(4)

2.2.5 HSM-Net: Many deep stereo networks do not execute
well on high-resolution images because of memory or speed
limitations. In order to address this issue, HSM-Net produces
four-dimensional feature volumes of various resolutions, from
coarse to fine, using a high-resolution encoder to calculate the
image’s features (Yang et al., 2019). The decoder decodes the
feature volumes and produces a high-quality disparity map while
considering the running time. First, after the features of the left
and right images are obtained by the feature encoder, a four-
level feature volume pyramid is built based on the differences
between potential matching descriptors along horizontal scan

Figure 3: Network structure of PSM-Net.
(Chang and Chen, 2018)

lines, and the spatial and disparity resolutions of each level in-
crease sequentially. Second, the feature volume is filtered by
six 3D convolutional blocks in the decoder, a volumetric pyra-
mid pooling operation is applied, and the minimum-scale fea-
ture volume in the feature pyramid is upsampled to a higher spa-
tial resolution through trilinear interpolation, merging with the
following feature volume in the pyramid. At this time, the dis-
parity can be calculated based on the feature volume of the cur-
rent scale to generate a three-dimensional cost volume, which
takes the least amount of time to generate, a more precise dis-
parity map can be recalculated by the final feature volume. A
natural loss is a softmax distribution such in GC-Net, over can-
didate disparities at the current pyramid level. The final loss
value is determined by Equation 5, where L1 is the loss on the
finest level, and L4 represents the loss on the most coarse level.
Figure 4 depicts the HSM-Net network structure.

Loss = L1 +
1

22
+

1

24
L3 +

1

26
L4 (5)

Figure 4: Network structure of HSM-Net.
(Yang et al., 2019)

2.2.6 AANet: A majority of dense matching networks are
based on 3D convolution that causes high memory consump-
tion and cubic computational complexity. To increase running
speed and keep accuracy at the same level, AANet seeks to re-
place the widely used 3D convolution (Xu and Zhang, 2020).
An intra-scale and a cross-scale cost aggregation module are
included in AAModules in AANet for this purpose. According
to Figure 5, after extracting the downsampling pyramid from a
particular pair of left and right images using the shared feature
extractor, create a multi-scale 3D cost volume by correlating
the left and right image features at the appropriate scales. Then
the original cost volume is aggregated by six stacked AAMod-
ules, where each AAModule consists of three intra-scale cost

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1637



aggregation (ISA) and one cross-scale cost aggregation (CSA)
modules. The ISA module is a representation method based on
sparse points, which realizes efficient and flexible cost aggrega-
tion and alleviates the well-known edge-fattening issue at dis-
parity discontinuities. The CSA module introduces multi-scale
interaction in the traditional cross-scale cost aggregation, and
the final cost volume is obtained by adaptively combining the
cost aggregation results performed at different scales. Finally,
the predicted low-resolution disparity layers are upsampled to
the original resolution using a refinement module. The corre-
sponding loss function is defined as Equation 6, where V(p) is
a binary mask to denote whether the ground truth disparity for
pixel p is available, d̂i is the ground truth disparity and dpseudo
is the pseudo ground truth. As Equation 7, the final loss func-
tion is a combination of losses over all disparity predictions
where λi is a scalar for balancing different terms.

Li =
∑
p

V (p) ∗ smoothL1(di, d̂i)+

(1− V (p)) ∗ smoothL1(di, dpseudo)

(6)

Loss =

N∑
i=1

λi ∗ Li (7)

Figure 5: Network structure of AANet.
(Xu and Zhang, 2020)

3. EVALUATION METRICS AND DATASETS

In order to evaluate the performance of each stereo matching
algorithm under different datasets, our experiments include two
evaluation metrics: EPE and D1. We also employ four distinct
dataset types—SceneFlow, KITTI 2015, US3D, and WHU-Stereo,
and split each dataset’s data into a training set (80%) and a val-
idation set (20%). The details are as follows.

3.1 Evaluation Metrics

We choose endpoint error (EPE) and 3-pixel error ratio (D1) as
the evaluation indicators of the comparison method. EPE is the
average of the Euclidean distances between the predicted value
and the true value. D1 refers to the percentage of error points in
all effective pixels on the basis that the difference between the
predicted value and the real disparity value exceeds 3 pixels,
which is considered an error.

EPE =
1

N

∑
k∈T

|d̂k − d̃k| (8)

D1 =
1

N

∑
k∈T

[|d̂k − d̃k| > t] (9)

where d̂k = ground-truth disparity
d̃k = estimated disparity
N,T = number and set of labelled pixels in the image
t = threshold of erroneous disparity

3.2 Datasets

3.2.1 Sceneflow: Flyingthings3d, Monkka, and Driving are
the three subsets that make up the SceneFlow dataset. The ma-
jority of the items in Flyingthings3D fly in random 3D trajec-
tories. Monkaa contains non-rigid and soft joint movements, as
well as visually challenging hair. Driving is mainly naturalis-
tic and dynamic street scene. The dataset offers dense disparity
maps as ground truth data and consists of a total of 35,454 train-
ing images and 4,370 test images with an image size of 960*540
pixels. Figure 6(a) is an example graph from Sceneflow with the
disparity map colored for easier detail detection.

3.2.2 KITTI 2015: KITTI 2015 is a real street view dataset
for driving cars. It includes 200 test picture pairs without ground
truth disparity and 200 training stereo image pairs with sparse
ground truth disparity acquired using LiDAR. The average im-
age size is 1240*376 pixels.The sample graph of KITTI 2015 is
shown in Figure 6(b), where the disparity map is colorized for
picking up more detail.

3.2.3 US3D: The US3D dataset is a large-scale remote sens-
ing image dataset proposed for multiple tasks, including stereo
semantic stereo, multi-view semantic 3D reconstruction, single-
view height estimation and point cloud semantic segmentation.
For stereo matching, 4292 RGB image pairs and publicly avail-
able ground truth disparity maps are provided, and the image
size is 1024*1024 pixels. In Figure 6(c), a sample graph in
US3D is displayed. The images, collected from the WorldView-
3 satellite, cover the cities of Jacksonville and Omaha in the
United States.

3.2.4 WHU-Stereo: Similar to the US3D dataset, WHU-
Stereo is an open-source dataset used to match stereo pairs of
high-resolution satellite pictures. Among the 1981 epipolar rec-
tification stereo image pairings in WHU-Stereo, 1757 pairs of-
fer ground truth information derived from aerial LiDAR point
clouds. The disparity map, which covers six Chinese cities,
is saved as a 16-bit float value in the dataset, which is made
up of panchromatic band pictures with a 16-bit depth and a
1024*1024 pixel size. Figure 6(d) is a sample graph in WHU-
Stereo.

4. EXPERIMENTAL RESULTS AND DISCUSSION

To comprehensively evaluate the performance of stereo match-
ing algorithms on high-resolution satellite images, we designed
two types of experiments. The first type of experiment is to use
KITTI 2015, US3D, and WHU-Stereo three datasets to com-
pare the dense matching performance of SGM and the deep
learning network. The second category is to verify the general-
ization ability of the deep learning network. Without any fine-
tuning, the pre-trained HSM-Net network model on the train-
ing dataset is applied immediately to the target dataset, and the
model’s degree of deterioration is assessed and compared.
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Datasets SGM GC-Net StereoNet PSM-Net HSM-Net AANet
KITTI 2015 45.082 2.732 2.09 1.528 1.344 1.706

US3D 38.534 1.819 1.796 1.515 1.710 1.354
WHU-Stereo 10.426 3.17 3.615 2.753 9.634 7.765

Table 1: EPE of deep learning models and SGM method on 3 datasets

Datasets SGM GC-Net StereoNet PSM-Net HSM-Net AANet
KITTI 2015 93.0 8.7 11.5 6.2 7.4 10.6

US3D 45.6 14.0 13.6 9.5 12.3 15.6
WHU-Stereo 71.2 35.0 39.8 29.6 55.3 51.0

Table 2: D1 of deep learning models and SGM method on 3 datasets

(a) SceneFlow

(b) KITTI 2015

(c) US3D

(d) WHU-Stereo
Figure 6: Sample images in the four datasets. The left images,
right images, and disparity maps are listed from left to right.

The traditional SGM algorithms are available in OpenCV and
are easy to implement with Python. As for deep learning meth-
ods, we implement our approach in PyTorch and use Adam (β1

= 0.9, β2 = 0.999) as optimizer. These models are all trained
on by an NVIDIA GeForce RTX 3080 on Windows 10 OS,
while the SGM method is also implemented on Windows 10
OS. We used the pre-trained model on the SceneFlow dataset
for 10 epochs when testing on the KITTI 2015 dataset, then
finetuned it on the KITTI 2015 dataset for 100 epochs. In the
process of training and fine-tuning, the image crop size is set to
256*512, the learning rate is set to 0.001, the maximum dispar-
ity search range is set to [0,192], limited by the graphics card
memory, and the batch size is set to 4. For the satellite image
dataset, the image in the US3D dataset is cut to 256*512 pix-
els during training, the disparity search range is [-96,96], the
learning rate is set to 0.001, and 100 epochs are trained from
scratch. When training on the WHU-Stereo dataset, the image
is also cut to 256*512 pixels, the disparity search range is set
to [-128,64], and a total of 120 epochs are trained. The initial
learning rate is set to 0.001, and as the training progresses, the
learning rate is reduced by half every 10 epochs.

4.1 Traditional vs Deep Learning Network

To validate the effectiveness of each algorithm proposed in this
paper, we first compare the traditional SGM with deep learning
networks. The disparity maps computed from all testing sam-
ples of the three datasets in Tables 1 and 2 are used to compute
EPE and D1. Each deep learning model has superior robustness
for data in complicated contextual information and has higher
accuracy compared to the conventional SGM method, as pre-
dicted. PSM-Net has produced comparatively the best results
on the KITTI 2015, US3D, and WHU-Stereo data sets since
different deep learning models have distinct network architec-
tures and varying learning capacities.

In order to show the difference between the results of each
model more intuitively, Fig 7 gives a visual example on KITTI
2015 test set. We also list the visualization results on the US3D
and WHU-Stereo datasets in Figure 8 and Figure 9, respec-
tively. From the table 1, table 2 and the visualization results,
except for the WHU-Stereo dataset, the accuracy of the other
two datasets is much higher than that of SGM. As shown in Fig-
ures 7 and 8, the disparity maps created by the methods of deep
learning in the KITTI 2015 dataset are more comprehensive in
repetitive areas as non-textured roads and sky, and clearer in de-
tailed areas as car outlines and sign edges. As for WHU-Stereo
and US3D datasets, compared with the SGM algorithm, the dis-
parity maps predicted by deep learning models are smoother
and more complete on building footprint. AANet employs the
pre-trained model on Sceneflow dataset to predict the disparity
maps on KITTI2015, and uses the prediction results as pseudo
labels in pixels, but when training on US3D and WHU-Stereo
without pseudo ground truth supervision. Additionally, there
are a lot of holes in the disparity map obtained by the traditional
SGM method, and the hole area needs to be filled through post-
processing, while the deep learning method directly obtains the
disparity map through end-to-end learning.

4.2 Generalization of Deep Learning Methods

Generalization learning is to transfer the trained model param-
eters to another new model to help training. The new model
can use the learnt model parameters to accelerate and maxi-
mize learning efficiency based on the correlation of the data.
The US3D and WHU-Stereo used in this paper belong to satel-
lite building image datasets. However, the WHU-Stereo con-
tains single channel grayscale images, and the US3D includes
three channels RGB images, so Generalization learning cannot
be completed using these two datasets. Table 3 shows the ex-
perimental results of the HSM-Net network model applied to
the test data set after the pre-training model is obtained on the
test dataset. HSM-Net has good generalization ability, using
the KITTI 2015 dataset as the training set, and the 3-pixel error
ratio of prediction on the US3D dataset is 52.8%.
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Figure 7: Results on KITTI 2015. From left to right and top to bottom are the disparity maps of SGM, GC-Net, StereoNet, PSM-
Net, HSM-Net, and AANet.

Figure 8: Results on US3D. From left to right are the disparity maps of SGM, GC-Net, StereoNet, PSM-Net, HSM-Net, and AANet.

Figure 9: Results on WHU-Stereo. From left to right are the disparity maps of SGM, GC-Net, StereoNet, PSM-Net, HSM-Net, and
AANet.

Test dataset Training dataset
KITTI 2015 US3D

KITTI 2015 7.4 12.1
US3D 58.3 52.8

Table 3: The results of the HSM-Net pre-trained model on the
target dataset (D1)/%

5. CONCLUSION

Using two convolutional computer vision datasets and two satel-
lite image datasets, we thoroughly investigated the stereo match-
ing method of deep learning based on the traditional stereo
matching algorithm. We used the end point error (EPE) and
the proportion of 3-pixel error (D1) as indicators to evaluate
the chosen five representative deep learning networks. The out-
comes demonstrate that the deep learning network can better
adapt to the satellite dataset than the typical stereo matching
method SGM. Moreover, the end-to-end matching deep learn-
ing network may acquire the predicted disparity map without
the need for post-processing. The deep learning network’s gen-
eralization capacity, however, is subpar. The accuracy signifi-
cantly decreases when the model developed on the KITTI 2015
dataset is used to the US3D dataset, making the benefit over the
conventional algorithm less clear.
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